// Copyright 2018 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. use crate::PublicKey; use bs58; use thiserror::Error; use multihash::{self, Code, Sha2_256}; use rand::Rng; use std::{convert::TryFrom, borrow::Borrow, fmt, hash, str::FromStr}; /// Public keys with byte-lengths smaller than `MAX_INLINE_KEY_LENGTH` will be /// automatically used as the peer id using an identity multihash. const _MAX_INLINE_KEY_LENGTH: usize = 42; /// Identifier of a peer of the network. /// /// The data is a multihash of the public key of the peer. // TODO: maybe keep things in decoded version? #[derive(Clone, Eq)] pub struct PeerId { multihash: multihash::Multihash, /// A (temporary) "canonical" multihash if `multihash` is of type /// multihash::Hash::Identity, so that `Borrow<[u8]>` semantics /// can be given, i.e. a view of a byte representation whose /// equality is consistent with `PartialEq`. canonical: Option, } impl fmt::Debug for PeerId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("PeerId") .field(&self.to_base58()) .finish() } } impl fmt::Display for PeerId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.to_base58().fmt(f) } } impl PeerId { /// Builds a `PeerId` from a public key. pub fn from_public_key(key: PublicKey) -> PeerId { let key_enc = key.into_protobuf_encoding(); // Note: before 0.12, this was incorrectly implemented and `SHA2256` was always used. // Starting from version 0.13, rust-libp2p accepts both hashed and non-hashed keys as // input (see `from_bytes`). Starting from version 0.16 rust-libp2p will compare // `PeerId`s of different hashes equal, which makes it possible to connect through // secio or noise to nodes with an identity hash. Starting from version 0.17, rust-libp2p // will switch to not hashing the key (i.e. the correct behaviour). // In other words, rust-libp2p 0.16 is compatible with all versions of rust-libp2p. // Rust-libp2p 0.12 and below is **NOT** compatible with rust-libp2p 0.17 and above. let (hash_algorithm, canonical_algorithm): (_, Option) = /*if key_enc.len() <= MAX_INLINE_KEY_LENGTH { (multihash::Hash::Identity, Some(multihash::Hash::SHA2256)) } else {*/ (Code::Sha2_256, None); //}; let canonical = canonical_algorithm.map(|alg| alg.hasher().expect("SHA2-256 hasher is always supported").digest(&key_enc)); let multihash = hash_algorithm.hasher() .expect("Identity and SHA-256 hasher are always supported").digest(&key_enc); PeerId { multihash, canonical } } /// Checks whether `data` is a valid `PeerId`. If so, returns the `PeerId`. If not, returns /// back the data as an error. pub fn from_bytes(data: Vec) -> Result> { match multihash::Multihash::from_bytes(data) { Ok(multihash) => { if multihash.algorithm() == multihash::Code::Sha2_256 { Ok(PeerId { multihash, canonical: None }) } else if multihash.algorithm() == multihash::Code::Identity { let canonical = Sha2_256::digest(&multihash.digest()); Ok(PeerId { multihash, canonical: Some(canonical) }) } else { Err(multihash.into_bytes()) } } Err(err) => Err(err.data), } } /// Turns a `Multihash` into a `PeerId`. If the multihash doesn't use the correct algorithm, /// returns back the data as an error. pub fn from_multihash(data: multihash::Multihash) -> Result { if data.algorithm() == multihash::Code::Sha2_256 { Ok(PeerId { multihash: data, canonical: None }) } else if data.algorithm() == multihash::Code::Identity { let canonical = Sha2_256::digest(data.digest()); Ok(PeerId { multihash: data, canonical: Some(canonical) }) } else { Err(data) } } /// Generates a random peer ID from a cryptographically secure PRNG. /// /// This is useful for randomly walking on a DHT, or for testing purposes. pub fn random() -> PeerId { let peer_id = rand::thread_rng().gen::<[u8; 32]>(); PeerId { multihash: multihash::wrap(multihash::Code::Sha2_256, &peer_id), canonical: None, } } /// Returns a raw bytes representation of this `PeerId`. /// /// **NOTE:** This byte representation is not necessarily consistent with /// equality of peer IDs. That is, two peer IDs may be considered equal /// while having a different byte representation as per `into_bytes`. pub fn into_bytes(self) -> Vec { self.multihash.into_bytes() } /// Returns a raw bytes representation of this `PeerId`. /// /// **NOTE:** This byte representation is not necessarily consistent with /// equality of peer IDs. That is, two peer IDs may be considered equal /// while having a different byte representation as per `as_bytes`. pub fn as_bytes(&self) -> &[u8] { self.multihash.as_bytes() } /// Returns a base-58 encoded string of this `PeerId`. pub fn to_base58(&self) -> String { bs58::encode(self.borrow() as &[u8]).into_string() } /// Checks whether the public key passed as parameter matches the public key of this `PeerId`. /// /// Returns `None` if this `PeerId`s hash algorithm is not supported when encoding the /// given public key, otherwise `Some` boolean as the result of an equality check. pub fn is_public_key(&self, public_key: &PublicKey) -> Option { let alg = self.multihash.algorithm(); let enc = public_key.clone().into_protobuf_encoding(); Some(alg.hasher()?.digest(&enc) == self.multihash) } } impl hash::Hash for PeerId { fn hash(&self, state: &mut H) where H: hash::Hasher { let digest = self.borrow() as &[u8]; hash::Hash::hash(digest, state) } } impl From for PeerId { #[inline] fn from(key: PublicKey) -> PeerId { PeerId::from_public_key(key) } } impl TryFrom> for PeerId { type Error = Vec; fn try_from(value: Vec) -> Result { PeerId::from_bytes(value) } } impl TryFrom for PeerId { type Error = multihash::Multihash; fn try_from(value: multihash::Multihash) -> Result { PeerId::from_multihash(value) } } impl PartialEq for PeerId { fn eq(&self, other: &PeerId) -> bool { let self_digest = self.borrow() as &[u8]; let other_digest = other.borrow() as &[u8]; self_digest == other_digest } } impl Borrow<[u8]> for PeerId { fn borrow(&self) -> &[u8] { self.canonical.as_ref().map_or(self.multihash.as_bytes(), |c| c.as_bytes()) } } /// **NOTE:** This byte representation is not necessarily consistent with /// equality of peer IDs. That is, two peer IDs may be considered equal /// while having a different byte representation as per `AsRef<[u8]>`. impl AsRef<[u8]> for PeerId { fn as_ref(&self) -> &[u8] { self.as_bytes() } } impl From for multihash::Multihash { fn from(peer_id: PeerId) -> Self { peer_id.multihash } } #[derive(Debug, Error)] pub enum ParseError { #[error("base-58 decode error: {0}")] B58(#[from] bs58::decode::Error), #[error("decoding multihash failed")] MultiHash, } impl FromStr for PeerId { type Err = ParseError; #[inline] fn from_str(s: &str) -> Result { let bytes = bs58::decode(s).into_vec()?; PeerId::from_bytes(bytes).map_err(|_| ParseError::MultiHash) } } #[cfg(test)] mod tests { use crate::{PeerId, identity}; use std::{convert::TryFrom as _, hash::{self, Hasher as _}}; #[test] fn peer_id_is_public_key() { let key = identity::Keypair::generate_ed25519().public(); let peer_id = key.clone().into_peer_id(); assert_eq!(peer_id.is_public_key(&key), Some(true)); } #[test] fn peer_id_into_bytes_then_from_bytes() { let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id(); let second = PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap(); assert_eq!(peer_id, second); } #[test] fn peer_id_to_base58_then_back() { let peer_id = identity::Keypair::generate_ed25519().public().into_peer_id(); let second: PeerId = peer_id.to_base58().parse().unwrap(); assert_eq!(peer_id, second); } #[test] fn random_peer_id_is_valid() { for _ in 0 .. 5000 { let peer_id = PeerId::random(); assert_eq!(peer_id, PeerId::from_bytes(peer_id.clone().into_bytes()).unwrap()); } } #[test] fn peer_id_identity_equal_to_sha2256() { let random_bytes = (0..64).map(|_| rand::random::()).collect::>(); let mh1 = multihash::Sha2_256::digest(&random_bytes); let mh2 = multihash::Identity::digest(&random_bytes); let peer_id1 = PeerId::try_from(mh1).unwrap(); let peer_id2 = PeerId::try_from(mh2).unwrap(); assert_eq!(peer_id1, peer_id2); assert_eq!(peer_id2, peer_id1); } #[test] fn peer_id_identity_hashes_equal_to_sha2256() { let random_bytes = (0..64).map(|_| rand::random::()).collect::>(); let mh1 = multihash::Sha2_256::digest(&random_bytes); let mh2 = multihash::Identity::digest(&random_bytes); let peer_id1 = PeerId::try_from(mh1).unwrap(); let peer_id2 = PeerId::try_from(mh2).unwrap(); let mut hasher1 = fnv::FnvHasher::with_key(0); hash::Hash::hash(&peer_id1, &mut hasher1); let mut hasher2 = fnv::FnvHasher::with_key(0); hash::Hash::hash(&peer_id2, &mut hasher2); assert_eq!(hasher1.finish(), hasher2.finish()); } #[test] fn peer_id_equal_across_algorithms() { use multihash::Code; use quickcheck::{Arbitrary, Gen}; #[derive(Debug, Clone, PartialEq, Eq)] struct HashAlgo(Code); impl Arbitrary for HashAlgo { fn arbitrary(g: &mut G) -> Self { match g.next_u32() % 4 { // make Hash::Identity more likely 0 => HashAlgo(Code::Sha2_256), _ => HashAlgo(Code::Identity) } } } fn property(data: Vec, algo1: HashAlgo, algo2: HashAlgo) -> bool { let a = PeerId::try_from(algo1.0.hasher().unwrap().digest(&data)).unwrap(); let b = PeerId::try_from(algo2.0.hasher().unwrap().digest(&data)).unwrap(); if algo1 == algo2 || algo1.0 == Code::Identity || algo2.0 == Code::Identity { a == b } else { a != b } } quickcheck::quickcheck(property as fn(Vec, HashAlgo, HashAlgo) -> bool) } }