// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! Implementation of the libp2p `Transport` trait for TCP/IP. //! //! Uses [the *tokio* library](https://tokio.rs). //! //! # Usage //! //! Example: //! //! ``` //! extern crate libp2p_tcp_transport; //! use libp2p_tcp_transport::TcpConfig; //! //! # fn main() { //! let tcp = TcpConfig::new(); //! # } //! ``` //! //! The `TcpConfig` structs implements the `Transport` trait of the `swarm` library. See the //! documentation of `swarm` and of libp2p in general to learn how to use the `Transport` trait. extern crate futures; extern crate libp2p_core as swarm; #[macro_use] extern crate log; extern crate multiaddr; extern crate tk_listen; extern crate tokio_io; extern crate tokio_tcp; #[cfg(test)] extern crate tokio_current_thread; use futures::{future, future::FutureResult, prelude::*, Async, Poll}; use multiaddr::{Protocol, Multiaddr, ToMultiaddr}; use std::fmt; use std::io::{Error as IoError, Read, Write}; use std::net::SocketAddr; use std::time::Duration; use swarm::Transport; use tk_listen::{ListenExt, SleepOnError}; use tokio_io::{AsyncRead, AsyncWrite}; use tokio_tcp::{ConnectFuture, Incoming, TcpListener, TcpStream}; /// Represents the configuration for a TCP/IP transport capability for libp2p. /// /// The TCP sockets created by libp2p will need to be progressed by running the futures and streams /// obtained by libp2p through the tokio reactor. #[derive(Debug, Clone, Default)] pub struct TcpConfig { /// How long a listener should sleep after receiving an error, before trying again. sleep_on_error: Duration, /// Size of the recv buffer size to set for opened sockets, or `None` to keep default. recv_buffer_size: Option, /// Size of the send buffer size to set for opened sockets, or `None` to keep default. send_buffer_size: Option, /// TTL to set for opened sockets, or `None` to keep default. ttl: Option, /// Keep alive duration to set for opened sockets, or `None` to keep default. keepalive: Option>, /// `TCP_NODELAY` to set for opened sockets, or `None` to keep default. nodelay: Option, } impl TcpConfig { /// Creates a new configuration object for TCP/IP. #[inline] pub fn new() -> TcpConfig { TcpConfig { sleep_on_error: Duration::from_millis(100), recv_buffer_size: None, send_buffer_size: None, ttl: None, keepalive: None, nodelay: None, } } /// Sets the size of the recv buffer size to set for opened sockets. #[inline] pub fn recv_buffer_size(mut self, value: usize) -> Self { self.recv_buffer_size = Some(value); self } /// Sets the size of the send buffer size to set for opened sockets. #[inline] pub fn send_buffer_size(mut self, value: usize) -> Self { self.send_buffer_size = Some(value); self } /// Sets the TTL to set for opened sockets. #[inline] pub fn ttl(mut self, value: u32) -> Self { self.ttl = Some(value); self } /// Sets the keep alive pinging duration to set for opened sockets. #[inline] pub fn keepalive(mut self, value: Option) -> Self { self.keepalive = Some(value); self } /// Sets the `TCP_NODELAY` to set for opened sockets. #[inline] pub fn nodelay(mut self, value: bool) -> Self { self.nodelay = Some(value); self } } impl Transport for TcpConfig { type Output = TcpTransStream; type Listener = TcpListenStream; type ListenerUpgrade = FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>; type MultiaddrFuture = FutureResult; type Dial = TcpDialFut; fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { let listener = TcpListener::bind(&socket_addr); // We need to build the `Multiaddr` to return from this function. If an error happened, // just return the original multiaddr. let new_addr = match listener { Ok(ref l) => if let Ok(new_s_addr) = l.local_addr() { new_s_addr.to_multiaddr().expect( "multiaddr generated from socket addr is \ always valid", ) } else { addr }, Err(_) => addr, }; debug!("Now listening on {}", new_addr); let sleep_on_error = self.sleep_on_error; let inner = listener .map_err(Some) .map(move |l| l.incoming().sleep_on_error(sleep_on_error)); Ok(( TcpListenStream { inner, config: self, }, new_addr, )) } else { Err((self, addr)) } } fn dial(self, addr: Multiaddr) -> Result { if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) { // As an optimization, we check that the address is not of the form `0.0.0.0`. // If so, we instantly refuse dialing instead of going through the kernel. if socket_addr.port() != 0 && !socket_addr.ip().is_unspecified() { debug!("Dialing {}", addr); Ok(TcpDialFut { inner: TcpStream::connect(&socket_addr), config: self, addr: Some(addr), }) } else { debug!("Instantly refusing dialing {}, as it is invalid", addr); Err((self, addr)) } } else { Err((self, addr)) } } fn nat_traversal(&self, server: &Multiaddr, observed: &Multiaddr) -> Option { let mut address = Multiaddr::empty(); // Use the observed IP address. match server.iter().zip(observed.iter()).next() { Some((Protocol::Ip4(_), x@Protocol::Ip4(_))) => address.append(x), Some((Protocol::Ip6(_), x@Protocol::Ip6(_))) => address.append(x), _ => return None } // Carry over everything else from the server address. for proto in server.iter().skip(1) { address.append(proto) } Some(address) } } // This type of logic should probably be moved into the multiaddr package fn multiaddr_to_socketaddr(addr: &Multiaddr) -> Result { let mut iter = addr.iter(); let proto1 = iter.next().ok_or(())?; let proto2 = iter.next().ok_or(())?; if iter.next().is_some() { return Err(()); } match (proto1, proto2) { (Protocol::Ip4(ip), Protocol::Tcp(port)) => Ok(SocketAddr::new(ip.into(), port)), (Protocol::Ip6(ip), Protocol::Tcp(port)) => Ok(SocketAddr::new(ip.into(), port)), _ => Err(()), } } /// Applies the socket configuration parameters to a socket. fn apply_config(config: &TcpConfig, socket: &TcpStream) -> Result<(), IoError> { if let Some(recv_buffer_size) = config.recv_buffer_size { socket.set_recv_buffer_size(recv_buffer_size)?; } if let Some(send_buffer_size) = config.send_buffer_size { socket.set_send_buffer_size(send_buffer_size)?; } if let Some(ttl) = config.ttl { socket.set_ttl(ttl)?; } if let Some(keepalive) = config.keepalive { socket.set_keepalive(keepalive)?; } if let Some(nodelay) = config.nodelay { socket.set_nodelay(nodelay)?; } Ok(()) } /// Future that dials a TCP/IP address. #[derive(Debug)] #[must_use = "futures do nothing unless polled"] pub struct TcpDialFut { inner: ConnectFuture, /// Original configuration. config: TcpConfig, /// Address we're dialing. Extracted when the `Future` finishes. addr: Option, } impl Future for TcpDialFut { type Item = (TcpTransStream, FutureResult); type Error = IoError; fn poll(&mut self) -> Poll<(TcpTransStream, FutureResult), IoError> { match self.inner.poll() { Ok(Async::Ready(stream)) => { apply_config(&self.config, &stream)?; let addr = self .addr .take() .expect("TcpDialFut polled again after finished"); let out = TcpTransStream { inner: stream }; Ok(Async::Ready((out, future::ok(addr)))) } Ok(Async::NotReady) => Ok(Async::NotReady), Err(err) => { let addr = self .addr .as_ref() .expect("TcpDialFut polled again after finished"); debug!("Error while dialing {:?} => {:?}", addr, err); Err(err) } } } } /// Stream that listens on an TCP/IP address. pub struct TcpListenStream { inner: Result, Option>, /// Original configuration. config: TcpConfig, } impl Stream for TcpListenStream { type Item = FutureResult<(TcpTransStream, FutureResult), IoError>; type Error = IoError; fn poll( &mut self, ) -> Poll< Option), IoError>>, IoError, > { let inner = match self.inner { Ok(ref mut inc) => inc, Err(ref mut err) => { return Err(err.take().expect("poll called again after error")); } }; match inner.poll() { Ok(Async::Ready(Some(sock))) => { match apply_config(&self.config, &sock) { Ok(()) => (), Err(err) => return Ok(Async::Ready(Some(future::err(err)))), }; let addr = match sock.peer_addr() { // TODO: remove this expect() Ok(addr) => addr .to_multiaddr() .expect("generating a multiaddr from a socket addr never fails"), Err(err) => return Ok(Async::Ready(Some(future::err(err)))), }; debug!("Incoming connection from {}", addr); let ret = future::ok((TcpTransStream { inner: sock }, future::ok(addr))); Ok(Async::Ready(Some(ret))) } Ok(Async::Ready(None)) => Ok(Async::Ready(None)), Ok(Async::NotReady) => Ok(Async::NotReady), Err(()) => unreachable!("sleep_on_error never produces an error"), } } } impl fmt::Debug for TcpListenStream { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.inner { Ok(_) => write!(f, "TcpListenStream"), Err(None) => write!(f, "TcpListenStream(Errored)"), Err(Some(ref err)) => write!(f, "TcpListenStream({:?})", err), } } } /// Wraps around a `TcpStream` and adds logging for important events. #[derive(Debug)] pub struct TcpTransStream { inner: TcpStream, } impl Read for TcpTransStream { #[inline] fn read(&mut self, buf: &mut [u8]) -> Result { self.inner.read(buf) } } impl AsyncRead for TcpTransStream {} impl Write for TcpTransStream { #[inline] fn write(&mut self, buf: &[u8]) -> Result { self.inner.write(buf) } #[inline] fn flush(&mut self) -> Result<(), IoError> { self.inner.flush() } } impl AsyncWrite for TcpTransStream { #[inline] fn shutdown(&mut self) -> Poll<(), IoError> { AsyncWrite::shutdown(&mut self.inner) } } impl Drop for TcpTransStream { #[inline] fn drop(&mut self) { if let Ok(addr) = self.inner.peer_addr() { debug!("Dropped TCP connection to {:?}", addr); } else { debug!("Dropped TCP connection to undeterminate peer"); } } } #[cfg(test)] mod tests { use super::{multiaddr_to_socketaddr, TcpConfig}; use futures::stream::Stream; use futures::Future; use multiaddr::Multiaddr; use std; use std::net::{IpAddr, Ipv4Addr, SocketAddr}; use swarm::Transport; use tokio_current_thread; use tokio_io; #[test] fn multiaddr_to_tcp_conversion() { use std::net::Ipv6Addr; assert!( multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::().unwrap()) .is_err() ); assert_eq!( multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::().unwrap()), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr( &"/ip4/255.255.255.255/tcp/8080" .parse::() .unwrap() ), Ok(SocketAddr::new( IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)), 8080, )) ); assert_eq!( multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::().unwrap()), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), 12345, )) ); assert_eq!( multiaddr_to_socketaddr( &"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080" .parse::() .unwrap() ), Ok(SocketAddr::new( IpAddr::V6(Ipv6Addr::new( 65535, 65535, 65535, 65535, 65535, 65535, 65535, 65535, )), 8080, )) ); } #[test] fn communicating_between_dialer_and_listener() { use std::io::Write; std::thread::spawn(move || { let addr = "/ip4/127.0.0.1/tcp/12345".parse::().unwrap(); let tcp = TcpConfig::new(); let listener = tcp.listen_on(addr).unwrap().0.for_each(|sock| { sock.and_then(|(sock, _)| { // Define what to do with the socket that just connected to us // Which in this case is read 3 bytes let handle_conn = tokio_io::io::read_exact(sock, [0; 3]) .map(|(_, buf)| assert_eq!(buf, [1, 2, 3])) .map_err(|err| panic!("IO error {:?}", err)); // Spawn the future as a concurrent task tokio_current_thread::spawn(handle_conn); Ok(()) }) }); tokio_current_thread::block_on_all(listener).unwrap(); }); std::thread::sleep(std::time::Duration::from_millis(100)); let addr = "/ip4/127.0.0.1/tcp/12345".parse::().unwrap(); let tcp = TcpConfig::new(); // Obtain a future socket through dialing let socket = tcp.dial(addr.clone()).unwrap(); // Define what to do with the socket once it's obtained let action = socket.then(|sock| -> Result<(), ()> { sock.unwrap().0.write(&[0x1, 0x2, 0x3]).unwrap(); Ok(()) }); // Execute the future in our event loop tokio_current_thread::block_on_all(action).unwrap(); std::thread::sleep(std::time::Duration::from_millis(100)); } #[test] fn replace_port_0_in_returned_multiaddr_ipv4() { let tcp = TcpConfig::new(); let addr = "/ip4/127.0.0.1/tcp/0".parse::().unwrap(); assert!(addr.to_string().contains("tcp/0")); let (_, new_addr) = tcp.listen_on(addr).unwrap(); assert!(!new_addr.to_string().contains("tcp/0")); } #[test] fn replace_port_0_in_returned_multiaddr_ipv6() { let tcp = TcpConfig::new(); let addr: Multiaddr = "/ip6/::1/tcp/0".parse().unwrap(); assert!(addr.to_string().contains("tcp/0")); let (_, new_addr) = tcp.listen_on(addr).unwrap(); assert!(!new_addr.to_string().contains("tcp/0")); } #[test] fn larger_addr_denied() { let tcp = TcpConfig::new(); let addr = "/ip4/127.0.0.1/tcp/12345/tcp/12345" .parse::() .unwrap(); assert!(tcp.listen_on(addr).is_err()); } #[test] fn nat_traversal() { let tcp = TcpConfig::new(); let server = "/ip4/127.0.0.1/tcp/10000".parse::().unwrap(); let observed = "/ip4/80.81.82.83/tcp/25000".parse::().unwrap(); let out = tcp.nat_traversal(&server, &observed); assert_eq!( out.unwrap(), "/ip4/80.81.82.83/tcp/10000".parse::().unwrap() ); } }