// Copyright 2019 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. use futures::{prelude::*, ready}; use libp2p_core::{InboundUpgrade, OutboundUpgrade, UpgradeInfo}; use std::{io, iter, pin::Pin, task::Context, task::Poll}; #[derive(Debug, Copy, Clone)] pub struct DeflateConfig { compression: flate2::Compression, } impl Default for DeflateConfig { fn default() -> Self { DeflateConfig { compression: flate2::Compression::fast(), } } } impl UpgradeInfo for DeflateConfig { type Info = &'static [u8]; type InfoIter = iter::Once; fn protocol_info(&self) -> Self::InfoIter { iter::once(b"/deflate/1.0.0") } } impl InboundUpgrade for DeflateConfig where C: AsyncRead + AsyncWrite, { type Output = DeflateOutput; type Error = io::Error; type Future = future::Ready>; fn upgrade_inbound(self, r: C, _: Self::Info) -> Self::Future { future::ok(DeflateOutput::new(r, self.compression)) } } impl OutboundUpgrade for DeflateConfig where C: AsyncRead + AsyncWrite, { type Output = DeflateOutput; type Error = io::Error; type Future = future::Ready>; fn upgrade_outbound(self, w: C, _: Self::Info) -> Self::Future { future::ok(DeflateOutput::new(w, self.compression)) } } /// Decodes and encodes traffic using DEFLATE. #[derive(Debug)] pub struct DeflateOutput { /// Inner stream where we read compressed data from and write compressed data to. inner: S, /// Internal object used to hold the state of the compression. compress: flate2::Compress, /// Internal object used to hold the state of the decompression. decompress: flate2::Decompress, /// Temporary buffer between `compress` and `inner`. Stores compressed bytes that need to be /// sent out once `inner` is ready to accept more. write_out: Vec, /// Temporary buffer between `decompress` and `inner`. Stores compressed bytes that need to be /// given to `decompress`. read_interm: Vec, /// When we read from `inner` and `Ok(0)` is returned, we set this to `true` so that we don't /// read from it again. inner_read_eof: bool, } impl DeflateOutput { fn new(inner: S, compression: flate2::Compression) -> Self { DeflateOutput { inner, compress: flate2::Compress::new(compression, false), decompress: flate2::Decompress::new(false), write_out: Vec::with_capacity(256), read_interm: Vec::with_capacity(256), inner_read_eof: false, } } /// Tries to write the content of `self.write_out` to `self.inner`. /// Returns `Ready(Ok(()))` if `self.write_out` is empty. fn flush_write_out(&mut self, cx: &mut Context) -> Poll> where S: AsyncWrite + Unpin { loop { if self.write_out.is_empty() { return Poll::Ready(Ok(())) } match AsyncWrite::poll_write(Pin::new(&mut self.inner), cx, &self.write_out) { Poll::Ready(Ok(0)) => return Poll::Ready(Err(io::ErrorKind::WriteZero.into())), Poll::Ready(Ok(n)) => self.write_out = self.write_out.split_off(n), Poll::Ready(Err(err)) => return Poll::Ready(Err(err)), Poll::Pending => return Poll::Pending, }; } } } impl AsyncRead for DeflateOutput where S: AsyncRead + Unpin { fn poll_read(mut self: Pin<&mut Self>, cx: &mut Context, buf: &mut [u8]) -> Poll> { // We use a `this` variable because the compiler doesn't allow multiple mutable borrows // across a `Deref`. let this = &mut *self; loop { // Read from `self.inner` into `self.read_interm` if necessary. if this.read_interm.is_empty() && !this.inner_read_eof { unsafe { this.read_interm.reserve(256); this.read_interm.set_len(this.read_interm.capacity()); } match AsyncRead::poll_read(Pin::new(&mut this.inner), cx, &mut this.read_interm) { Poll::Ready(Ok(0)) => { this.inner_read_eof = true; this.read_interm.clear(); } Poll::Ready(Ok(n)) => { this.read_interm.truncate(n) }, Poll::Ready(Err(err)) => { this.read_interm.clear(); return Poll::Ready(Err(err)) }, Poll::Pending => { this.read_interm.clear(); return Poll::Pending }, } } debug_assert!(!this.read_interm.is_empty() || this.inner_read_eof); let before_out = this.decompress.total_out(); let before_in = this.decompress.total_in(); let ret = this.decompress.decompress(&this.read_interm, buf, if this.inner_read_eof { flate2::FlushDecompress::Finish } else { flate2::FlushDecompress::None })?; // Remove from `self.read_interm` the bytes consumed by the decompressor. let consumed = (this.decompress.total_in() - before_in) as usize; this.read_interm = this.read_interm.split_off(consumed); let read = (this.decompress.total_out() - before_out) as usize; if read != 0 || ret == flate2::Status::StreamEnd { return Poll::Ready(Ok(read)) } } } } impl AsyncWrite for DeflateOutput where S: AsyncWrite + Unpin { fn poll_write(mut self: Pin<&mut Self>, cx: &mut Context, buf: &[u8]) -> Poll> { // We use a `this` variable because the compiler doesn't allow multiple mutable borrows // across a `Deref`. let this = &mut *self; // We don't want to accumulate too much data in `self.write_out`, so we only proceed if it // is empty. ready!(this.flush_write_out(cx))?; // We special-case this, otherwise an empty buffer would make the loop below infinite. if buf.is_empty() { return Poll::Ready(Ok(0)); } // Unfortunately, the compressor might be in a "flushing mode", not accepting any input // data. We don't want to return `Ok(0)` in that situation, as that would be wrong. // Instead, we invoke the compressor in a loop until it accepts some of our data. loop { let before_in = this.compress.total_in(); this.write_out.reserve(256); // compress_vec uses the Vec's capacity let ret = this.compress.compress_vec(buf, &mut this.write_out, flate2::FlushCompress::None)?; let written = (this.compress.total_in() - before_in) as usize; if written != 0 || ret == flate2::Status::StreamEnd { return Poll::Ready(Ok(written)); } } } fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll> { // We use a `this` variable because the compiler doesn't allow multiple mutable borrows // across a `Deref`. let this = &mut *self; ready!(this.flush_write_out(cx))?; this.compress.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Sync)?; loop { ready!(this.flush_write_out(cx))?; debug_assert!(this.write_out.is_empty()); // We ask the compressor to flush everything into `self.write_out`. this.write_out.reserve(256); // compress_vec uses the Vec's capacity this.compress.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::None)?; if this.write_out.is_empty() { break; } } AsyncWrite::poll_flush(Pin::new(&mut this.inner), cx) } fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll> { // We use a `this` variable because the compiler doesn't allow multiple mutable borrows // across a `Deref`. let this = &mut *self; loop { ready!(this.flush_write_out(cx))?; // We ask the compressor to flush everything into `self.write_out`. debug_assert!(this.write_out.is_empty()); this.write_out.reserve(256); // compress_vec uses the Vec's capacity this.compress.compress_vec(&[], &mut this.write_out, flate2::FlushCompress::Finish)?; if this.write_out.is_empty() { break; } } AsyncWrite::poll_close(Pin::new(&mut this.inner), cx) } }