Kademlia: Somewhat complete the records implementation. (#1189)

* Somewhat complete the implementation of Kademlia records.

This commit relates to [libp2p-146] and [libp2p-1089].

  * All records expire (by default, configurable).
  * Provider records are also stored in the RecordStore, and the RecordStore
    API extended.
  * Background jobs for periodic (re-)replication and (re-)publication
    of records. Regular (value-)records are subject to re-replication and
    re-publication as per standard Kademlia. Provider records are only
    subject to re-publication.
  * For standard Kademlia value lookups (quorum = 1), the record is cached
    at the closest peer to the key that did not return the value, as per
    standard Kademlia.
  * Expiration times of regular (value-)records is computed exponentially
    inversely proportional to the number of nodes between the local node
    and the closest node known to the key (beyond the k closest), as per
    standard Kademlia.

The protobuf messages are extended with two fields: `ttl` and `publisher`
in order to implement the different semantics of re-replication (by any
of the k closest peers to the key, not affecting expiry) and re-publication
(by the original publisher, resetting the expiry). This is not done yet in
other libp2p Kademlia implementations, see e.g. [libp2p-go-323]. The new protobuf fields
have been given somewhat unique identifiers to prevent future collision.

Similarly, periodic re-publication of provider records does not seem to
be done yet in other implementations, see e.g. [libp2p-js-98].

[libp2p-146]: https://github.com/libp2p/rust-libp2p/issues/146
[libp2p-1089]: https://github.com/libp2p/rust-libp2p/issues/1089
[libp2p-go-323]: https://github.com/libp2p/go-libp2p-kad-dht/issues/323
[libp2p-js-98]: https://github.com/libp2p/js-libp2p-kad-dht/issues/98

* Tweak kad-ipfs example.

* Add missing files.

* Ensure new delays are polled immediately.

To ensure task notification, since `NotReady` is returned right after.

* Fix ipfs-kad example and use wasm_timer.

* Small cleanup.

* Incorporate some feedback.

* Adjustments after rebase.

* Distinguish events further.

In order for a user to easily distinguish the result of e.g.
a `put_record` operation from the result of a later republication,
different event constructors are used. Furthermore, for now,
re-replication and "caching" of records (at the closest peer to
the key that did not return a value during a successful lookup)
do not yield events for now as they are less interesting.

* Speed up tests for CI.

* Small refinements and more documentation.

  * Guard a node against overriding records for which it considers
    itself to be the publisher.

  * Document the jobs module more extensively.

* More inline docs around removal of "unreachable" addresses.

* Remove wildcard re-exports.

* Use NonZeroUsize for the constants.

* Re-add method lost on merge.

* Add missing 'pub'.

* Further increase the timeout in the ipfs-kad example.

* Readd log dependency to libp2p-kad.

* Simplify RecordStore API slightly.

* Some more commentary.

* Change Addresses::remove to return Result<(),()>.

Change the semantics of `Addresses::remove` so that the error case
is unambiguous, instead of the success case. Use the `Result` for
clearer semantics to that effect.

* Add some documentation to .
This commit is contained in:
Roman Borschel
2019-07-17 14:40:48 +02:00
committed by GitHub
parent 01bce16d09
commit cde93f5432
21 changed files with 2715 additions and 947 deletions

View File

@ -22,7 +22,9 @@
use super::*;
use crate::K_VALUE;
use crate::kbucket::Distance;
use crate::record::store::MemoryStore;
use futures::future;
use libp2p_core::{
PeerId,
@ -37,18 +39,24 @@ use libp2p_core::{
use libp2p_secio::SecioConfig;
use libp2p_swarm::Swarm;
use libp2p_yamux as yamux;
use quickcheck::*;
use rand::{Rng, random, thread_rng};
use std::{collections::HashSet, iter::FromIterator, io, num::NonZeroU8, u64};
use std::{collections::{HashSet, HashMap}, io, num::NonZeroUsize, u64};
use tokio::runtime::current_thread;
use multihash::Hash::SHA2256;
type TestSwarm = Swarm<
Boxed<(PeerId, StreamMuxerBox), io::Error>,
Kademlia<Substream<StreamMuxerBox>>
Kademlia<Substream<StreamMuxerBox>, MemoryStore>
>;
/// Builds swarms, each listening on a port. Does *not* connect the nodes together.
fn build_nodes(num: usize) -> (u64, Vec<TestSwarm>) {
build_nodes_with_config(num, Default::default())
}
/// Builds swarms, each listening on a port. Does *not* connect the nodes together.
fn build_nodes_with_config(num: usize, cfg: KademliaConfig) -> (u64, Vec<TestSwarm>) {
let port_base = 1 + random::<u64>() % (u64::MAX - num as u64);
let mut result: Vec<Swarm<_, _>> = Vec::with_capacity(num);
@ -68,22 +76,27 @@ fn build_nodes(num: usize) -> (u64, Vec<TestSwarm>) {
.map_err(|e| panic!("Failed to create transport: {:?}", e))
.boxed();
let cfg = KademliaConfig::new(local_public_key.clone().into_peer_id());
let kad = Kademlia::new(cfg);
result.push(Swarm::new(transport, kad, local_public_key.into_peer_id()));
let local_id = local_public_key.clone().into_peer_id();
let store = MemoryStore::new(local_id.clone());
let behaviour = Kademlia::with_config(local_id.clone(), store, cfg.clone());
result.push(Swarm::new(transport, behaviour, local_id));
}
let mut i = 0;
for s in result.iter_mut() {
Swarm::listen_on(s, Protocol::Memory(port_base + i).into()).unwrap();
i += 1
for (i, s) in result.iter_mut().enumerate() {
Swarm::listen_on(s, Protocol::Memory(port_base + i as u64).into()).unwrap();
}
(port_base, result)
}
fn build_connected_nodes(total: usize, step: usize) -> (Vec<PeerId>, Vec<TestSwarm>) {
let (port_base, mut swarms) = build_nodes(total);
build_connected_nodes_with_config(total, step, Default::default())
}
fn build_connected_nodes_with_config(total: usize, step: usize, cfg: KademliaConfig)
-> (Vec<PeerId>, Vec<TestSwarm>)
{
let (port_base, mut swarms) = build_nodes_with_config(total, cfg);
let swarm_ids: Vec<_> = swarms.iter().map(Swarm::local_peer_id).cloned().collect();
let mut i = 0;
@ -101,7 +114,7 @@ fn build_connected_nodes(total: usize, step: usize) -> (Vec<PeerId>, Vec<TestSwa
#[test]
fn bootstrap() {
fn run<G: rand::Rng>(rng: &mut G) {
fn run(rng: &mut impl Rng) {
let num_total = rng.gen_range(2, 20);
let num_group = rng.gen_range(1, num_total);
let (swarm_ids, mut swarms) = build_connected_nodes(num_total, num_group);
@ -150,7 +163,7 @@ fn query_iter() {
.collect()
}
fn run<G: Rng>(rng: &mut G) {
fn run(rng: &mut impl Rng) {
let num_total = rng.gen_range(2, 20);
let (swarm_ids, mut swarms) = build_connected_nodes(num_total, 1);
@ -242,10 +255,7 @@ fn unresponsive_not_returned_indirect() {
// Add fake addresses to first.
let first_peer_id = Swarm::local_peer_id(&swarms[0]).clone();
for _ in 0 .. 10 {
swarms[0].add_address(
&PeerId::random(),
multiaddr![Udp(10u16)]
);
swarms[0].add_address(&PeerId::random(), multiaddr![Udp(10u16)]);
}
// Connect second to first.
@ -315,35 +325,52 @@ fn get_record_not_found() {
}
#[test]
fn put_value() {
fn run<G: rand::Rng>(rng: &mut G) {
let num_total = rng.gen_range(21, 40);
let num_group = rng.gen_range(1, usize::min(num_total, kbucket::K_VALUE));
let (swarm_ids, mut swarms) = build_connected_nodes(num_total, num_group);
fn put_record() {
fn prop(replication_factor: usize, records: Vec<Record>) {
let replication_factor = NonZeroUsize::new(replication_factor % (K_VALUE.get() / 2) + 1).unwrap();
let num_total = replication_factor.get() * 2;
let num_group = replication_factor.get();
let key = multihash::encode(SHA2256, &vec![1,2,3]).unwrap();
let bucket_key = kbucket::Key::from(key.clone());
let mut config = KademliaConfig::default();
config.set_replication_factor(replication_factor);
let (swarm_ids, mut swarms) = build_connected_nodes_with_config(num_total, num_group, config);
let mut sorted_peer_ids: Vec<_> = swarm_ids
.iter()
.map(|id| (id.clone(), kbucket::Key::from(id.clone()).distance(&bucket_key)))
.collect();
let records = records.into_iter()
.take(num_total)
.map(|mut r| {
// We don't want records to expire prematurely, as they would
// be removed from storage and no longer replicated, but we still
// want to check that an explicitly set expiration is preserved.
r.expires = r.expires.map(|t| t + Duration::from_secs(60));
(r.key.clone(), r)
})
.collect::<HashMap<_,_>>();
sorted_peer_ids.sort_by(|(_, d1), (_, d2)| d1.cmp(d2));
for r in records.values() {
swarms[0].put_record(r.clone(), Quorum::All);
}
let closest = HashSet::from_iter(sorted_peer_ids.into_iter().map(|(id, _)| id));
let record = Record { key: key.clone(), value: vec![4,5,6] };
swarms[0].put_record(record, Quorum::All);
// Each test run republishes all records once.
let mut republished = false;
// The accumulated results for one round of publishing.
let mut results = Vec::new();
current_thread::run(
future::poll_fn(move || {
let mut check_results = false;
future::poll_fn(move || loop {
// Poll all swarms until they are "NotReady".
for swarm in &mut swarms {
loop {
match swarm.poll().unwrap() {
Async::Ready(Some(KademliaEvent::PutRecordResult(Ok(_)))) => {
check_results = true;
Async::Ready(Some(KademliaEvent::PutRecordResult(res))) |
Async::Ready(Some(KademliaEvent::RepublishRecordResult(res))) => {
match res {
Err(e) => panic!(e),
Ok(ok) => {
assert!(records.contains_key(&ok.key));
let record = swarm.store.get(&ok.key).unwrap();
results.push(record.into_owned());
}
}
}
Async::Ready(_) => (),
Async::NotReady => break,
@ -351,31 +378,64 @@ fn put_value() {
}
}
if check_results {
let mut have: HashSet<_> = Default::default();
// All swarms are NotReady and not enough results have been collected
// so far, thus wait to be polled again for further progress.
if results.len() != records.len() {
return Ok(Async::NotReady)
}
for (i, swarm) in swarms.iter().skip(1).enumerate() {
if swarm.records.get(&key).is_some() {
have.insert(swarm_ids[i].clone());
}
// Consume the results, checking that each record was replicated
// correctly to the closest peers to the key.
while let Some(r) = results.pop() {
let expected = records.get(&r.key).unwrap();
assert_eq!(r.key, expected.key);
assert_eq!(r.value, expected.value);
assert_eq!(r.expires, expected.expires);
assert_eq!(r.publisher.as_ref(), Some(&swarm_ids[0]));
let key = kbucket::Key::new(r.key.clone());
let mut expected = swarm_ids.clone().split_off(1);
expected.sort_by(|id1, id2|
kbucket::Key::new(id1).distance(&key).cmp(
&kbucket::Key::new(id2).distance(&key)));
let expected = expected
.into_iter()
.take(replication_factor.get())
.collect::<HashSet<_>>();
let actual = swarms.iter().enumerate().skip(1)
.filter_map(|(i, s)|
if s.store.get(key.preimage()).is_some() {
Some(swarm_ids[i].clone())
} else {
None
})
.collect::<HashSet<_>>();
assert_eq!(actual.len(), replication_factor.get());
assert_eq!(actual, expected);
}
if republished {
assert_eq!(swarms[0].store.records().count(), records.len());
for k in records.keys() {
swarms[0].store.remove(&k);
}
let intersection: HashSet<_> = have.intersection(&closest).collect();
assert_eq!(have.len(), kbucket::K_VALUE);
assert_eq!(intersection.len(), kbucket::K_VALUE);
assert_eq!(swarms[0].store.records().count(), 0);
// All records have been republished, thus the test is complete.
return Ok(Async::Ready(()));
}
Ok(Async::NotReady)
}))
// Tell the replication job to republish asap.
swarms[0].put_record_job.as_mut().unwrap().asap(true);
republished = true;
})
)
}
let mut rng = thread_rng();
for _ in 0 .. 10 {
run(&mut rng);
}
QuickCheck::new().tests(3).quickcheck(prop as fn(_,_))
}
#[test]
@ -387,12 +447,9 @@ fn get_value() {
swarms[0].add_address(&swarm_ids[1], Protocol::Memory(port_base + 1).into());
swarms[1].add_address(&swarm_ids[2], Protocol::Memory(port_base + 2).into());
let record = Record {
key: multihash::encode(SHA2256, &vec![1,2,3]).unwrap(),
value: vec![4,5,6]
};
let record = Record::new(multihash::encode(SHA2256, &vec![1,2,3]).unwrap(), vec![4,5,6]);
swarms[1].records.put(record.clone()).unwrap();
swarms[1].store.put(record.clone()).unwrap();
swarms[0].get_record(&record.key, Quorum::One);
current_thread::run(
@ -416,23 +473,19 @@ fn get_value() {
}
#[test]
fn get_value_multiple() {
// Check that if we have responses from multiple peers, a correct number of
// results is returned.
fn get_value_many() {
// TODO: Randomise
let num_nodes = 12;
let (_swarm_ids, mut swarms) = build_connected_nodes(num_nodes, num_nodes);
let (_, mut swarms) = build_connected_nodes(num_nodes, num_nodes);
let num_results = 10;
let record = Record {
key: multihash::encode(SHA2256, &vec![1,2,3]).unwrap(),
value: vec![4,5,6],
};
let record = Record::new(multihash::encode(SHA2256, &vec![1,2,3]).unwrap(), vec![4,5,6]);
for i in 0 .. num_nodes {
swarms[i].records.put(record.clone()).unwrap();
swarms[i].store.put(record.clone()).unwrap();
}
let quorum = Quorum::N(NonZeroU8::new(num_results as u8).unwrap());
let quorum = Quorum::N(NonZeroUsize::new(num_results).unwrap());
swarms[0].get_record(&record.key, quorum);
current_thread::run(
@ -453,3 +506,123 @@ fn get_value_multiple() {
Ok(Async::NotReady)
}))
}
#[test]
fn add_provider() {
fn prop(replication_factor: usize, keys: Vec<kbucket::Key<Multihash>>) {
let replication_factor = NonZeroUsize::new(replication_factor % (K_VALUE.get() / 2) + 1).unwrap();
let num_total = replication_factor.get() * 2;
let num_group = replication_factor.get();
let mut config = KademliaConfig::default();
config.set_replication_factor(replication_factor);
let (swarm_ids, mut swarms) = build_connected_nodes_with_config(num_total, num_group, config);
let keys: HashSet<_> = keys.into_iter().take(num_total).collect();
// Each test run publishes all records twice.
let mut published = false;
let mut republished = false;
// The accumulated results for one round of publishing.
let mut results = Vec::new();
// Initiate the first round of publishing.
for k in &keys {
swarms[0].start_providing(k.preimage().clone());
}
current_thread::run(
future::poll_fn(move || loop {
// Poll all swarms until they are "NotReady".
for swarm in &mut swarms {
loop {
match swarm.poll().unwrap() {
Async::Ready(Some(KademliaEvent::StartProvidingResult(res))) |
Async::Ready(Some(KademliaEvent::RepublishProviderResult(res))) => {
match res {
Err(e) => panic!(e),
Ok(ok) => {
let key = kbucket::Key::new(ok.key.clone());
assert!(keys.contains(&key));
results.push(key);
}
}
}
Async::Ready(_) => (),
Async::NotReady => break,
}
}
}
if results.len() == keys.len() {
// All requests have been sent for one round of publishing.
published = true
}
if !published {
// Still waiting for all requests to be sent for one round
// of publishing.
return Ok(Async::NotReady)
}
// A round of publishing is complete. Consume the results, checking that
// each key was published to the `replication_factor` closest peers.
while let Some(key) = results.pop() {
// Collect the nodes that have a provider record for `key`.
let actual = swarms.iter().enumerate().skip(1)
.filter_map(|(i, s)|
if s.store.providers(key.preimage()).len() == 1 {
Some(swarm_ids[i].clone())
} else {
None
})
.collect::<HashSet<_>>();
if actual.len() != replication_factor.get() {
// Still waiting for some nodes to process the request.
results.push(key);
return Ok(Async::NotReady)
}
let mut expected = swarm_ids.clone().split_off(1);
expected.sort_by(|id1, id2|
kbucket::Key::new(id1).distance(&key).cmp(
&kbucket::Key::new(id2).distance(&key)));
let expected = expected
.into_iter()
.take(replication_factor.get())
.collect::<HashSet<_>>();
assert_eq!(actual, expected);
}
// One round of publishing is complete.
assert!(results.is_empty());
for s in &swarms {
assert_eq!(s.queries.size(), 0);
}
if republished {
assert_eq!(swarms[0].store.provided().count(), keys.len());
for k in &keys {
swarms[0].stop_providing(k.preimage());
}
assert_eq!(swarms[0].store.provided().count(), 0);
// All records have been republished, thus the test is complete.
return Ok(Async::Ready(()));
}
// Initiate the second round of publishing by telling the
// periodic provider job to run asap.
swarms[0].add_provider_job.as_mut().unwrap().asap();
published = false;
republished = true;
})
)
}
QuickCheck::new().tests(3).quickcheck(prop as fn(_,_))
}