// Copyright 2018 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. use crate::PublicKey; use bs58; use thiserror::Error; use multihash; use std::{convert::TryFrom, fmt, hash, str::FromStr}; /// Public keys with byte-lengths smaller than `MAX_INLINE_KEY_LENGTH` will be /// automatically used as the peer id using an identity multihash. const _MAX_INLINE_KEY_LENGTH: usize = 42; /// Identifier of a peer of the network. /// /// The data is a multihash of the public key of the peer. // TODO: maybe keep things in decoded version? #[derive(Clone, Eq)] pub struct PeerId { multihash: multihash::Multihash, } impl fmt::Debug for PeerId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("PeerId") .field(&self.to_base58()) .finish() } } impl fmt::Display for PeerId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.to_base58().fmt(f) } } impl PeerId { /// Builds a `PeerId` from a public key. pub fn from_public_key(key: PublicKey) -> PeerId { let key_enc = key.into_protobuf_encoding(); // Note: before 0.12, this was incorrectly implemented and `SHA2256` was always used. // Starting from version 0.13, rust-libp2p accepts both hashed and non-hashed keys as // input (see `from_bytes`). Starting from version 0.16 rust-libp2p will compare // `PeerId`s of different hashes equal, which makes it possible to connect through // secio or noise to nodes with an identity hash. Starting from version 0.17, rust-libp2p // will switch to not hashing the key (i.e. the correct behaviour). // In other words, rust-libp2p 0.16 is compatible with all versions of rust-libp2p. // Rust-libp2p 0.12 and below is **NOT** compatible with rust-libp2p 0.17 and above. let hash_algorithm = /*if key_enc.len() <= MAX_INLINE_KEY_LENGTH { multihash::Hash::Identity } else {*/ multihash::Hash::SHA2256; //}; let multihash = multihash::encode(hash_algorithm, &key_enc) .expect("identity and sha2-256 are always supported by known public key types"); PeerId { multihash } } /// Checks whether `data` is a valid `PeerId`. If so, returns the `PeerId`. If not, returns /// back the data as an error. pub fn from_bytes(data: Vec) -> Result> { match multihash::Multihash::from_bytes(data) { Ok(multihash) => { if multihash.algorithm() == multihash::Hash::SHA2256 || multihash.algorithm() == multihash::Hash::Identity { Ok(PeerId { multihash }) } else { Err(multihash.into_bytes()) } } Err(err) => Err(err.data), } } /// Turns a `Multihash` into a `PeerId`. If the multihash doesn't use the correct algorithm, /// returns back the data as an error. pub fn from_multihash(data: multihash::Multihash) -> Result { if data.algorithm() == multihash::Hash::SHA2256 || data.algorithm() == multihash::Hash::Identity { Ok(PeerId { multihash: data }) } else { Err(data) } } /// Generates a random peer ID from a cryptographically secure PRNG. /// /// This is useful for randomly walking on a DHT, or for testing purposes. pub fn random() -> PeerId { PeerId { multihash: multihash::Multihash::random(multihash::Hash::SHA2256) } } /// Returns a raw bytes representation of this `PeerId`. /// /// Note that this is not the same as the public key of the peer. pub fn into_bytes(self) -> Vec { self.multihash.into_bytes() } /// Returns a raw bytes representation of this `PeerId`. /// /// Note that this is not the same as the public key of the peer. pub fn as_bytes(&self) -> &[u8] { self.multihash.as_bytes() } /// Returns a base-58 encoded string of this `PeerId`. pub fn to_base58(&self) -> String { bs58::encode(self.multihash.as_bytes()).into_string() } /// Checks whether the public key passed as parameter matches the public key of this `PeerId`. /// /// Returns `None` if this `PeerId`s hash algorithm is not supported when encoding the /// given public key, otherwise `Some` boolean as the result of an equality check. pub fn is_public_key(&self, public_key: &PublicKey) -> Option { let alg = self.multihash.algorithm(); let enc = public_key.clone().into_protobuf_encoding(); match multihash::encode(alg, &enc) { Ok(h) => Some(h == self.multihash), Err(multihash::EncodeError::UnsupportedType) => None, Err(multihash::EncodeError::UnsupportedInputLength) => None, } } } impl hash::Hash for PeerId { fn hash(&self, state: &mut H) where H: hash::Hasher { match self.multihash.algorithm() { multihash::Hash::Identity => { let sha256 = multihash::encode(multihash::Hash::SHA2256, self.multihash.digest()) .expect("encoding a SHA2256 multihash never fails; qed"); hash::Hash::hash(sha256.digest(), state) }, multihash::Hash::SHA2256 => { hash::Hash::hash(self.multihash.digest(), state) }, _ => unreachable!("PeerId can only be built from Identity or SHA2256; qed") } } } impl From for PeerId { #[inline] fn from(key: PublicKey) -> PeerId { PeerId::from_public_key(key) } } impl TryFrom> for PeerId { type Error = Vec; fn try_from(value: Vec) -> Result { PeerId::from_bytes(value) } } impl TryFrom for PeerId { type Error = multihash::Multihash; fn try_from(value: multihash::Multihash) -> Result { PeerId::from_multihash(value) } } impl PartialEq for PeerId { fn eq(&self, other: &PeerId) -> bool { match (self.multihash.algorithm(), other.multihash.algorithm()) { (multihash::Hash::SHA2256, multihash::Hash::SHA2256) => { self.multihash.digest() == other.multihash.digest() }, (multihash::Hash::Identity, multihash::Hash::Identity) => { self.multihash.digest() == other.multihash.digest() }, (multihash::Hash::SHA2256, multihash::Hash::Identity) => { multihash::encode(multihash::Hash::SHA2256, other.multihash.digest()) .map(|mh| mh == self.multihash) .unwrap_or(false) }, (multihash::Hash::Identity, multihash::Hash::SHA2256) => { multihash::encode(multihash::Hash::SHA2256, self.multihash.digest()) .map(|mh| mh == other.multihash) .unwrap_or(false) }, _ => false } } } // TODO: The semantics of that function aren't very precise. It is possible for two `PeerId`s to // compare equal while their bytes representation are not. Right now, this `AsRef` // implementation is only used to define precedence over two `PeerId`s in case of a // simultaneous connection between two nodes. Since the simultaneous connection system // is planned to be removed (https://github.com/libp2p/rust-libp2p/issues/912), we went for // we keeping that function with the intent of removing it as soon as possible. impl AsRef<[u8]> for PeerId { fn as_ref(&self) -> &[u8] { self.as_bytes() } } impl From for multihash::Multihash { fn from(peer_id: PeerId) -> Self { peer_id.multihash } } #[derive(Debug, Error)] pub enum ParseError { #[error("base-58 decode error: {0}")] B58(#[from] bs58::decode::Error), #[error("decoding multihash failed")] MultiHash, } impl FromStr for PeerId { type Err = ParseError; #[inline] fn from_str(s: &str) -> Result { let bytes = bs58::decode(s).into_vec()?; PeerId::from_bytes(bytes).map_err(|_| ParseError::MultiHash) } } #[cfg(test)] mod tests { use crate::{PeerId, identity}; use std::{convert::TryFrom as _, hash::{self, Hasher as _}}; #[test] fn peer_id_is_public_key() { let key = identity::Keypair::generate_ed25519().public(); let peer_id = key.clone().into_peer_id(); assert_eq!(peer_id.is_public_key(&key), Some(true)); } #[test] fn peer_id_into_bytes_then_from_bytes() { let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id(); let second = PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap(); assert_eq!(peer_id, second); } #[test] fn peer_id_to_base58_then_back() { let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id(); let second: PeerId = peer_id.to_base58().parse().unwrap(); assert_eq!(peer_id, second); } #[test] fn random_peer_id_is_valid() { for _ in 0 .. 5000 { let peer_id = PeerId::random(); assert_eq!(peer_id, PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap()); } } #[test] fn peer_id_identity_equal_to_sha2256() { let random_bytes = (0..64).map(|_| rand::random::()).collect::>(); let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap(); let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap(); let peer_id1 = PeerId::try_from(mh1).unwrap(); let peer_id2 = PeerId::try_from(mh2).unwrap(); assert_eq!(peer_id1, peer_id2); assert_eq!(peer_id2, peer_id1); } #[test] fn peer_id_identity_hashes_equal_to_sha2256() { let random_bytes = (0..64).map(|_| rand::random::()).collect::>(); let mh1 = multihash::encode(multihash::Hash::SHA2256, &random_bytes).unwrap(); let mh2 = multihash::encode(multihash::Hash::Identity, &random_bytes).unwrap(); let peer_id1 = PeerId::try_from(mh1).unwrap(); let peer_id2 = PeerId::try_from(mh2).unwrap(); let mut hasher1 = fnv::FnvHasher::with_key(0); hash::Hash::hash(&peer_id1, &mut hasher1); let mut hasher2 = fnv::FnvHasher::with_key(0); hash::Hash::hash(&peer_id2, &mut hasher2); assert_eq!(hasher1.finish(), hasher2.finish()); } #[test] fn peer_id_equal_across_algorithms() { use multihash::Hash; use quickcheck::{Arbitrary, Gen}; #[derive(Debug, Clone, PartialEq, Eq)] struct HashAlgo(Hash); impl Arbitrary for HashAlgo { fn arbitrary(g: &mut G) -> Self { match g.next_u32() % 4 { // make Hash::Identity more likely 0 => HashAlgo(Hash::SHA2256), _ => HashAlgo(Hash::Identity) } } } fn property(data: Vec, algo1: HashAlgo, algo2: HashAlgo) -> bool { let a = PeerId::try_from(multihash::encode(algo1.0, &data).unwrap()).unwrap(); let b = PeerId::try_from(multihash::encode(algo2.0, &data).unwrap()).unwrap(); if algo1 == algo2 || algo1.0 == Hash::Identity || algo2.0 == Hash::Identity { a == b } else { a != b } } quickcheck::quickcheck(property as fn(Vec, HashAlgo, HashAlgo) -> bool) } }