Rework swarm and allow interrupting a dial (#366)

* Rework swarm and allow interrupting a dial
* Improve the UniqueConnec situation
* Remove UniqueConnec::get
* Rename `get_or_dial()` to `dial()` and add `dial_if_empty()`
* Clean the UniqueConnec is the future is dropped
* Rename `set_until` to `tie_or_stop` and add `tie_or_passthrough`
* Add some tests, docs
* Fix memory leak with tasks registration
* Interrupt dialing when a UniqueConnec is dropped or cleared
This commit is contained in:
Pierre Krieger
2018-08-08 12:00:38 +02:00
committed by Benjamin Kampmann
parent e2618dc1b3
commit ea881e3dfa
7 changed files with 907 additions and 254 deletions

View File

@ -25,5 +25,7 @@ libp2p-ping = { path = "../ping" }
libp2p-tcp-transport = { path = "../tcp-transport" }
libp2p-mplex = { path = "../mplex" }
rand = "0.5"
tokio = "0.1"
tokio-codec = "0.1"
tokio-current-thread = "0.1"
tokio-timer = "0.2"

View File

@ -227,9 +227,13 @@ extern crate tokio_io;
#[cfg(test)]
extern crate rand;
#[cfg(test)]
extern crate tokio;
#[cfg(test)]
extern crate tokio_codec;
#[cfg(test)]
extern crate tokio_current_thread;
#[cfg(test)]
extern crate tokio_timer;
/// Multi-address re-export.
pub extern crate multiaddr;

View File

@ -18,11 +18,14 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use futures::stream::{FuturesUnordered, StreamFuture};
use futures::sync::{mpsc, oneshot};
use futures::{future, Async, Future, IntoFuture, Poll, Stream};
use futures::stream::StreamFuture;
use futures::sync::oneshot;
use futures::{Async, Future, IntoFuture, Poll, Stream};
use futures::task;
use parking_lot::Mutex;
use std::fmt;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::sync::Arc;
use {Multiaddr, MuxedTransport, Transport};
/// Creates a swarm.
@ -32,38 +35,33 @@ use {Multiaddr, MuxedTransport, Transport};
///
/// Produces a `SwarmController` and an implementation of `Future`. The controller can be used to
/// control, and the `Future` must be driven to completion in order for things to work.
///
pub fn swarm<T, H, F>(
transport: T,
handler: H,
) -> (SwarmController<T>, SwarmFuture<T, H, F::Future>)
) -> (SwarmController<T>, SwarmFuture<T, H>)
where
T: MuxedTransport + Clone + 'static, // TODO: 'static :-/
H: FnMut(T::Output, Box<Future<Item = Multiaddr, Error = IoError>>) -> F,
F: IntoFuture<Item = (), Error = IoError>,
{
let (new_dialers_tx, new_dialers_rx) = mpsc::unbounded();
let (new_listeners_tx, new_listeners_rx) = mpsc::unbounded();
let (new_toprocess_tx, new_toprocess_rx) = mpsc::unbounded();
let shared = Arc::new(Mutex::new(Shared {
next_incoming: transport.clone().next_incoming(),
listeners: Vec::new(),
listeners_upgrade: Vec::new(),
dialers: Vec::new(),
to_process: Vec::new(),
task_to_notify: None,
}));
let future = SwarmFuture {
transport: transport.clone(),
shared: shared.clone(),
handler: handler,
new_listeners: new_listeners_rx,
next_incoming: transport.clone().next_incoming(),
listeners: FuturesUnordered::new(),
listeners_upgrade: FuturesUnordered::new(),
dialers: FuturesUnordered::new(),
new_dialers: new_dialers_rx,
to_process: FuturesUnordered::new(),
new_toprocess: new_toprocess_rx,
};
let controller = SwarmController {
transport: transport,
new_listeners: new_listeners_tx,
new_dialers: new_dialers_tx,
new_toprocess: new_toprocess_tx,
transport,
shared,
};
(controller, future)
@ -74,10 +72,11 @@ pub struct SwarmController<T>
where
T: MuxedTransport + 'static, // TODO: 'static :-/
{
/// Shared between the swarm infrastructure.
shared: Arc<Mutex<Shared<T>>>,
/// Transport used to dial or listen.
transport: T,
new_listeners: mpsc::UnboundedSender<T::Listener>,
new_dialers: mpsc::UnboundedSender<Box<Future<Item = (T::Output, oneshot::Sender<Result<(), IoError>>, Box<Future<Item = Multiaddr, Error = IoError>>), Error = ()>>>,
new_toprocess: mpsc::UnboundedSender<Box<Future<Item = (), Error = IoError>>>,
}
impl<T> fmt::Debug for SwarmController<T>
@ -98,9 +97,7 @@ where
fn clone(&self) -> SwarmController<T> {
SwarmController {
transport: self.transport.clone(),
new_listeners: self.new_listeners.clone(),
new_dialers: self.new_dialers.clone(),
new_toprocess: self.new_toprocess.clone(),
shared: self.shared.clone(),
}
}
}
@ -116,33 +113,62 @@ where
/// Returns a future that is signalled once the closure in the `swarm` has returned its future.
/// Therefore if the closure in the swarm has some side effect (eg. write something in a
/// variable), this side effect will be observable when this future succeeds.
#[inline]
pub fn dial<Du>(&self, multiaddr: Multiaddr, transport: Du)
-> Result<impl Future<Item = (), Error = IoError>, Multiaddr>
where
Du: Transport + 'static, // TODO: 'static :-/
Du::Output: Into<T::Output>,
{
self.dial_then(multiaddr, transport, |v| v)
}
/// Internal version of `dial` that allows adding a closure that is called after either the
/// dialing fails or the handler has been called with the resulting future.
///
/// The returned future is filled with the output of `then`.
pub(crate) fn dial_then<Du, F>(&self, multiaddr: Multiaddr, transport: Du, then: F)
-> Result<impl Future<Item = (), Error = IoError>, Multiaddr>
where
Du: Transport + 'static, // TODO: 'static :-/
Du::Output: Into<T::Output>,
F: FnOnce(Result<(), IoError>) -> Result<(), IoError> + 'static,
{
trace!("Swarm dialing {}", multiaddr);
match transport.dial(multiaddr.clone()) {
Ok(dial) => {
let (tx, rx) = oneshot::channel();
let mut then = Some(move |val| {
let _ = tx.send(then(val));
});
// Unfortunately the `Box<FnOnce(_)>` type is still unusable in Rust right now,
// so we use a `Box<FnMut(_)>` instead and panic if it is called multiple times.
let mut then = Box::new(move |val: Result<(), IoError>| {
let then = then.take().expect("The Boxed FnMut should only be called once");
then(val);
}) as Box<FnMut(_)>;
let dial = dial.then(|result| {
match result {
Ok((output, client_addr)) => {
let client_addr = Box::new(client_addr) as Box<Future<Item = _, Error = _>>;
Ok((output.into(), tx, client_addr))
Ok((output.into(), then, client_addr))
}
Err(err) => {
debug!("Error in dialer upgrade: {:?}", err);
let _ = tx.send(Err(err));
then(Err(err));
Err(())
}
}
});
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_dialers.unbounded_send(Box::new(dial) as Box<_>);
let mut shared = self.shared.lock();
shared.dialers.push((multiaddr, Box::new(dial) as Box<_>));
if let Some(task) = shared.task_to_notify.take() {
task.notify();
}
Ok(rx.then(|result| {
match result {
Ok(Ok(())) => Ok(()),
@ -156,15 +182,38 @@ where
}
}
/// Interrupts all dialing attempts to a specific multiaddress.
///
/// Has no effect if the dialing attempt has already succeeded, in which case it will be
/// dispatched to the handler.
pub fn interrupt_dial(&self, multiaddr: &Multiaddr) {
let mut shared = self.shared.lock();
shared.dialers.retain(|dialer| {
&dialer.0 != multiaddr
});
}
/// Adds a multiaddr to listen on. All the incoming connections will use the `upgrade` that
/// was passed to `swarm`.
// TODO: add a way to cancel a listener
pub fn listen_on(&self, multiaddr: Multiaddr) -> Result<Multiaddr, Multiaddr> {
match self.transport.clone().listen_on(multiaddr) {
Ok((listener, new_addr)) => {
trace!("Swarm listening on {}", new_addr);
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_listeners.unbounded_send(listener);
let mut shared = self.shared.lock();
let listener = Box::new(
listener.map(|f| {
let f = f.map(|(out, maf)| {
(out, Box::new(maf) as Box<Future<Item = Multiaddr, Error = IoError>>)
});
Box::new(f) as Box<Future<Item = _, Error = _>>
}),
) as Box<Stream<Item = _, Error = _>>;
shared.listeners.push(listener.into_future());
if let Some(task) = shared.task_to_notify.take() {
task.notify();
}
Ok(new_addr)
}
Err((_, multiaddr)) => Err(multiaddr),
@ -173,15 +222,152 @@ where
}
/// Future that must be driven to completion in order for the swarm to work.
pub struct SwarmFuture<T, H, F>
pub struct SwarmFuture<T, H>
where
T: MuxedTransport + 'static, // TODO: 'static :-/
{
/// Shared between the swarm infrastructure.
shared: Arc<Mutex<Shared<T>>>,
/// The transport used to dial.
transport: T,
/// Swarm handler.
handler: H,
new_listeners: mpsc::UnboundedReceiver<T::Listener>,
}
impl<T, H, If, F> Future for SwarmFuture<T, H>
where
T: MuxedTransport + Clone + 'static, // TODO: 'static :-/,
H: FnMut(T::Output, Box<Future<Item = Multiaddr, Error = IoError>>) -> If,
If: IntoFuture<Future = F, Item = (), Error = IoError>,
F: Future<Item = (), Error = IoError> + 'static, // TODO: 'static :-/
{
type Item = ();
type Error = IoError;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let mut shared = self.shared.lock();
let handler = &mut self.handler;
loop {
match shared.next_incoming.poll() {
Ok(Async::Ready(connec)) => {
debug!("Swarm received new multiplexed incoming connection");
shared.next_incoming = self.transport.clone().next_incoming();
let connec = connec.map(|(out, maf)| {
(out, Box::new(maf) as Box<Future<Item = Multiaddr, Error = IoError>>)
});
shared.listeners_upgrade.push(Box::new(connec) as Box<_>);
}
Ok(Async::NotReady) => break,
Err(err) => {
// TODO: should that stop everything?
debug!("Error in multiplexed incoming connection: {:?}", err);
shared.next_incoming = self.transport.clone().next_incoming();
break;
}
}
}
// We remove each element from `shared.listeners` one by one and add them back only
// if relevant.
for n in (0 .. shared.listeners.len()).rev() {
let mut listener = shared.listeners.swap_remove(n);
loop {
match listener.poll() {
Ok(Async::Ready((Some(upgrade), remaining))) => {
trace!("Swarm received new connection on listener socket");
shared.listeners_upgrade.push(upgrade);
listener = remaining.into_future();
}
Ok(Async::Ready((None, _))) => {
debug!("Listener closed gracefully");
break;
},
Err((err, _)) => {
debug!("Error in listener: {:?}", err);
break;
}
Ok(Async::NotReady) => {
shared.listeners.push(listener);
break;
}
}
}
}
// We remove each element from `shared.listeners_upgrade` one by one and add them back
// only if relevant.
for n in (0 .. shared.listeners_upgrade.len()).rev() {
let mut listener_upgrade = shared.listeners_upgrade.swap_remove(n);
match listener_upgrade.poll() {
Ok(Async::Ready((output, client_addr))) => {
debug!("Successfully upgraded incoming connection");
// TODO: unlock mutex before calling handler, in order to avoid deadlocks if
// the user does something stupid
shared.to_process.push(Box::new(handler(output, client_addr).into_future()));
}
Err(err) => {
debug!("Error in listener upgrade: {:?}", err);
}
Ok(Async::NotReady) => {
shared.listeners_upgrade.push(listener_upgrade);
},
}
}
// We remove each element from `shared.dialers` one by one and add them back only
// if relevant.
for n in (0 .. shared.dialers.len()).rev() {
let (client_addr, mut dialer) = shared.dialers.swap_remove(n);
match dialer.poll() {
Ok(Async::Ready((output, mut notifier, addr))) => {
trace!("Successfully upgraded dialed connection");
// TODO: unlock mutex before calling handler, in order to avoid deadlocks if
// the user does something stupid
shared.to_process.push(Box::new(handler(output, addr).into_future()));
notifier(Ok(()));
}
Err(()) => {},
Ok(Async::NotReady) => {
shared.dialers.push((client_addr, dialer));
},
}
}
// We remove each element from `shared.to_process` one by one and add them back only
// if relevant.
for n in (0 .. shared.to_process.len()).rev() {
let mut to_process = shared.to_process.swap_remove(n);
match to_process.poll() {
Ok(Async::Ready(())) => {
trace!("Future returned by swarm handler driven to completion");
}
Err(err) => {
debug!("Error in processing: {:?}", err);
}
Ok(Async::NotReady) => {
shared.to_process.push(to_process);
}
}
}
// TODO: we never return `Ok(Ready)` because there's no way to know whether
// `next_incoming()` can produce anything more in the future ; also we would need to
// know when the controller has been dropped
shared.task_to_notify = Some(task::current());
Ok(Async::NotReady)
}
}
// TODO: stronger typing
struct Shared<T> where T: MuxedTransport + 'static {
/// Next incoming substream on the transport.
next_incoming: T::Incoming,
listeners: FuturesUnordered<
/// All the active listeners.
listeners: Vec<
StreamFuture<
Box<
Stream<
@ -191,162 +377,33 @@ where
>,
>,
>,
/// Futures that upgrade an incoming listening connection to a full connection.
listeners_upgrade:
FuturesUnordered<Box<Future<Item = (T::Output, Box<Future<Item = Multiaddr, Error = IoError>>), Error = IoError>>>,
dialers: FuturesUnordered<Box<Future<Item = (T::Output, oneshot::Sender<Result<(), IoError>>, Box<Future<Item = Multiaddr, Error = IoError>>), Error = ()>>>,
new_dialers:
mpsc::UnboundedReceiver<Box<Future<Item = (T::Output, oneshot::Sender<Result<(), IoError>>, Box<Future<Item = Multiaddr, Error = IoError>>), Error = ()>>>,
to_process: FuturesUnordered<future::Either<F, Box<Future<Item = (), Error = IoError>>>>,
new_toprocess: mpsc::UnboundedReceiver<Box<Future<Item = (), Error = IoError>>>,
}
Vec<Box<Future<Item = (T::Output, Box<Future<Item = Multiaddr, Error = IoError>>), Error = IoError>>>,
impl<T, H, If, F> Future for SwarmFuture<T, H, F>
where
T: MuxedTransport + Clone + 'static, // TODO: 'static :-/,
H: FnMut(T::Output, Box<Future<Item = Multiaddr, Error = IoError>>) -> If,
If: IntoFuture<Future = F, Item = (), Error = IoError>,
F: Future<Item = (), Error = IoError>,
{
type Item = ();
type Error = IoError;
/// Futures that dial a remote address.
///
/// Contains the address we dial, so that we can cancel it if necessary.
dialers: Vec<(Multiaddr, Box<Future<Item = (T::Output, Box<FnMut(Result<(), IoError>)>, Box<Future<Item = Multiaddr, Error = IoError>>), Error = ()>>)>,
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let handler = &mut self.handler;
/// List of futures produced by the swarm closure. Must be processed to the end.
to_process: Vec<Box<Future<Item = (), Error = IoError>>>,
loop {
match self.next_incoming.poll() {
Ok(Async::Ready(connec)) => {
debug!("Swarm received new multiplexed incoming connection");
self.next_incoming = self.transport.clone().next_incoming();
let connec = connec.map(|(out, maf)| {
(out, Box::new(maf) as Box<Future<Item = Multiaddr, Error = IoError>>)
});
self.listeners_upgrade.push(Box::new(connec) as Box<_>);
}
Ok(Async::NotReady) => break,
Err(err) => {
debug!("Error in multiplexed incoming connection: {:?}", err);
self.next_incoming = self.transport.clone().next_incoming();
break;
}
}
}
loop {
match self.new_listeners.poll() {
Ok(Async::Ready(Some(new_listener))) => {
let new_listener = Box::new(
new_listener.map(|f| {
let f = f.map(|(out, maf)| {
(out, Box::new(maf) as Box<Future<Item = Multiaddr, Error = IoError>>)
});
Box::new(f) as Box<Future<Item = _, Error = _>>
}),
) as Box<Stream<Item = _, Error = _>>;
self.listeners.push(new_listener.into_future());
}
Ok(Async::Ready(None)) | Err(_) => {
// New listener sender has been closed.
break;
}
Ok(Async::NotReady) => break,
}
}
loop {
match self.new_dialers.poll() {
Ok(Async::Ready(Some(new_dialer))) => {
self.dialers.push(new_dialer);
}
Ok(Async::Ready(None)) | Err(_) => {
// New dialers sender has been closed.
break
}
Ok(Async::NotReady) => break,
}
}
loop {
match self.new_toprocess.poll() {
Ok(Async::Ready(Some(new_toprocess))) => {
self.to_process.push(future::Either::B(new_toprocess));
}
Ok(Async::Ready(None)) | Err(_) => {
// New to-process sender has been closed.
break
}
Ok(Async::NotReady) => break,
}
}
loop {
match self.listeners.poll() {
Ok(Async::Ready(Some((Some(upgrade), remaining)))) => {
trace!("Swarm received new connection on listener socket");
self.listeners_upgrade.push(upgrade);
self.listeners.push(remaining.into_future());
}
Err((err, _)) => {
debug!("Error in listener: {:?}", err);
break
}
_ => break
}
}
loop {
match self.listeners_upgrade.poll() {
Ok(Async::Ready(Some((output, client_addr)))) => {
debug!("Successfully upgraded incoming connection");
self.to_process.push(future::Either::A(
handler(output, client_addr).into_future(),
));
}
Err(err) => {
debug!("Error in listener upgrade: {:?}", err);
break;
}
_ => break
}
}
loop {
match self.dialers.poll() {
Ok(Async::Ready(Some((output, notifier, addr)))) => {
trace!("Successfully upgraded dialed connection");
self.to_process
.push(future::Either::A(handler(output, addr).into_future()));
let _ = notifier.send(Ok(()));
}
Err(()) => break,
_ => break,
}
}
loop {
match self.to_process.poll() {
Ok(Async::Ready(Some(()))) => {
trace!("Future returned by swarm handler driven to completion");
}
Err(err) => {
debug!("Error in processing: {:?}", err);
}
_ => break,
}
}
// TODO: we never return `Ok(Ready)` because there's no way to know whether
// `next_incoming()` can produce anything more in the future
Ok(Async::NotReady)
}
/// The task to notify whenever we add a new element in one of the lists.
/// Necessary so that the task wakes up and the element gets polled.
task_to_notify: Option<task::Task>,
}
#[cfg(test)]
mod tests {
use futures::future;
use transport::DeniedTransport;
use futures::{Future, future};
use rand;
use transport::{self, DeniedTransport, Transport};
use std::io::Error as IoError;
use std::sync::{atomic, Arc};
use swarm;
use tokio::runtime::current_thread;
#[test]
fn transport_error_propagation_listen() {
@ -360,4 +417,74 @@ mod tests {
let addr = "/ip4/127.0.0.1/tcp/10000".parse().unwrap();
assert!(swarm_ctrl.dial(addr, DeniedTransport).is_err());
}
#[test]
fn basic_dial() {
let (tx, rx) = transport::connector();
let reached_tx = Arc::new(atomic::AtomicBool::new(false));
let reached_tx2 = reached_tx.clone();
let reached_rx = Arc::new(atomic::AtomicBool::new(false));
let reached_rx2 = reached_rx.clone();
let (swarm_ctrl1, swarm_future1) = swarm(rx.with_dummy_muxing(), |_, _| {
reached_rx2.store(true, atomic::Ordering::SeqCst);
future::empty()
});
swarm_ctrl1.listen_on("/memory".parse().unwrap()).unwrap();
let (swarm_ctrl2, swarm_future2) = swarm(tx.clone().with_dummy_muxing(), |_, _| {
reached_tx2.store(true, atomic::Ordering::SeqCst);
future::empty()
});
let dial_success = swarm_ctrl2.dial("/memory".parse().unwrap(), tx).unwrap();
let future = swarm_future2
.select(swarm_future1).map(|_| ()).map_err(|(err, _)| err)
.select(dial_success).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert!(reached_tx.load(atomic::Ordering::SeqCst));
assert!(reached_rx.load(atomic::Ordering::SeqCst));
}
#[test]
fn dial_multiple_times() {
let (tx, rx) = transport::connector();
let reached = Arc::new(atomic::AtomicUsize::new(0));
let reached2 = reached.clone();
let (swarm_ctrl, swarm_future) = swarm(rx.with_dummy_muxing(), |_, _| {
reached2.fetch_add(1, atomic::Ordering::SeqCst);
future::empty()
});
swarm_ctrl.listen_on("/memory".parse().unwrap()).unwrap();
let num_dials = 20000 + rand::random::<usize>() % 20000;
let mut dials = Vec::new();
for _ in 0 .. num_dials {
let f = swarm_ctrl.dial("/memory".parse().unwrap(), tx.clone()).unwrap();
dials.push(f);
}
let future = future::join_all(dials)
.map(|_| ())
.select(swarm_future)
.map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert_eq!(reached.load(atomic::Ordering::SeqCst), num_dials);
}
#[test]
fn future_isnt_dropped() {
// Tests that the future in the closure isn't being dropped.
let (tx, rx) = transport::connector();
let (swarm_ctrl, swarm_future) = swarm(rx.with_dummy_muxing(), |_, _| {
future::empty()
.then(|_: Result<(), ()>| -> Result<(), IoError> { panic!() }) // <-- the test
});
swarm_ctrl.listen_on("/memory".parse().unwrap()).unwrap();
let dial_success = swarm_ctrl.dial("/memory".parse().unwrap(), tx).unwrap();
let future = dial_success.select(swarm_future)
.map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
}
}

View File

@ -0,0 +1,121 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use futures::{future, prelude::*, sync::oneshot};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use transport::{MuxedTransport, Transport};
use Multiaddr;
/// See `Transport::interruptible`.
#[derive(Debug, Clone)]
pub struct Interruptible<T> {
transport: T,
rx: future::Shared<oneshot::Receiver<()>>,
}
impl<T> Interruptible<T> {
/// Internal function that builds an `Interruptible`.
#[inline]
pub(crate) fn new(transport: T) -> (Interruptible<T>, Interrupt) {
let (_tx, rx) = oneshot::channel();
let transport = Interruptible { transport, rx: rx.shared() };
let int = Interrupt { _tx };
(transport, int)
}
}
impl<T> Transport for Interruptible<T>
where
T: Transport,
{
type Output = T::Output;
type MultiaddrFuture = T::MultiaddrFuture;
type Listener = T::Listener;
type ListenerUpgrade = T::ListenerUpgrade;
type Dial = InterruptibleDial<T::Dial>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
match self.transport.listen_on(addr) {
Ok(val) => Ok(val),
Err((transport, addr)) => Err((Interruptible { transport, rx: self.rx }, addr)),
}
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
match self.transport.dial(addr) {
Ok(future) => {
Ok(InterruptibleDial {
inner: future,
rx: self.rx,
})
}
Err((transport, addr)) => Err((Interruptible { transport, rx: self.rx }, addr)),
}
}
#[inline]
fn nat_traversal(&self, server: &Multiaddr, observed: &Multiaddr) -> Option<Multiaddr> {
self.transport.nat_traversal(server, observed)
}
}
impl<T> MuxedTransport for Interruptible<T>
where
T: MuxedTransport,
{
type Incoming = T::Incoming;
type IncomingUpgrade = T::IncomingUpgrade;
#[inline]
fn next_incoming(self) -> Self::Incoming {
self.transport.next_incoming()
}
}
/// Dropping this object interrupts the dialing of the corresponding `Interruptible`.
pub struct Interrupt {
_tx: oneshot::Sender<()>,
}
pub struct InterruptibleDial<F> {
inner: F,
rx: future::Shared<oneshot::Receiver<()>>,
}
impl<F> Future for InterruptibleDial<F>
where F: Future<Error = IoError>
{
type Item = F::Item;
type Error = IoError;
#[inline]
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
match self.rx.poll() {
Ok(Async::Ready(_)) | Err(_) => {
return Err(IoError::new(IoErrorKind::ConnectionAborted, "connection interrupted"));
},
Ok(Async::NotReady) => (),
};
self.inner.poll()
}
}

View File

@ -39,6 +39,7 @@ pub mod and_then;
pub mod choice;
pub mod denied;
pub mod dummy;
pub mod interruptible;
pub mod map;
pub mod map_err;
pub mod memory;
@ -192,4 +193,13 @@ pub trait Transport {
{
DummyMuxing::new(self)
}
/// Wraps around the `Transport` and makes it interruptible.
#[inline]
fn interruptible(self) -> (interruptible::Interruptible<Self>, interruptible::Interrupt)
where
Self: Sized,
{
interruptible::Interruptible::new(self)
}
}

View File

@ -18,12 +18,14 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use fnv::FnvHashMap;
use futures::{future, sync::oneshot, task, Async, Future, Poll, IntoFuture};
use parking_lot::Mutex;
use {Multiaddr, MuxedTransport, SwarmController, Transport};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::mem;
use std::sync::{Arc, Weak};
use std::sync::{Arc, Weak, atomic::AtomicUsize, atomic::Ordering};
use transport::interruptible::Interrupt;
/// Storage for a unique connection with a remote.
pub struct UniqueConnec<T> {
@ -36,10 +38,13 @@ enum UniqueConnecInner<T> {
/// We started dialing, but no response has been obtained so far.
Pending {
/// Tasks that need to be awakened when the content of this object is set.
tasks_waiting: Vec<task::Task>,
/// Future that represents when `set_until` should have been called.
tasks_waiting: FnvHashMap<usize, task::Task>,
/// Future that represents when `tie_*` should have been called.
// TODO: Send + Sync bound is meh
dial_fut: Box<Future<Item = (), Error = IoError> + Send + Sync>,
/// Dropping this object will automatically interrupt the dial, which is very useful if
/// we clear or drop the `UniqueConnec`.
interrupt: Interrupt,
},
/// The value of this unique connec has been set.
/// Can only transition to `Empty` when the future has expired.
@ -85,69 +90,127 @@ impl<T> UniqueConnec<T> {
/// Loads the value from the object.
///
/// If the object is empty, dials the given multiaddress with the given transport.
/// If the object is empty or has errored earlier, dials the given multiaddress with the
/// given transport.
///
/// The closure of the `swarm` is expected to call `set_until()` on the `UniqueConnec`. Failure
/// The closure of the `swarm` is expected to call `tie_*()` on the `UniqueConnec`. Failure
/// to do so will make the `UniqueConnecFuture` produce an error.
pub fn get_or_dial<S, Du>(&self, swarm: &SwarmController<S>, multiaddr: &Multiaddr,
///
/// One critical property of this method, is that if a connection incomes and `tie_*` is
/// called, then it will be returned by the returned future.
#[inline]
pub fn dial<S, Du>(&self, swarm: &SwarmController<S>, multiaddr: &Multiaddr,
transport: Du) -> UniqueConnecFuture<T>
where T: Clone,
where T: Clone + 'static, // TODO: 'static :-/
Du: Transport + 'static, // TODO: 'static :-/
Du::Output: Into<S::Output>,
S: Clone + MuxedTransport,
{
self.get(|| {
swarm.dial(multiaddr.clone(), transport)
.map_err(|_| IoError::new(IoErrorKind::Other, "multiaddress not supported"))
.into_future()
.flatten()
})
self.dial_inner(swarm, multiaddr, transport, true)
}
/// Loads the value from the object.
///
/// If the object is empty, calls the closure. The closure should return a future that
/// should be signaled after `set_until` has been called. If the future produces an error,
/// then the object will empty itself again and the `UniqueConnecFuture` will return an error.
/// If the future is finished and `set_until` hasn't been called, then the `UniqueConnecFuture`
/// will return an error.
pub fn get<F, Fut>(&self, or: F) -> UniqueConnecFuture<T>
where F: FnOnce() -> Fut,
T: Clone,
Fut: IntoFuture<Item = (), Error = IoError>,
Fut::Future: Send + Sync + 'static, // TODO: 'static :-/
/// Same as `dial`, except that the future will produce an error if an earlier attempt to dial
/// has errored.
#[inline]
pub fn dial_if_empty<S, Du>(&self, swarm: &SwarmController<S>, multiaddr: &Multiaddr,
transport: Du) -> UniqueConnecFuture<T>
where T: Clone + 'static, // TODO: 'static :-/
Du: Transport + 'static, // TODO: 'static :-/
Du::Output: Into<S::Output>,
S: Clone + MuxedTransport,
{
match &*self.inner.lock() {
self.dial_inner(swarm, multiaddr, transport, false)
}
/// Inner implementation of `dial_*`.
fn dial_inner<S, Du>(&self, swarm: &SwarmController<S>, multiaddr: &Multiaddr,
transport: Du, dial_if_err: bool) -> UniqueConnecFuture<T>
where T: Clone + 'static, // TODO: 'static :-/
Du: Transport + 'static, // TODO: 'static :-/
Du::Output: Into<S::Output>,
S: Clone + MuxedTransport,
{
let mut inner = self.inner.lock();
match &*inner {
UniqueConnecInner::Empty => (),
UniqueConnecInner::Errored(_) if dial_if_err => (),
_ => return UniqueConnecFuture { inner: Arc::downgrade(&self.inner) },
};
// The mutex is unlocked when we call `or`, in order to avoid potential deadlocks.
let dial_fut = or().into_future();
let weak_inner = Arc::downgrade(&self.inner);
let mut inner = self.inner.lock();
// Since we unlocked the mutex, it's possible that the object was filled in the meanwhile.
// Therefore we check again whether it's still `Empty`.
if let UniqueConnecInner::Empty = &mut *inner {
*inner = UniqueConnecInner::Pending {
tasks_waiting: Vec::new(),
dial_fut: Box::new(dial_fut),
let (transport, interrupt) = transport.interruptible();
let dial_fut = swarm.dial_then(multiaddr.clone(), transport,
move |val: Result<(), IoError>| {
let inner = match weak_inner.upgrade() {
Some(i) => i,
None => return val
};
let mut inner = inner.lock();
if let UniqueConnecInner::Full { .. } = *inner {
return val;
}
let new_val = UniqueConnecInner::Errored(match val {
Ok(()) => IoError::new(IoErrorKind::ConnectionRefused,
"dialing has succeeded but tie_* hasn't been called"),
Err(ref err) => IoError::new(err.kind(), err.to_string()),
});
match mem::replace(&mut *inner, new_val) {
UniqueConnecInner::Pending { tasks_waiting, .. } => {
for task in tasks_waiting {
task.1.notify();
}
},
_ => ()
};
val
});
let dial_fut = dial_fut
.map_err(|_| IoError::new(IoErrorKind::Other, "multiaddress not supported"))
.into_future()
.flatten();
*inner = UniqueConnecInner::Pending {
tasks_waiting: Default::default(),
dial_fut: Box::new(dial_fut),
interrupt,
};
UniqueConnecFuture { inner: Arc::downgrade(&self.inner) }
}
/// Puts `value` inside the object. The second parameter is a future whose completion will
/// clear up the content. Returns an adjusted version of that same future.
/// Puts `value` inside the object.
/// Additionally, the `UniqueConnec` will be tied to the `until` future. When the future drops
/// or finishes, the `UniqueConnec` is automatically cleared. If the `UniqueConnec` is cleared
/// by the user, the future automatically stops.
/// The returned future is an adjusted version of that same future.
///
/// If `clear()` is called, the returned future will automatically complete with an error.
///
/// Has no effect if the object already contains something.
pub fn set_until<F>(&self, value: T, until: F) -> impl Future<Item = (), Error = F::Error>
/// If the object already contains something, then `until` is dropped and a dummy future that
/// immediately ends is returned.
pub fn tie_or_stop<F>(&self, value: T, until: F) -> impl Future<Item = (), Error = F::Error>
where F: Future<Item = ()>
{
let mut tasks_to_notify = Vec::new();
self.tie_inner(value, until, false)
}
/// Same as `tie_or_stop`, except that is if the object already contains something, then
/// `until` is returned immediately and can live in parallel.
pub fn tie_or_passthrough<F>(&self, value: T, until: F) -> impl Future<Item = (), Error = F::Error>
where F: Future<Item = ()>
{
self.tie_inner(value, until, true)
}
/// Inner implementation of `tie_*`.
fn tie_inner<F>(&self, value: T, until: F, pass_through: bool) -> impl Future<Item = (), Error = F::Error>
where F: Future<Item = ()>
{
let mut tasks_to_notify = Default::default();
let mut inner = self.inner.lock();
let (on_clear, on_clear_rx) = oneshot::channel();
@ -160,23 +223,37 @@ impl<T> UniqueConnec<T> {
old @ UniqueConnecInner::Full { .. } => {
// Keep the old value.
*inner = old;
return future::Either::B(until);
if pass_through {
return future::Either::B(future::Either::A(until));
} else {
return future::Either::B(future::Either::B(future::ok(())));
}
},
};
drop(inner);
struct Cleaner<T>(Weak<Mutex<UniqueConnecInner<T>>>);
impl<T> Drop for Cleaner<T> {
#[inline]
fn drop(&mut self) {
if let Some(inner) = self.0.upgrade() {
*inner.lock() = UniqueConnecInner::Empty;
}
}
}
let cleaner = Cleaner(Arc::downgrade(&self.inner));
// The mutex is unlocked when we notify the pending tasks.
for task in tasks_to_notify {
task.notify();
task.1.notify();
}
let inner = self.inner.clone();
let fut = until
.select(on_clear_rx.then(|_| Ok(())))
.map(|((), _)| ())
.map_err(|(err, _)| err)
.then(move |val| {
*inner.lock() = UniqueConnecInner::Empty;
drop(cleaner); // Make sure that `cleaner` gets called there.
val
});
future::Either::A(fut)
@ -185,7 +262,7 @@ impl<T> UniqueConnec<T> {
/// Clears the content of the object.
///
/// Has no effect if the content is empty or pending.
/// If the node was full, calling `clear` will stop the future returned by `set_until`.
/// If the node was full, calling `clear` will stop the future returned by `tie_*`.
pub fn clear(&self) {
let mut inner = self.inner.lock();
match mem::replace(&mut *inner, UniqueConnecInner::Empty) {
@ -195,6 +272,12 @@ impl<T> UniqueConnec<T> {
*inner = pending;
},
UniqueConnecInner::Full { on_clear, .. } => {
// TODO: Should we really replace the `Full` with an `Empty` here? What about
// letting dropping the future clear the connection automatically? Otherwise
// it is possible that the user dials before the future gets dropped, in which
// case the future dropping will set the value to `Empty`. But on the other hand,
// it is expected that `clear()` is instantaneous and if it is followed with
// `dial()` then it should dial.
let _ = on_clear.send(());
},
};
@ -242,7 +325,23 @@ impl<T> Default for UniqueConnec<T> {
}
}
/// Future returned by `UniqueConnec::get()`.
impl<T> Drop for UniqueConnec<T> {
fn drop(&mut self) {
// Notify the waiting futures if we are the last `UniqueConnec`.
if let Some(inner) = Arc::get_mut(&mut self.inner) {
match *inner.get_mut() {
UniqueConnecInner::Pending { ref mut tasks_waiting, .. } => {
for task in tasks_waiting.drain() {
task.1.notify();
}
},
_ => ()
}
}
}
}
/// Future returned by `UniqueConnec::dial()`.
pub struct UniqueConnecFuture<T> {
inner: Weak<Mutex<UniqueConnecInner<T>>>,
}
@ -263,28 +362,32 @@ impl<T> Future for UniqueConnecFuture<T>
let mut inner = inner.lock();
match mem::replace(&mut *inner, UniqueConnecInner::Empty) {
UniqueConnecInner::Empty => {
// This can happen if `set_until()` is called, and the future expires before the
// future returned by `get()` gets polled. This means that the connection has been
// This can happen if `tie_*()` is called, and the future expires before the
// future returned by `dial()` gets polled. This means that the connection has been
// closed.
Err(IoErrorKind::ConnectionAborted.into())
},
UniqueConnecInner::Pending { mut tasks_waiting, mut dial_fut } => {
UniqueConnecInner::Pending { mut tasks_waiting, mut dial_fut, interrupt } => {
match dial_fut.poll() {
Ok(Async::Ready(())) => {
// This happens if we successfully dialed a remote, but the callback
// doesn't call `set_until`. This can be a logic error by the user,
// doesn't call `tie_*`. This can be a logic error by the user,
// but could also indicate that the user decided to filter out this
// connection for whatever reason.
*inner = UniqueConnecInner::Errored(IoErrorKind::ConnectionAborted.into());
Err(IoErrorKind::ConnectionAborted.into())
},
Ok(Async::NotReady) => {
tasks_waiting.push(task::current());
*inner = UniqueConnecInner::Pending { tasks_waiting, dial_fut };
static NEXT_TASK_ID: AtomicUsize = AtomicUsize::new(0);
task_local! {
static TASK_ID: usize = NEXT_TASK_ID.fetch_add(1, Ordering::Relaxed)
}
tasks_waiting.insert(TASK_ID.with(|&k| k), task::current());
*inner = UniqueConnecInner::Pending { tasks_waiting, dial_fut, interrupt };
Ok(Async::NotReady)
}
Err(err) => {
let tr = IoError::new(IoErrorKind::ConnectionAborted, err.to_string());
let tr = IoError::new(err.kind(), err.to_string());
*inner = UniqueConnecInner::Errored(err);
Err(tr)
},
@ -298,7 +401,7 @@ impl<T> Future for UniqueConnecFuture<T>
Ok(Async::Ready(value))
},
UniqueConnecInner::Errored(err) => {
let tr = IoError::new(IoErrorKind::ConnectionAborted, err.to_string());
let tr = IoError::new(err.kind(), err.to_string());
*inner = UniqueConnecInner::Errored(err);
Err(tr)
},
@ -311,35 +414,321 @@ impl<T> Future for UniqueConnecFuture<T>
pub enum UniqueConnecState {
/// The object is empty.
Empty,
/// `get_*` has been called and we are waiting for `set_until` to be called.
/// `dial` has been called and we are waiting for `tie_*` to be called.
Pending,
/// `set_until` has been called.
/// `tie_*` has been called.
Full,
/// The future returned by the closure of `get_*` has errored or has finished before
/// `set_until` has been called.
/// The future returned by the closure of `dial` has errored or has finished before
/// `tie_*` has been called.
Errored,
}
#[cfg(test)]
mod tests {
use futures::{future, Future};
use futures::{future, sync::oneshot, Future};
use transport::DeniedTransport;
use std::io::Error as IoError;
use std::sync::{Arc, atomic};
use std::time::Duration;
use {UniqueConnec, UniqueConnecState};
use swarm;
use {swarm, transport, Transport};
use tokio::runtime::current_thread;
use tokio_timer;
#[test]
fn basic_working() {
// Checks the basic working of the `UniqueConnec`.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let unique_connec2 = unique_connec.clone();
assert_eq!(unique_connec.state(), UniqueConnecState::Empty);
let (swarm_ctrl, swarm_future) = swarm(rx.with_dummy_muxing(), |_, _| {
// Note that this handles both the dial and the listen.
assert!(unique_connec2.is_alive());
unique_connec2.tie_or_stop(12, future::empty())
});
swarm_ctrl.listen_on("/memory".parse().unwrap()).unwrap();
let dial_success = unique_connec
.dial(&swarm_ctrl, &"/memory".parse().unwrap(), tx)
.map(|val| { assert_eq!(val, 12); });
assert_eq!(unique_connec.state(), UniqueConnecState::Pending);
let future = dial_success.select(swarm_future).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert_eq!(unique_connec.state(), UniqueConnecState::Full);
}
#[test]
fn invalid_multiaddr_produces_error() {
// Tests that passing an invalid multiaddress generates an error.
let unique = UniqueConnec::empty();
assert_eq!(unique.state(), UniqueConnecState::Empty);
let unique2 = unique.clone();
let (swarm_ctrl, _swarm_fut) = swarm(DeniedTransport, |_, _| {
unique2.set_until((), future::empty())
unique2.tie_or_stop((), future::empty())
});
let fut = unique.get_or_dial(&swarm_ctrl, &"/ip4/1.2.3.4".parse().unwrap(),
DeniedTransport);
let fut = unique.dial(&swarm_ctrl, &"/ip4/1.2.3.4".parse().unwrap(), DeniedTransport);
assert!(fut.wait().is_err());
assert_eq!(unique.state(), UniqueConnecState::Errored);
}
// TODO: more tests
#[test]
fn tie_or_stop_stops() {
// Tests that `tie_or_stop` destroys additional futures passed to it.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let unique_connec2 = unique_connec.clone();
// This channel is used to detect whether the future has been dropped.
let (msg_tx, msg_rx) = oneshot::channel();
let mut num_connec = 0;
let mut msg_rx = Some(msg_rx);
let (swarm_ctrl1, swarm_future1) = swarm(rx.with_dummy_muxing(), move |_, _| {
num_connec += 1;
if num_connec == 1 {
unique_connec2.tie_or_stop(12, future::Either::A(future::empty()))
} else {
let fut = msg_rx.take().unwrap().map_err(|_| panic!());
unique_connec2.tie_or_stop(13, future::Either::B(fut))
}
});
swarm_ctrl1.listen_on("/memory".parse().unwrap()).unwrap();
let (swarm_ctrl2, swarm_future2) = swarm(tx.clone().with_dummy_muxing(), move |_, _| {
future::empty()
});
let dial_success = unique_connec
.dial(&swarm_ctrl2, &"/memory".parse().unwrap(), tx.clone())
.map(|val| { assert_eq!(val, 12); })
.inspect({
let c = unique_connec.clone();
move |_| { assert!(c.is_alive()); }
})
.and_then(|_| {
tokio_timer::sleep(Duration::from_secs(1))
.map_err(|_| unreachable!())
})
.and_then(move |_| {
swarm_ctrl2.dial("/memory".parse().unwrap(), tx)
.unwrap_or_else(|_| panic!())
})
.inspect({
let c = unique_connec.clone();
move |_| {
assert_eq!(c.poll(), Some(12)); // Not 13
assert!(msg_tx.send(()).is_err());
}
});
let future = dial_success
.select(swarm_future2).map(|_| ()).map_err(|(err, _)| err)
.select(swarm_future1).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert!(unique_connec.is_alive());
}
#[test]
fn tie_or_passthrough_passes_through() {
// Tests that `tie_or_passthrough` doesn't delete additional futures passed to it when
// it is already full, and doesn't gets its value modified when that happens.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let unique_connec2 = unique_connec.clone();
let mut num = 12;
let (swarm_ctrl, swarm_future) = swarm(rx.with_dummy_muxing(), move |_, _| {
// Note that this handles both the dial and the listen.
let fut = future::empty().then(|_: Result<(), ()>| -> Result<(), IoError> { panic!() });
num += 1;
unique_connec2.tie_or_passthrough(num, fut)
});
swarm_ctrl.listen_on("/memory".parse().unwrap()).unwrap();
let dial_success = unique_connec
.dial(&swarm_ctrl, &"/memory".parse().unwrap(), tx.clone())
.map(|val| { assert_eq!(val, 13); });
swarm_ctrl.dial("/memory".parse().unwrap(), tx)
.unwrap();
let future = dial_success.select(swarm_future).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert_eq!(unique_connec.poll(), Some(13));
}
#[test]
fn cleared_when_future_drops() {
// Tests that the `UniqueConnec` gets cleared when the future we associate with it gets
// destroyed.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let unique_connec2 = unique_connec.clone();
let (msg_tx, msg_rx) = oneshot::channel();
let mut msg_rx = Some(msg_rx);
let (swarm_ctrl1, swarm_future1) = swarm(rx.with_dummy_muxing(), move |_, _| {
future::empty()
});
swarm_ctrl1.listen_on("/memory".parse().unwrap()).unwrap();
let (swarm_ctrl2, swarm_future2) = swarm(tx.clone().with_dummy_muxing(), move |_, _| {
let fut = msg_rx.take().unwrap().map_err(|_| -> IoError { unreachable!() });
unique_connec2.tie_or_stop(12, fut)
});
let dial_success = unique_connec
.dial(&swarm_ctrl2, &"/memory".parse().unwrap(), tx)
.map(|val| { assert_eq!(val, 12); })
.inspect({
let c = unique_connec.clone();
move |_| { assert!(c.is_alive()); }
})
.and_then(|_| {
msg_tx.send(()).unwrap();
tokio_timer::sleep(Duration::from_secs(1))
.map_err(|_| unreachable!())
})
.inspect({
let c = unique_connec.clone();
move |_| { assert!(!c.is_alive()); }
});
let future = dial_success
.select(swarm_future1).map(|_| ()).map_err(|(err, _)| err)
.select(swarm_future2).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert!(!unique_connec.is_alive());
}
#[test]
fn future_drops_when_cleared() {
// Tests that the future returned by `tie_or_*` ends when the `UniqueConnec` get cleared.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let unique_connec2 = unique_connec.clone();
let (swarm_ctrl1, swarm_future1) = swarm(rx.with_dummy_muxing(), move |_, _| {
future::empty()
});
swarm_ctrl1.listen_on("/memory".parse().unwrap()).unwrap();
let finished = Arc::new(atomic::AtomicBool::new(false));
let finished2 = finished.clone();
let (swarm_ctrl2, swarm_future2) = swarm(tx.clone().with_dummy_muxing(), move |_, _| {
let finished2 = finished2.clone();
unique_connec2.tie_or_stop(12, future::empty()).then(move |v| {
finished2.store(true, atomic::Ordering::Relaxed);
v
})
});
let dial_success = unique_connec
.dial(&swarm_ctrl2, &"/memory".parse().unwrap(), tx)
.map(|val| { assert_eq!(val, 12); })
.inspect({
let c = unique_connec.clone();
move |_| {
assert!(c.is_alive());
c.clear();
assert!(!c.is_alive());
}
})
.and_then(|_| {
tokio_timer::sleep(Duration::from_secs(1))
.map_err(|_| unreachable!())
})
.inspect({
let c = unique_connec.clone();
move |_| {
assert!(finished.load(atomic::Ordering::Relaxed));
assert!(!c.is_alive());
}
});
let future = dial_success
.select(swarm_future1).map(|_| ()).map_err(|(err, _)| err)
.select(swarm_future2).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
assert!(!unique_connec.is_alive());
}
#[test]
fn future_drops_when_destroyed() {
// Tests that the future returned by `tie_or_*` ends when the `UniqueConnec` get dropped.
let (tx, rx) = transport::connector();
let unique_connec = UniqueConnec::empty();
let mut unique_connec2 = Some(unique_connec.clone());
let (swarm_ctrl1, swarm_future1) = swarm(rx.with_dummy_muxing(), move |_, _| {
future::empty()
});
swarm_ctrl1.listen_on("/memory".parse().unwrap()).unwrap();
let finished = Arc::new(atomic::AtomicBool::new(false));
let finished2 = finished.clone();
let (swarm_ctrl2, swarm_future2) = swarm(tx.clone().with_dummy_muxing(), move |_, _| {
let finished2 = finished2.clone();
unique_connec2.take().unwrap().tie_or_stop(12, future::empty()).then(move |v| {
finished2.store(true, atomic::Ordering::Relaxed);
v
})
});
let dial_success = unique_connec
.dial(&swarm_ctrl2, &"/memory".parse().unwrap(), tx)
.map(|val| { assert_eq!(val, 12); })
.inspect(move |_| {
assert!(unique_connec.is_alive());
drop(unique_connec);
})
.and_then(|_| {
tokio_timer::sleep(Duration::from_secs(1))
.map_err(|_| unreachable!())
})
.inspect(move |_| {
assert!(finished.load(atomic::Ordering::Relaxed));
});
let future = dial_success
.select(swarm_future1).map(|_| ()).map_err(|(err, _)| err)
.select(swarm_future2).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
}
#[test]
fn error_if_unique_connec_destroyed_before_future() {
// Tests that the future returned by `dial` returns an error if the `UniqueConnec` no
// longer exists.
let (tx, rx) = transport::connector();
let (swarm_ctrl, swarm_future) = swarm(rx.with_dummy_muxing(), move |_, _| {
future::empty()
});
swarm_ctrl.listen_on("/memory".parse().unwrap()).unwrap();
let unique_connec = UniqueConnec::empty();
let dial_success = unique_connec
.dial(&swarm_ctrl, &"/memory".parse().unwrap(), tx)
.then(|val: Result<(), IoError>| {
assert!(val.is_err());
Ok(())
});
drop(unique_connec);
let future = dial_success
.select(swarm_future).map(|_| ()).map_err(|(err, _)| err);
current_thread::Runtime::new().unwrap().block_on(future).unwrap();
}
// TODO: test that dialing is interrupted when UniqueConnec is cleared
// TODO: test that dialing is interrupted when UniqueConnec is dropped
}

View File

@ -176,7 +176,7 @@ fn main() {
active_kad_connections
.entry(node_id)
.or_insert_with(Default::default)
.set_until(kad_ctrl, fut)
.tie_or_passthrough(kad_ctrl, fut)
})
}
}
@ -195,7 +195,7 @@ fn main() {
let addr = Multiaddr::from(libp2p::multiaddr::AddrComponent::P2P(cid));
active_kad_connections.lock().unwrap().entry(peer.clone())
.or_insert_with(Default::default)
.get_or_dial(&swarm_controller, &addr, transport.clone().with_upgrade(KadConnecConfig::new()))
.dial(&swarm_controller, &addr, transport.clone().with_upgrade(KadConnecConfig::new()))
})
.filter_map(move |event| {
match event {