// Copyright 2018 Parity Technologies (UK) Ltd. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. use crate::listen_handler::IdentifyListenHandler; use crate::periodic_id_handler::{PeriodicIdHandler, PeriodicIdHandlerEvent}; use crate::protocol::{IdentifyInfo, IdentifySender, IdentifySenderFuture}; use futures::prelude::*; use libp2p_core::protocols_handler::{ProtocolsHandler, ProtocolsHandlerSelect, ProtocolsHandlerUpgrErr}; use libp2p_core::swarm::{ConnectedPoint, NetworkBehaviour, NetworkBehaviourAction, PollParameters}; use libp2p_core::{Multiaddr, PeerId, PublicKey, either::EitherOutput}; use smallvec::SmallVec; use std::{collections::HashMap, collections::VecDeque, io}; use tokio_io::{AsyncRead, AsyncWrite}; use void::Void; /// Network behaviour that automatically identifies nodes periodically, returns information /// about them, and answers identify queries from other nodes. pub struct Identify { /// Protocol version to send back to remotes. protocol_version: String, /// Agent version to send back to remotes. agent_version: String, /// The public key of the local node. To report on the wire. local_public_key: PublicKey, /// For each peer we're connected to, the observed address to send back to it. observed_addresses: HashMap, /// List of senders to answer, with the observed multiaddr. to_answer: SmallVec<[(PeerId, IdentifySender, Multiaddr); 4]>, /// List of futures that send back information back to remotes. futures: SmallVec<[(PeerId, IdentifySenderFuture); 4]>, /// Events that need to be produced outside when polling.. events: VecDeque, IdentifyEvent>>, } impl Identify { /// Creates a `Identify`. pub fn new(protocol_version: String, agent_version: String, local_public_key: PublicKey) -> Self { Identify { protocol_version, agent_version, local_public_key, observed_addresses: HashMap::new(), to_answer: SmallVec::new(), futures: SmallVec::new(), events: VecDeque::new(), } } } impl NetworkBehaviour for Identify where TSubstream: AsyncRead + AsyncWrite, { type ProtocolsHandler = ProtocolsHandlerSelect, PeriodicIdHandler>; type OutEvent = IdentifyEvent; fn new_handler(&mut self) -> Self::ProtocolsHandler { IdentifyListenHandler::new().select(PeriodicIdHandler::new()) } fn addresses_of_peer(&mut self, _: &PeerId) -> Vec { Vec::new() } fn inject_connected(&mut self, peer_id: PeerId, endpoint: ConnectedPoint) { let observed = match endpoint { ConnectedPoint::Dialer { address } => address, ConnectedPoint::Listener { send_back_addr, .. } => send_back_addr, }; self.observed_addresses.insert(peer_id, observed); } fn inject_disconnected(&mut self, peer_id: &PeerId, _: ConnectedPoint) { self.observed_addresses.remove(peer_id); } fn inject_node_event( &mut self, peer_id: PeerId, event: ::OutEvent, ) { match event { EitherOutput::Second(PeriodicIdHandlerEvent::Identified(remote)) => { self.events .push_back(NetworkBehaviourAction::GenerateEvent(IdentifyEvent::Identified { peer_id, info: remote.info, observed_addr: remote.observed_addr.clone(), })); self.events .push_back(NetworkBehaviourAction::ReportObservedAddr { address: remote.observed_addr, }); } EitherOutput::First(sender) => { let observed = self.observed_addresses.get(&peer_id) .expect("We only receive events from nodes we're connected to. We insert \ into the hashmap when we connect to a node and remove only when we \ disconnect; QED"); self.to_answer.push((peer_id, sender, observed.clone())); } EitherOutput::Second(PeriodicIdHandlerEvent::IdentificationError(err)) => { self.events .push_back(NetworkBehaviourAction::GenerateEvent(IdentifyEvent::Error { peer_id, error: err, })); } } } fn poll( &mut self, params: &mut PollParameters<'_>, ) -> Async< NetworkBehaviourAction< ::InEvent, Self::OutEvent, >, > { if let Some(event) = self.events.pop_front() { return Async::Ready(event); } for (peer_id, sender, observed) in self.to_answer.drain() { // The protocol names can be bytes, but the identify protocol except UTF-8 strings. // There's not much we can do to solve this conflict except strip non-UTF-8 characters. let protocols = params .supported_protocols() .map(|p| String::from_utf8_lossy(p).to_string()) .collect(); let mut listen_addrs: Vec<_> = params.external_addresses().collect(); listen_addrs.extend(params.listened_addresses().cloned()); let send_back_info = IdentifyInfo { public_key: self.local_public_key.clone(), protocol_version: self.protocol_version.clone(), agent_version: self.agent_version.clone(), listen_addrs, protocols, }; let future = sender.send(send_back_info, &observed); self.futures.push((peer_id, future)); } // Removes each future one by one, and pushes them back if they're not ready. for n in (0..self.futures.len()).rev() { let (peer_id, mut future) = self.futures.swap_remove(n); match future.poll() { Ok(Async::Ready(())) => { let event = IdentifyEvent::SendBack { peer_id, result: Ok(()), }; return Async::Ready(NetworkBehaviourAction::GenerateEvent(event)); }, Ok(Async::NotReady) => self.futures.push((peer_id, future)), Err(err) => { let event = IdentifyEvent::SendBack { peer_id, result: Err(err), }; return Async::Ready(NetworkBehaviourAction::GenerateEvent(event)); }, } } Async::NotReady } } /// Event generated by the `Identify`. #[derive(Debug)] pub enum IdentifyEvent { /// We obtained identification information from the remote Identified { /// Peer that has been successfully identified. peer_id: PeerId, /// Information of the remote. info: IdentifyInfo, /// Address the remote observes us as. observed_addr: Multiaddr, }, /// Error while attempting to identify the remote. Error { /// Peer that we fail to identify. peer_id: PeerId, /// The error that happened. error: ProtocolsHandlerUpgrErr, }, /// Finished sending back our identification information to a remote. SendBack { /// Peer that we sent our identification info to. peer_id: PeerId, /// Contains the error that potentially happened when sending back. result: Result<(), io::Error>, }, } #[cfg(test)] mod tests { use crate::{Identify, IdentifyEvent}; use futures::prelude::*; use libp2p_core::{upgrade, upgrade::OutboundUpgradeExt, Swarm, Transport}; use libp2p_core::muxing::StreamMuxerBox; use std::io; #[test] fn periodic_id_works() { let node1_key = libp2p_secio::SecioKeyPair::ed25519_generated().unwrap(); let node1_public_key = node1_key.to_public_key(); let node2_key = libp2p_secio::SecioKeyPair::ed25519_generated().unwrap(); let node2_public_key = node2_key.to_public_key(); let mut swarm1 = { // TODO: make creating the transport more elegant ; literaly half of the code of the test // is about creating the transport let local_peer_id = node1_public_key.clone().into_peer_id(); let transport = libp2p_tcp::TcpConfig::new() .with_upgrade(libp2p_secio::SecioConfig::new(node1_key)) .and_then(move |out, _| { let peer_id = out.remote_key.into_peer_id(); let upgrade = libp2p_mplex::MplexConfig::new().map_outbound(move |muxer| (peer_id, muxer)); upgrade::apply_outbound(out.stream, upgrade) .map(|(id, muxer)| (id, StreamMuxerBox::new(muxer))) }) .map_err(|_| -> io::Error { panic!() }); Swarm::new(transport, Identify::new("a".to_string(), "b".to_string(), node1_public_key.clone()), local_peer_id) }; let mut swarm2 = { // TODO: make creating the transport more elegant ; literaly half of the code of the test // is about creating the transport let local_peer_id = node2_public_key.clone().into_peer_id(); let transport = libp2p_tcp::TcpConfig::new() .with_upgrade(libp2p_secio::SecioConfig::new(node2_key)) .and_then(move |out, _| { let peer_id = out.remote_key.into_peer_id(); let upgrade = libp2p_mplex::MplexConfig::new().map_outbound(move |muxer| (peer_id, muxer)); upgrade::apply_outbound(out.stream, upgrade) .map(|(id, muxer)| (id, StreamMuxerBox::new(muxer))) }) .map_err(|_| -> io::Error { panic!() }); Swarm::new(transport, Identify::new("c".to_string(), "d".to_string(), node2_public_key.clone()), local_peer_id) }; let actual_addr = Swarm::listen_on(&mut swarm1, "/ip4/127.0.0.1/tcp/0".parse().unwrap()).unwrap(); Swarm::dial_addr(&mut swarm2, actual_addr).unwrap(); let mut swarm1_good = false; let mut swarm2_good = false; tokio::runtime::current_thread::Runtime::new() .unwrap() .block_on(futures::future::poll_fn(move || -> Result<_, io::Error> { loop { let mut swarm1_not_ready = false; match swarm1.poll().unwrap() { Async::Ready(Some(IdentifyEvent::Identified { info, .. })) => { assert_eq!(info.public_key, node2_public_key); assert_eq!(info.protocol_version, "c"); assert_eq!(info.agent_version, "d"); assert!(!info.protocols.is_empty()); assert!(info.listen_addrs.is_empty()); swarm1_good = true; }, Async::Ready(Some(IdentifyEvent::SendBack { result: Ok(()), .. })) => (), Async::Ready(_) => panic!(), Async::NotReady => swarm1_not_ready = true, } match swarm2.poll().unwrap() { Async::Ready(Some(IdentifyEvent::Identified { info, .. })) => { assert_eq!(info.public_key, node1_public_key); assert_eq!(info.protocol_version, "a"); assert_eq!(info.agent_version, "b"); assert!(!info.protocols.is_empty()); assert_eq!(info.listen_addrs.len(), 1); swarm2_good = true; }, Async::Ready(Some(IdentifyEvent::SendBack { result: Ok(()), .. })) => (), Async::Ready(_) => panic!(), Async::NotReady if swarm1_not_ready => break, Async::NotReady => () } } if swarm1_good && swarm2_good { Ok(Async::Ready(())) } else { Ok(Async::NotReady) } })) .unwrap(); } }