// Copyright 2017 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. //! Handles the `/ipfs/ping/1.0.0` protocol. This allows pinging a remote node and waiting for an //! answer. //! //! # Usage //! //! Create a `Ping` struct, which implements the `ConnectionUpgrade` trait. When used as a //! connection upgrade, it will produce a tuple of type `(Pinger, impl Future)` which //! are named the *pinger* and the *ponger*. //! //! The *pinger* has a method named `ping` which will send a ping to the remote, while the *ponger* //! is a future that will process the data received on the socket and will be signalled only when //! the connection closes. //! //! # About timeouts //! //! For technical reasons, this crate doesn't handle timeouts. The action of pinging returns a //! future that is signalled only when the remote answers. If the remote is not responsive, the //! future will never be signalled. //! //! For implementation reasons, resources allocated for a ping are only ever fully reclaimed after //! a pong has been received by the remote. Therefore if you repeatidely ping a non-responsive //! remote you will end up using more and memory memory (albeit the amount is very very small every //! time), even if you destroy the future returned by `ping`. //! //! This is probably not a problem in practice, because the nature of the ping protocol is to //! determine whether a remote is still alive, and any reasonable user of this crate will close //! connections to non-responsive remotes. //! //! # Example //! //! ```no_run //! extern crate futures; //! extern crate libp2p_ping; //! extern crate libp2p_core; //! extern crate libp2p_tcp_transport; //! extern crate tokio_current_thread; //! //! use futures::{Future, Stream}; //! use libp2p_ping::{Ping, PingOutput}; //! use libp2p_core::Transport; //! //! # fn main() { //! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new() //! .with_upgrade(Ping::default()) //! .dial("127.0.0.1:12345".parse::().unwrap()).unwrap_or_else(|_| panic!()) //! .and_then(|(out, _)| { //! match out { //! PingOutput::Ponger(processing) => Box::new(processing) as Box + Send>, //! PingOutput::Pinger(mut pinger) => { //! pinger.ping(()); //! let f = pinger.into_future().map(|_| ()).map_err(|(err, _)| err); //! Box::new(f) as Box + Send> //! }, //! } //! }); //! //! // Runs until the ping arrives. //! tokio_current_thread::block_on_all(ping_finished_future).unwrap(); //! # } //! ``` //! extern crate bytes; extern crate futures; extern crate libp2p_core; #[macro_use] extern crate log; extern crate multistream_select; extern crate parking_lot; extern crate rand; extern crate tokio_codec; extern crate tokio_io; use bytes::{BufMut, Bytes, BytesMut}; use futures::{prelude::*, future::{FutureResult, IntoFuture}, task}; use libp2p_core::{ConnectionUpgrade, Endpoint}; use rand::{distributions::Standard, prelude::*, rngs::EntropyRng}; use std::collections::VecDeque; use std::io::Error as IoError; use std::{iter, marker::PhantomData, mem}; use tokio_codec::{Decoder, Encoder, Framed}; use tokio_io::{AsyncRead, AsyncWrite}; /// Represents a prototype for an upgrade to handle the ping protocol. /// /// According to the design of libp2p, this struct would normally contain the configuration options /// for the protocol, but in the case of `Ping` no configuration is required. #[derive(Debug, Copy, Clone)] pub struct Ping(PhantomData); impl Default for Ping { #[inline] fn default() -> Self { Ping(PhantomData) } } /// Output of a `Ping` upgrade. pub enum PingOutput { /// We are on the dialing side. Pinger(PingDialer), /// We are on the listening side. Ponger(PingListener), } impl ConnectionUpgrade for Ping where TSocket: AsyncRead + AsyncWrite, { type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>; type UpgradeIdentifier = (); #[inline] fn protocol_names(&self) -> Self::NamesIter { iter::once(("/ipfs/ping/1.0.0".into(), ())) } type Output = PingOutput; type MultiaddrFuture = Maf; type Future = FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>; #[inline] fn upgrade( self, socket: TSocket, _: Self::UpgradeIdentifier, endpoint: Endpoint, remote_addr: Maf, ) -> Self::Future { let out = match endpoint { Endpoint::Dialer => upgrade_as_dialer(socket), Endpoint::Listener => upgrade_as_listener(socket), }; Ok((out, remote_addr)).into_future() } } /// Upgrades a connection from the dialer side. fn upgrade_as_dialer(socket: TSocket) -> PingOutput where TSocket: AsyncRead + AsyncWrite, { let dialer = PingDialer { inner: Framed::new(socket, Codec), need_writer_flush: false, needs_close: false, sent_pings: VecDeque::with_capacity(4), rng: EntropyRng::default(), pings_to_send: VecDeque::with_capacity(4), }; PingOutput::Pinger(dialer) } /// Upgrades a connection from the listener side. fn upgrade_as_listener(socket: TSocket) -> PingOutput where TSocket: AsyncRead + AsyncWrite, { let listener = PingListener { inner: Framed::new(socket, Codec), state: PingListenerState::Listening, }; PingOutput::Ponger(listener) } /// Sends pings and receives the pongs. /// /// Implements `Stream`. The stream indicates when we receive a pong. pub struct PingDialer { /// The underlying socket. inner: Framed, /// If true, need to flush the sink. need_writer_flush: bool, /// If true, need to close the sink. needs_close: bool, /// List of pings that have been sent to the remote and that are waiting for an answer. sent_pings: VecDeque<(Bytes, TUserData)>, /// Random number generator for the ping payload. rng: EntropyRng, /// List of pings to send to the remote. pings_to_send: VecDeque<(Bytes, TUserData)>, } impl PingDialer { /// Sends a ping to the remote. /// /// The stream will produce an event containing the user data when we receive the pong. pub fn ping(&mut self, user_data: TUserData) { let payload: [u8; 32] = self.rng.sample(Standard); debug!("Preparing for ping with payload {:?}", payload); self.pings_to_send.push_back((Bytes::from(payload.to_vec()), user_data)); } } impl Stream for PingDialer where TSocket: AsyncRead + AsyncWrite, { type Item = TUserData; type Error = IoError; fn poll(&mut self) -> Poll, Self::Error> { if self.needs_close { match self.inner.close() { Ok(Async::Ready(())) => return Ok(Async::Ready(None)), Ok(Async::NotReady) => return Ok(Async::NotReady), Err(err) => return Err(err), } } while let Some((ping, user_data)) = self.pings_to_send.pop_front() { match self.inner.start_send(ping.clone()) { Ok(AsyncSink::Ready) => self.need_writer_flush = true, Ok(AsyncSink::NotReady(_)) => { self.pings_to_send.push_front((ping, user_data)); break; }, Err(err) => return Err(err), } self.sent_pings.push_back((ping, user_data)); } if self.need_writer_flush { match self.inner.poll_complete() { Ok(Async::Ready(())) => self.need_writer_flush = false, Ok(Async::NotReady) => (), Err(err) => return Err(err), } } loop { match self.inner.poll() { Ok(Async::Ready(Some(pong))) => { if let Some(pos) = self.sent_pings.iter().position(|&(ref p, _)| p == &pong) { let (_, user_data) = self.sent_pings.remove(pos) .expect("Grabbed a valid position just above"); return Ok(Async::Ready(Some(user_data))); } else { debug!("Received pong that doesn't match what we sent: {:?}", pong); } }, Ok(Async::NotReady) => break, Ok(Async::Ready(None)) => { // Notify the current task so that we poll again. self.needs_close = true; task::current().notify(); return Ok(Async::NotReady); } Err(err) => return Err(err), } } Ok(Async::NotReady) } } /// Listens to incoming pings and answers them. /// /// Implements `Future`. The future terminates when the underlying socket closes. pub struct PingListener { /// The underlying socket. inner: Framed, /// State of the listener. state: PingListenerState, } #[derive(Debug)] enum PingListenerState { /// We are waiting for the next ping on the socket. Listening, /// We are trying to send a pong. Sending(Bytes), /// We are flusing the underlying sink. Flushing, /// We are shutting down everything. Closing, /// A panic happened during the processing. Poisoned, } impl Future for PingListener where TSocket: AsyncRead + AsyncWrite { type Item = (); type Error = IoError; fn poll(&mut self) -> Poll { loop { match mem::replace(&mut self.state, PingListenerState::Poisoned) { PingListenerState::Listening => { match self.inner.poll() { Ok(Async::Ready(Some(payload))) => { debug!("Received ping (payload={:?}) ; sending back", payload); self.state = PingListenerState::Sending(payload.freeze()) }, Ok(Async::Ready(None)) => self.state = PingListenerState::Closing, Ok(Async::NotReady) => { self.state = PingListenerState::Listening; return Ok(Async::NotReady); }, Err(err) => return Err(err), } }, PingListenerState::Sending(data) => { match self.inner.start_send(data) { Ok(AsyncSink::Ready) => self.state = PingListenerState::Flushing, Ok(AsyncSink::NotReady(data)) => { self.state = PingListenerState::Sending(data); return Ok(Async::NotReady); }, Err(err) => return Err(err), } }, PingListenerState::Flushing => { match self.inner.poll_complete() { Ok(Async::Ready(())) => self.state = PingListenerState::Listening, Ok(Async::NotReady) => { self.state = PingListenerState::Flushing; return Ok(Async::NotReady); }, Err(err) => return Err(err), } }, PingListenerState::Closing => { match self.inner.close() { Ok(Async::Ready(())) => return Ok(Async::Ready(())), Ok(Async::NotReady) => { self.state = PingListenerState::Closing; return Ok(Async::NotReady); }, Err(err) => return Err(err), } }, PingListenerState::Poisoned => panic!("Poisoned or errored PingListener"), } } } } // Implementation of the `Codec` trait of tokio-io. Splits frames into groups of 32 bytes. #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] struct Codec; impl Decoder for Codec { type Item = BytesMut; type Error = IoError; #[inline] fn decode(&mut self, buf: &mut BytesMut) -> Result, IoError> { if buf.len() >= 32 { Ok(Some(buf.split_to(32))) } else { Ok(None) } } } impl Encoder for Codec { type Item = Bytes; type Error = IoError; #[inline] fn encode(&mut self, mut data: Bytes, buf: &mut BytesMut) -> Result<(), IoError> { if !data.is_empty() { let split = 32 * (1 + ((data.len() - 1) / 32)); buf.reserve(split); buf.put(data.split_to(split)); } Ok(()) } } #[cfg(test)] mod tests { extern crate tokio_current_thread; extern crate tokio_tcp; use self::tokio_tcp::TcpListener; use self::tokio_tcp::TcpStream; use super::{Ping, PingOutput}; use futures::{future, Future, Stream}; use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr}; use std::io::Error as IoError; // TODO: rewrite tests with the MemoryTransport #[test] fn ping_pong() { let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap(); let listener_addr = listener.local_addr().unwrap(); let server = listener .incoming() .into_future() .map_err(|(e, _)| e.into()) .and_then(|(c, _)| { Ping::<()>::default().upgrade( c.unwrap(), (), Endpoint::Listener, future::ok::("/ip4/127.0.0.1/tcp/10000".parse().unwrap()), ) }) .and_then(|(out, _)| match out { PingOutput::Ponger(service) => service, _ => unreachable!(), }); let client = TcpStream::connect(&listener_addr) .map_err(|e| e.into()) .and_then(|c| { Ping::<()>::default().upgrade( c, (), Endpoint::Dialer, future::ok::("/ip4/127.0.0.1/tcp/10000".parse().unwrap()), ) }) .and_then(|(out, _)| match out { PingOutput::Pinger(mut pinger) => { pinger.ping(()); pinger.into_future().map(|_| ()).map_err(|_| panic!()) }, _ => unreachable!(), }) .map(|_| ()); tokio_current_thread::block_on_all(server.select(client).map_err(|_| panic!())).unwrap(); } #[test] fn multipings() { // Check that we can send multiple pings in a row and it will still work. let listener = TcpListener::bind(&"127.0.0.1:0".parse().unwrap()).unwrap(); let listener_addr = listener.local_addr().unwrap(); let server = listener .incoming() .into_future() .map_err(|(e, _)| e.into()) .and_then(|(c, _)| { Ping::::default().upgrade( c.unwrap(), (), Endpoint::Listener, future::ok::("/ip4/127.0.0.1/tcp/10000".parse().unwrap()), ) }) .and_then(|(out, _)| match out { PingOutput::Ponger(service) => service, _ => unreachable!(), }); let client = TcpStream::connect(&listener_addr) .map_err(|e| e.into()) .and_then(|c| { Ping::::default().upgrade( c, (), Endpoint::Dialer, future::ok::("/ip4/127.0.0.1/tcp/10000".parse().unwrap()), ) }) .and_then(|(out, _)| match out { PingOutput::Pinger(mut pinger) => { for n in 0..20 { pinger.ping(n); } pinger .take(20) .collect() .map(|val| { assert_eq!(val, (0..20).collect::>()); }) .map_err(|_| panic!()) }, _ => unreachable!(), }); tokio_current_thread::block_on_all(server.select(client)).unwrap_or_else(|_| panic!()); } }