Merge remote-tracking branch 'upstream/master' into websockets

This commit is contained in:
Pierre Krieger 2018-01-10 18:10:57 +01:00
commit c60fb982d2
No known key found for this signature in database
GPG Key ID: A03CE3AD81F08F7C
26 changed files with 1549 additions and 253 deletions

View File

@ -1,5 +1,9 @@
[workspace]
members = [
"multistream-select",
"datastore",
"example",
"libp2p-identify",
"libp2p-peerstore",
"libp2p-ping",
"libp2p-secio",

View File

@ -14,6 +14,8 @@ Architecture of the crates of this repository:
- `datastore`: Utility library whose API provides a key-value storage with multiple possible
backends. Used by `peerstore`.
- `example`: Example usages of this library.
- `libp2p-identify`: Protocol implementation that allows a node A to query another node B what
information B knows about A. Implements the `ConnectionUpgrade` trait of `libp2p-swarm`.
- `libp2p-peerstore`: Generic storage for information about remote peers (their multiaddresses and
their public key), with multiple possible backends. Each multiaddress also has a time-to-live.
Used by `libp2p-swarm`.
@ -29,3 +31,17 @@ Architecture of the crates of this repository:
upgrade.
- `rw-stream-sink`: Utility library that makes it possible to wrap around a tokio `Stream + Sink`
of bytes and implements `AsyncRead + AsyncWrite`.
## About the `impl Trait` syntax
Right now a lot of code of this library uses `Box<Future>` or `Box<Stream>` objects, or forces
`'static` lifetime bounds.
This is caused by the lack of a stable `impl Trait` syntax in the Rust language. Once this syntax
is fully implemented and stabilized, it will be possible to change this code to use plain and
non-static objects instead of boxes.
Progress for the `impl Trait` syntax can be tracked in [this issue of the Rust repository](https://github.com/rust-lang/rust/issues/34511).
Once this syntax is stable in the nightly version, we will consider requiring the nightly version
of the compiler and switching to this syntax.

View File

@ -31,7 +31,7 @@ extern crate tokio_io;
use bytes::BytesMut;
use futures::{Future, Sink, Stream};
use std::env;
use swarm::{UpgradeExt, SimpleProtocol, Transport, MuxedTransport};
use swarm::{UpgradeExt, SimpleProtocol, Transport, DeniedConnectionUpgrade};
use tcp::TcpConfig;
use tokio_core::reactor::Core;
use tokio_io::codec::length_delimited;
@ -77,51 +77,51 @@ fn main() {
// a `Transport`.
.into_connection_reuse();
let transport_with_echo = transport
.clone()
// On top of plaintext or secio, we use the "echo" protocol, which is a custom protocol
// just for this example.
// For this purpose, we create a `SimpleProtocol` struct.
.with_upgrade(SimpleProtocol::new("/echo/1.0.0", |socket| {
// This closure is called whenever a stream using the "echo" protocol has been
// successfully negotiated. The parameter is the raw socket (implements the AsyncRead
// and AsyncWrite traits), and the closure must return an implementation of
// `IntoFuture` that can yield any type of object.
Ok(length_delimited::Framed::<_, BytesMut>::new(socket))
}));
// Let's put this `transport` into a *swarm*. The swarm will handle all the incoming
// connections for us. The second parameter we pass is the connection upgrade that is accepted
// by the listening part. We don't want to accept anything, so we pass a dummy object that
// represents a connection that is always denied.
let (swarm_controller, swarm_future) = swarm::swarm(transport, DeniedConnectionUpgrade,
|_socket, _client_addr| -> Result<(), _> {
unreachable!("All incoming connections should have been denied")
});
// We now have a `transport` variable that can be used either to dial nodes or listen to
// incoming connections, and that will automatically apply all the selected protocols on top
// of any opened stream.
// Building a struct that represents the protocol that we are going to use for dialing.
let proto = SimpleProtocol::new("/echo/1.0.0", |socket| {
// This closure is called whenever a stream using the "echo" protocol has been
// successfully negotiated. The parameter is the raw socket (implements the AsyncRead
// and AsyncWrite traits), and the closure must return an implementation of
// `IntoFuture` that can yield any type of object.
Ok(length_delimited::Framed::<_, BytesMut>::new(socket))
});
// We use it to dial the address.
let dialer = transport_with_echo
.dial(swarm::Multiaddr::new(&target_addr).expect("invalid multiaddr"))
// If the multiaddr protocol exists but is not supported, then we get an error containing
// the transport and the original multiaddress. Therefore we cannot directly use `unwrap()`
// or `expect()`, but have to add a `map_err()` beforehand.
.map_err(|(_, addr)| addr).expect("unsupported multiaddr")
.and_then(|echo| {
// `echo` is what the closure used when initializing "echo" returns.
// We now use the controller to dial to the address.
swarm_controller
.dial_custom_handler(target_addr.parse().expect("invalid multiaddr"), proto, |echo| {
// `echo` is what the closure used when initializing `proto` returns.
// Consequently, please note that the `send` method is available only because the type
// `length_delimited::Framed` has a `send` method.
println!("Sending \"hello world\" to listener");
echo.send("hello world".into())
})
.and_then(|echo| {
// The message has been successfully sent. Now wait for an answer.
echo.into_future()
.map(|(msg, rest)| {
println!("Received message from listener: {:?}", msg);
rest
// Then listening for one message from the remote.
.and_then(|echo| {
echo.into_future().map_err(|(e, _)| e).map(|(n,_ )| n)
})
.map_err(|(err, _)| err)
});
.and_then(|message| {
println!("Received message from listener: {:?}", message.unwrap());
Ok(())
})
})
// If the multiaddr protocol exists but is not supported, then we get an error containing
// the original multiaddress.
.expect("unsupported multiaddr");
// `dialer` is a future that contains all the behaviour that we want, but nothing has actually
// started yet. Because we created the `TcpConfig` with tokio, we need to run the future
// through the tokio core.
core.run(dialer.map(|_| ()).select(transport.incoming().for_each(|_| Ok(()))))
.unwrap_or_else(|_| panic!());
// The address we actually listen on can be different from the address that was passed to
// the `listen_on` function. For example if you pass `/ip4/0.0.0.0/tcp/0`, then the port `0`
// will be replaced with the actual port.
// `swarm_future` is a future that contains all the behaviour that we want, but nothing has
// actually started yet. Because we created the `TcpConfig` with tokio, we need to run the
// future through the tokio core.
core.run(swarm_future).unwrap();
}

View File

@ -74,80 +74,66 @@ fn main() {
// `Transport` because the output of the upgrade is not a stream but a controller for
// muxing. We have to explicitly call `into_connection_reuse()` in order to turn this into
// a `Transport`.
.into_connection_reuse()
// On top of both mutiplex and plaintext/secio, we use the "echo" protocol, which is a
// custom protocol just for this example.
// For this purpose, we create a `SimpleProtocol` struct.
.with_upgrade(SimpleProtocol::new("/echo/1.0.0", |socket| {
// This closure is called whenever a stream using the "echo" protocol has been
// successfully negotiated. The parameter is the raw socket (implements the AsyncRead
// and AsyncWrite traits), and the closure must return an implementation of
// `IntoFuture` that can yield any type of object.
Ok(length_delimited::Framed::new(socket))
}));
.into_connection_reuse();
// We now have a `transport` variable that can be used either to dial nodes or listen to
// incoming connections, and that will automatically apply all the selected protocols on top
// incoming connections, and that will automatically apply secio and multiplex on top
// of any opened stream.
// We use it to listen on the address.
let (listener, address) = transport
.listen_on(swarm::Multiaddr::new(&listen_addr).expect("invalid multiaddr"))
// We now prepare the protocol that we are going to negotiate with nodes that open a connection
// or substream to our server.
let proto = SimpleProtocol::new("/echo/1.0.0", |socket| {
// This closure is called whenever a stream using the "echo" protocol has been
// successfully negotiated. The parameter is the raw socket (implements the AsyncRead
// and AsyncWrite traits), and the closure must return an implementation of
// `IntoFuture` that can yield any type of object.
Ok(length_delimited::Framed::<_, bytes::BytesMut>::new(socket))
});
// Let's put this `transport` into a *swarm*. The swarm will handle all the incoming and
// outgoing connections for us.
let (swarm_controller, swarm_future) = swarm::swarm(transport, proto, |socket, client_addr| {
println!("Successfully negotiated protocol with {}", client_addr);
// The type of `socket` is exactly what the closure of `SimpleProtocol` returns.
// We loop forever in order to handle all the messages sent by the client.
loop_fn(socket, move |socket| {
let client_addr = client_addr.clone();
socket
.into_future()
.map_err(|(e, _)| e)
.and_then(move |(msg, rest)| {
if let Some(msg) = msg {
// One message has been received. We send it back to the client.
println!("Received a message from {}: {:?}\n => Sending back \
identical message to remote", client_addr, msg);
Box::new(rest.send(msg).map(|m| Loop::Continue(m)))
as Box<Future<Item = _, Error = _>>
} else {
// End of stream. Connection closed. Breaking the loop.
println!("Received EOF from {}\n => Dropping connection",
client_addr);
Box::new(Ok(Loop::Break(())).into_future())
as Box<Future<Item = _, Error = _>>
}
})
})
});
// We now use the controller to listen on the address.
let address = swarm_controller
.listen_on(listen_addr.parse().expect("invalid multiaddr"))
// If the multiaddr protocol exists but is not supported, then we get an error containing
// the transport and the original multiaddress. Therefore we cannot directly use `unwrap()`
// or `expect()`, but have to add a `map_err()` beforehand.
.map_err(|(_, addr)| addr).expect("unsupported multiaddr");
// the original multiaddress.
.expect("unsupported multiaddr");
// The address we actually listen on can be different from the address that was passed to
// the `listen_on` function. For example if you pass `/ip4/0.0.0.0/tcp/0`, then the port `0`
// will be replaced with the actual port.
println!("Now listening on {:?}", address);
let future = listener
.for_each(|(socket, client_addr)| {
// This closure is called whenever a new connection has been received.
// `socket` is a future that will be triggered once the upgrade to secio, multiplex
// and echo is complete.
let client_addr = client_addr.to_string();
println!("Incoming connection from {}", client_addr);
socket
.and_then(move |socket| {
println!("Successfully negotiated protocol with {}", client_addr);
// We loop forever in order to handle all the messages sent by the client.
loop_fn(socket, move |socket| {
let client_addr = client_addr.clone();
socket.into_future()
.map_err(|(err, _)| err)
.and_then(move |(msg, rest)| {
if let Some(msg) = msg {
// One message has been received. We send it back to the client.
println!("Received a message from {}: {:?}\n => Sending back \
identical message to remote", client_addr, msg);
Box::new(rest.send(msg).map(|m| Loop::Continue(m)))
as Box<Future<Item = _, Error = _>>
} else {
// End of stream. Connection closed. Breaking the loop.
println!("Received EOF from {}\n => Dropping connection",
client_addr);
Box::new(Ok(Loop::Break(())).into_future())
as Box<Future<Item = _, Error = _>>
}
})
})
})
// We absorb errors from the future so that an error while processing a client
// (eg. if the client unexpectedly disconnects) doesn't propagate and stop the
// entire server.
.then(move |res| {
if let Err(err) = res {
println!("Error while processing client: {:?}", err);
}
Ok(())
})
});
// `future` is a future that contains all the behaviour that we want, but nothing has actually
// started yet. Because we created the `TcpConfig` with tokio, we need to run the future
// through the tokio core.
core.run(future).unwrap();
// `swarm_future` is a future that contains all the behaviour that we want, but nothing has
// actually started yet. Because we created the `TcpConfig` with tokio, we need to run the
// future through the tokio core.
core.run(swarm_future).unwrap();
}

View File

@ -0,0 +1,17 @@
[package]
name = "libp2p-identify"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
[dependencies]
bytes = "0.4"
futures = "0.1"
libp2p-peerstore = { path = "../libp2p-peerstore" }
libp2p-swarm = { path = "../libp2p-swarm" }
multiaddr = "0.2.0"
protobuf = "1.4.2"
tokio-io = "0.1.0"
[dev-dependencies]
libp2p-tcp-transport = { path = "../libp2p-tcp-transport" }
tokio-core = "0.1.0"

View File

@ -0,0 +1,12 @@
#!/bin/sh
# This script regenerates the `src/structs_proto.rs` and `src/keys_proto.rs` files from
# `structs.proto` and `keys.proto`.
sudo docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install protobuf; \
protoc --rust_out . structs.proto"
mv -f structs.rs ./src/structs_proto.rs

225
libp2p-identify/src/lib.rs Normal file
View File

@ -0,0 +1,225 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Implementation of the `/ipfs/id/1.0.0` protocol. Allows a node A to query another node B which
//! information B knows about A. Also includes the addresses B is listening on.
//!
//! When two nodes connect to each other, the listening half sends a message to the dialing half,
//! indicating the information, and then the protocol stops.
extern crate bytes;
extern crate futures;
extern crate multiaddr;
extern crate libp2p_peerstore;
extern crate libp2p_swarm;
extern crate protobuf;
extern crate tokio_io;
use bytes::{Bytes, BytesMut};
use futures::{Future, Stream, Sink};
use libp2p_swarm::{ConnectionUpgrade, Endpoint};
use multiaddr::Multiaddr;
use protobuf::Message as ProtobufMessage;
use protobuf::core::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::repeated::RepeatedField;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_io::{AsyncRead, AsyncWrite};
use tokio_io::codec::length_delimited;
mod structs_proto;
/// Prototype for an upgrade to the identity protocol.
#[derive(Debug, Clone)]
pub struct IdentifyProtocol {
pub information: IdentifyInfo,
}
impl IdentifyProtocol {
/// Builds a new `IdentifyProtocol`.
#[inline]
pub fn new(information: IdentifyInfo) -> IdentifyProtocol {
IdentifyProtocol {
information
}
}
}
/// Information sent from the listener to the dialer.
#[derive(Debug, Clone)]
pub struct IdentifyInfo {
/// Public key of the node.
pub public_key: Vec<u8>,
/// Version of the "global" protocol, eg. `ipfs/1.0.0`.
pub protocol_version: String,
/// Name and version. Can be thought as similar to the `User-Agent` header of HTTP.
pub agent_version: String,
/// Addresses that are listened on.
pub listen_addrs: Vec<Multiaddr>,
/// Address that the server uses to communicate with the dialer.
pub observed_addr: Multiaddr,
/// Protocols supported by the remote.
pub protocols: Vec<String>,
}
impl<C> ConnectionUpgrade<C> for IdentifyProtocol
where C: AsyncRead + AsyncWrite + 'static
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
type Output = Option<IdentifyInfo>;
type Future = Box<Future<Item = Self::Output, Error = IoError>>;
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once((Bytes::from("/ipfs/id/1.0.0"), ()))
}
fn upgrade(self, socket: C, _: (), ty: Endpoint) -> Self::Future {
// TODO: use jack's varint library instead
let socket = length_delimited::Builder::new().length_field_length(1).new_framed(socket);
match ty {
Endpoint::Dialer => {
let future = socket.into_future()
.map(|(msg, _)| msg)
.map_err(|(err, _)| err)
.and_then(|msg| if let Some(msg) = msg {
Ok(Some(parse_proto_msg(msg)?))
} else {
Ok(None)
});
Box::new(future) as Box<_>
}
Endpoint::Listener => {
let info = self.information;
let listen_addrs = info.listen_addrs
.into_iter()
.map(|addr| addr.to_string().into_bytes())
.collect();
let mut message = structs_proto::Identify::new();
message.set_agentVersion(info.agent_version);
message.set_protocolVersion(info.protocol_version);
message.set_publicKey(info.public_key);
message.set_listenAddrs(listen_addrs);
message.set_observedAddr(info.observed_addr.to_string().into_bytes());
message.set_protocols(RepeatedField::from_vec(info.protocols));
let bytes = message.write_to_bytes()
.expect("writing protobuf failed ; should never happen");
// On the server side, after sending the information to the client we make the
// future produce a `None`. If we were on the client side, this would contain the
// information received by the server.
let future = socket.send(bytes).map(|_| None);
Box::new(future) as Box<_>
}
}
}
}
// Turns a protobuf message into an `IdentifyInfo`. If something bad happens, turn it into
// an `IoError`.
fn parse_proto_msg(msg: BytesMut) -> Result<IdentifyInfo, IoError> {
match protobuf_parse_from_bytes::<structs_proto::Identify>(&msg) {
Ok(mut msg) => {
let listen_addrs = {
let mut addrs = Vec::new();
for addr in msg.take_listenAddrs().into_iter() {
addrs.push(bytes_to_multiaddr(addr)?);
}
addrs
};
let observed_addr = bytes_to_multiaddr(msg.take_observedAddr())?;
Ok(IdentifyInfo {
public_key: msg.take_publicKey(),
protocol_version: msg.take_protocolVersion(),
agent_version: msg.take_agentVersion(),
listen_addrs: listen_addrs,
observed_addr: observed_addr,
protocols: msg.take_protocols().into_vec(),
})
}
Err(err) => {
Err(IoError::new(IoErrorKind::InvalidData, err))
}
}
}
// Turn a `Vec<u8>` into a `Multiaddr`. If something bad happens, turn it into an `IoError`.
fn bytes_to_multiaddr(bytes: Vec<u8>) -> Result<Multiaddr, IoError> {
String::from_utf8(bytes)
.map_err(|err| {
IoError::new(IoErrorKind::InvalidData, err)
})
.and_then(|s| {
s.parse()
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
})
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use self::libp2p_tcp_transport::TcpConfig;
use self::tokio_core::reactor::Core;
use IdentifyInfo;
use IdentifyProtocol;
use futures::{IntoFuture, Future, Stream};
use libp2p_swarm::Transport;
#[test]
fn basic() {
let mut core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let with_proto = tcp.with_upgrade(IdentifyProtocol::new(IdentifyInfo {
public_key: vec![1, 2, 3, 4],
protocol_version: "ipfs/1.0.0".to_owned(),
agent_version: "agent/version".to_owned(),
listen_addrs: vec!["/ip4/5.6.7.8/tcp/12345".parse().unwrap()],
observed_addr: "/ip4/1.2.3.4/tcp/9876".parse().unwrap(),
protocols: vec!["ping".to_owned(), "kad".to_owned()],
}));
let (server, addr) = with_proto.clone()
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
.unwrap();
let server = server.into_future()
.map_err(|(err, _)| err)
.and_then(|(n, _)| n.unwrap().0);
let dialer = with_proto.dial(addr)
.unwrap()
.into_future();
let (recv, should_be_empty) = core.run(dialer.join(server)).unwrap();
assert!(should_be_empty.is_none());
let recv = recv.unwrap();
assert_eq!(recv.public_key, &[1, 2, 3, 4]);
}
}

View File

@ -0,0 +1,550 @@
// This file is generated. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Identify {
// message fields
protocolVersion: ::protobuf::SingularField<::std::string::String>,
agentVersion: ::protobuf::SingularField<::std::string::String>,
publicKey: ::protobuf::SingularField<::std::vec::Vec<u8>>,
listenAddrs: ::protobuf::RepeatedField<::std::vec::Vec<u8>>,
observedAddr: ::protobuf::SingularField<::std::vec::Vec<u8>>,
protocols: ::protobuf::RepeatedField<::std::string::String>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
// see codegen.rs for the explanation why impl Sync explicitly
unsafe impl ::std::marker::Sync for Identify {}
impl Identify {
pub fn new() -> Identify {
::std::default::Default::default()
}
pub fn default_instance() -> &'static Identify {
static mut instance: ::protobuf::lazy::Lazy<Identify> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Identify,
};
unsafe {
instance.get(Identify::new)
}
}
// optional string protocolVersion = 5;
pub fn clear_protocolVersion(&mut self) {
self.protocolVersion.clear();
}
pub fn has_protocolVersion(&self) -> bool {
self.protocolVersion.is_some()
}
// Param is passed by value, moved
pub fn set_protocolVersion(&mut self, v: ::std::string::String) {
self.protocolVersion = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_protocolVersion(&mut self) -> &mut ::std::string::String {
if self.protocolVersion.is_none() {
self.protocolVersion.set_default();
}
self.protocolVersion.as_mut().unwrap()
}
// Take field
pub fn take_protocolVersion(&mut self) -> ::std::string::String {
self.protocolVersion.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_protocolVersion(&self) -> &str {
match self.protocolVersion.as_ref() {
Some(v) => &v,
None => "",
}
}
fn get_protocolVersion_for_reflect(&self) -> &::protobuf::SingularField<::std::string::String> {
&self.protocolVersion
}
fn mut_protocolVersion_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::string::String> {
&mut self.protocolVersion
}
// optional string agentVersion = 6;
pub fn clear_agentVersion(&mut self) {
self.agentVersion.clear();
}
pub fn has_agentVersion(&self) -> bool {
self.agentVersion.is_some()
}
// Param is passed by value, moved
pub fn set_agentVersion(&mut self, v: ::std::string::String) {
self.agentVersion = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_agentVersion(&mut self) -> &mut ::std::string::String {
if self.agentVersion.is_none() {
self.agentVersion.set_default();
}
self.agentVersion.as_mut().unwrap()
}
// Take field
pub fn take_agentVersion(&mut self) -> ::std::string::String {
self.agentVersion.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_agentVersion(&self) -> &str {
match self.agentVersion.as_ref() {
Some(v) => &v,
None => "",
}
}
fn get_agentVersion_for_reflect(&self) -> &::protobuf::SingularField<::std::string::String> {
&self.agentVersion
}
fn mut_agentVersion_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::string::String> {
&mut self.agentVersion
}
// optional bytes publicKey = 1;
pub fn clear_publicKey(&mut self) {
self.publicKey.clear();
}
pub fn has_publicKey(&self) -> bool {
self.publicKey.is_some()
}
// Param is passed by value, moved
pub fn set_publicKey(&mut self, v: ::std::vec::Vec<u8>) {
self.publicKey = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_publicKey(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.publicKey.is_none() {
self.publicKey.set_default();
}
self.publicKey.as_mut().unwrap()
}
// Take field
pub fn take_publicKey(&mut self) -> ::std::vec::Vec<u8> {
self.publicKey.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_publicKey(&self) -> &[u8] {
match self.publicKey.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_publicKey_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.publicKey
}
fn mut_publicKey_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.publicKey
}
// repeated bytes listenAddrs = 2;
pub fn clear_listenAddrs(&mut self) {
self.listenAddrs.clear();
}
// Param is passed by value, moved
pub fn set_listenAddrs(&mut self, v: ::protobuf::RepeatedField<::std::vec::Vec<u8>>) {
self.listenAddrs = v;
}
// Mutable pointer to the field.
pub fn mut_listenAddrs(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.listenAddrs
}
// Take field
pub fn take_listenAddrs(&mut self) -> ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
::std::mem::replace(&mut self.listenAddrs, ::protobuf::RepeatedField::new())
}
pub fn get_listenAddrs(&self) -> &[::std::vec::Vec<u8>] {
&self.listenAddrs
}
fn get_listenAddrs_for_reflect(&self) -> &::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&self.listenAddrs
}
fn mut_listenAddrs_for_reflect(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.listenAddrs
}
// optional bytes observedAddr = 4;
pub fn clear_observedAddr(&mut self) {
self.observedAddr.clear();
}
pub fn has_observedAddr(&self) -> bool {
self.observedAddr.is_some()
}
// Param is passed by value, moved
pub fn set_observedAddr(&mut self, v: ::std::vec::Vec<u8>) {
self.observedAddr = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_observedAddr(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.observedAddr.is_none() {
self.observedAddr.set_default();
}
self.observedAddr.as_mut().unwrap()
}
// Take field
pub fn take_observedAddr(&mut self) -> ::std::vec::Vec<u8> {
self.observedAddr.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_observedAddr(&self) -> &[u8] {
match self.observedAddr.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_observedAddr_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.observedAddr
}
fn mut_observedAddr_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.observedAddr
}
// repeated string protocols = 3;
pub fn clear_protocols(&mut self) {
self.protocols.clear();
}
// Param is passed by value, moved
pub fn set_protocols(&mut self, v: ::protobuf::RepeatedField<::std::string::String>) {
self.protocols = v;
}
// Mutable pointer to the field.
pub fn mut_protocols(&mut self) -> &mut ::protobuf::RepeatedField<::std::string::String> {
&mut self.protocols
}
// Take field
pub fn take_protocols(&mut self) -> ::protobuf::RepeatedField<::std::string::String> {
::std::mem::replace(&mut self.protocols, ::protobuf::RepeatedField::new())
}
pub fn get_protocols(&self) -> &[::std::string::String] {
&self.protocols
}
fn get_protocols_for_reflect(&self) -> &::protobuf::RepeatedField<::std::string::String> {
&self.protocols
}
fn mut_protocols_for_reflect(&mut self) -> &mut ::protobuf::RepeatedField<::std::string::String> {
&mut self.protocols
}
}
impl ::protobuf::Message for Identify {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
5 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.protocolVersion)?;
},
6 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.agentVersion)?;
},
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.publicKey)?;
},
2 => {
::protobuf::rt::read_repeated_bytes_into(wire_type, is, &mut self.listenAddrs)?;
},
4 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.observedAddr)?;
},
3 => {
::protobuf::rt::read_repeated_string_into(wire_type, is, &mut self.protocols)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.protocolVersion.as_ref() {
my_size += ::protobuf::rt::string_size(5, &v);
}
if let Some(ref v) = self.agentVersion.as_ref() {
my_size += ::protobuf::rt::string_size(6, &v);
}
if let Some(ref v) = self.publicKey.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
for value in &self.listenAddrs {
my_size += ::protobuf::rt::bytes_size(2, &value);
};
if let Some(ref v) = self.observedAddr.as_ref() {
my_size += ::protobuf::rt::bytes_size(4, &v);
}
for value in &self.protocols {
my_size += ::protobuf::rt::string_size(3, &value);
};
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.protocolVersion.as_ref() {
os.write_string(5, &v)?;
}
if let Some(ref v) = self.agentVersion.as_ref() {
os.write_string(6, &v)?;
}
if let Some(ref v) = self.publicKey.as_ref() {
os.write_bytes(1, &v)?;
}
for v in &self.listenAddrs {
os.write_bytes(2, &v)?;
};
if let Some(ref v) = self.observedAddr.as_ref() {
os.write_bytes(4, &v)?;
}
for v in &self.protocols {
os.write_string(3, &v)?;
};
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
::protobuf::MessageStatic::descriptor_static(None::<Self>)
}
}
impl ::protobuf::MessageStatic for Identify {
fn new() -> Identify {
Identify::new()
}
fn descriptor_static(_: ::std::option::Option<Identify>) -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"protocolVersion",
Identify::get_protocolVersion_for_reflect,
Identify::mut_protocolVersion_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"agentVersion",
Identify::get_agentVersion_for_reflect,
Identify::mut_agentVersion_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"publicKey",
Identify::get_publicKey_for_reflect,
Identify::mut_publicKey_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"listenAddrs",
Identify::get_listenAddrs_for_reflect,
Identify::mut_listenAddrs_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"observedAddr",
Identify::get_observedAddr_for_reflect,
Identify::mut_observedAddr_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"protocols",
Identify::get_protocols_for_reflect,
Identify::mut_protocols_for_reflect,
));
::protobuf::reflect::MessageDescriptor::new::<Identify>(
"Identify",
fields,
file_descriptor_proto()
)
})
}
}
}
impl ::protobuf::Clear for Identify {
fn clear(&mut self) {
self.clear_protocolVersion();
self.clear_agentVersion();
self.clear_publicKey();
self.clear_listenAddrs();
self.clear_observedAddr();
self.clear_protocols();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Identify {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Identify {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\rstructs.proto\"\xda\x01\n\x08Identify\x12(\n\x0fprotocolVersion\x18\
\x05\x20\x01(\tR\x0fprotocolVersion\x12\"\n\x0cagentVersion\x18\x06\x20\
\x01(\tR\x0cagentVersion\x12\x1c\n\tpublicKey\x18\x01\x20\x01(\x0cR\tpub\
licKey\x12\x20\n\x0blistenAddrs\x18\x02\x20\x03(\x0cR\x0blistenAddrs\x12\
\"\n\x0cobservedAddr\x18\x04\x20\x01(\x0cR\x0cobservedAddr\x12\x1c\n\tpr\
otocols\x18\x03\x20\x03(\tR\tprotocolsJ\xc2\t\n\x06\x12\x04\0\0\x16\x01\
\n\n\n\x02\x04\0\x12\x04\0\0\x16\x01\n\n\n\x03\x04\0\x01\x12\x03\0\x08\
\x10\nX\n\x04\x04\0\x02\0\x12\x03\x02\x02&\x1a8\x20protocolVersion\x20de\
termines\x20compatibility\x20between\x20peers\n\"\x11\x20e.g.\x20ipfs/1.\
0.0\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03\x02\x02\n\n\x0c\n\x05\x04\0\
\x02\0\x05\x12\x03\x02\x0b\x11\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\x02\
\x12!\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03\x02$%\n\x9f\x01\n\x04\x04\0\
\x02\x01\x12\x03\x06\x02#\x1a|\x20agentVersion\x20is\x20like\x20a\x20Use\
rAgent\x20string\x20in\x20browsers,\x20or\x20client\x20version\x20in\x20\
bittorrent\n\x20includes\x20the\x20client\x20name\x20and\x20client.\n\"\
\x14\x20e.g.\x20go-ipfs/0.1.0\n\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\
\x06\x02\n\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03\x06\x0b\x11\n\x0c\n\x05\
\x04\0\x02\x01\x01\x12\x03\x06\x12\x1e\n\x0c\n\x05\x04\0\x02\x01\x03\x12\
\x03\x06!\"\n\xe3\x01\n\x04\x04\0\x02\x02\x12\x03\x0b\x02\x1f\x1a\xd5\
\x01\x20publicKey\x20is\x20this\x20node's\x20public\x20key\x20(which\x20\
also\x20gives\x20its\x20node.ID)\n\x20-\x20may\x20not\x20need\x20to\x20b\
e\x20sent,\x20as\x20secure\x20channel\x20implies\x20it\x20has\x20been\
\x20sent.\n\x20-\x20then\x20again,\x20if\x20we\x20change\x20/\x20disable\
\x20secure\x20channel,\x20may\x20still\x20want\x20it.\n\n\x0c\n\x05\x04\
\0\x02\x02\x04\x12\x03\x0b\x02\n\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\
\x0b\x0b\x10\n\x0c\n\x05\x04\0\x02\x02\x01\x12\x03\x0b\x11\x1a\n\x0c\n\
\x05\x04\0\x02\x02\x03\x12\x03\x0b\x1d\x1e\n]\n\x04\x04\0\x02\x03\x12\
\x03\x0e\x02!\x1aP\x20listenAddrs\x20are\x20the\x20multiaddrs\x20the\x20\
sender\x20node\x20listens\x20for\x20open\x20connections\x20on\n\n\x0c\n\
\x05\x04\0\x02\x03\x04\x12\x03\x0e\x02\n\n\x0c\n\x05\x04\0\x02\x03\x05\
\x12\x03\x0e\x0b\x10\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x0e\x11\x1c\n\
\x0c\n\x05\x04\0\x02\x03\x03\x12\x03\x0e\x1f\x20\n\x81\x02\n\x04\x04\0\
\x02\x04\x12\x03\x13\x02\"\x1a\xf3\x01\x20oservedAddr\x20is\x20the\x20mu\
ltiaddr\x20of\x20the\x20remote\x20endpoint\x20that\x20the\x20sender\x20n\
ode\x20perceives\n\x20this\x20is\x20useful\x20information\x20to\x20conve\
y\x20to\x20the\x20other\x20side,\x20as\x20it\x20helps\x20the\x20remote\
\x20endpoint\n\x20determine\x20whether\x20its\x20connection\x20to\x20the\
\x20local\x20peer\x20goes\x20through\x20NAT.\n\n\x0c\n\x05\x04\0\x02\x04\
\x04\x12\x03\x13\x02\n\n\x0c\n\x05\x04\0\x02\x04\x05\x12\x03\x13\x0b\x10\
\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x03\x13\x11\x1d\n\x0c\n\x05\x04\0\x02\
\x04\x03\x12\x03\x13\x20!\n\x0b\n\x04\x04\0\x02\x05\x12\x03\x15\x02\x20\
\n\x0c\n\x05\x04\0\x02\x05\x04\x12\x03\x15\x02\n\n\x0c\n\x05\x04\0\x02\
\x05\x05\x12\x03\x15\x0b\x11\n\x0c\n\x05\x04\0\x02\x05\x01\x12\x03\x15\
\x12\x1b\n\x0c\n\x05\x04\0\x02\x05\x03\x12\x03\x15\x1e\x1f\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,23 @@
message Identify {
// protocolVersion determines compatibility between peers
optional string protocolVersion = 5; // e.g. ipfs/1.0.0
// agentVersion is like a UserAgent string in browsers, or client version in bittorrent
// includes the client name and client.
optional string agentVersion = 6; // e.g. go-ipfs/0.1.0
// publicKey is this node's public key (which also gives its node.ID)
// - may not need to be sent, as secure channel implies it has been sent.
// - then again, if we change / disable secure channel, may still want it.
optional bytes publicKey = 1;
// listenAddrs are the multiaddrs the sender node listens for open connections on
repeated bytes listenAddrs = 2;
// oservedAddr is the multiaddr of the remote endpoint that the sender node perceives
// this is useful information to convey to the other side, as it helps the remote endpoint
// determine whether its connection to the local peer goes through NAT.
optional bytes observedAddr = 4;
repeated string protocols = 3;
}

View File

@ -34,7 +34,7 @@ let peer_id = vec![1, 2, 3, 4];
// `peer_or_create` mutably borrows the peerstore, so we have to do it in a local scope.
let mut peer = peerstore.peer_or_create(&peer_id);
peer.set_pub_key(vec![60, 90, 120, 150]);
peer.add_addr(Multiaddr::new("/ip4/10.11.12.13/tcp/20000").unwrap(),
peer.add_addr("/ip4/10.11.12.13/tcp/20000".parse::<Multiaddr>().unwrap(),
Duration::from_millis(5000));
}
@ -43,6 +43,6 @@ let peer_id = vec![1, 2, 3, 4];
let mut peer = peerstore.peer(&peer_id).expect("peer doesn't exist in the peerstore");
assert_eq!(peer.get_pub_key().unwrap(), &[60, 90, 120, 150]);
assert_eq!(peer.addrs().collect::<Vec<_>>(),
&[Multiaddr::new("/ip4/10.11.12.13/tcp/20000").unwrap()]);
&["/ip4/10.11.12.13/tcp/20000".parse::<Multiaddr>().unwrap()]);
}
```

View File

@ -55,7 +55,7 @@
//! // `peer_or_create` mutably borrows the peerstore, so we have to do it in a local scope.
//! let mut peer = peerstore.peer_or_create(&peer_id);
//! peer.set_pub_key(vec![60, 90, 120, 150]);
//! peer.add_addr(Multiaddr::new("/ip4/10.11.12.13/tcp/20000").unwrap(),
//! peer.add_addr("/ip4/10.11.12.13/tcp/20000".parse::<Multiaddr>().unwrap(),
//! Duration::from_millis(5000));
//! }
//!
@ -64,7 +64,7 @@
//! let mut peer = peerstore.peer(&peer_id).expect("peer doesn't exist in the peerstore");
//! assert_eq!(peer.get_pub_key().unwrap(), &[60, 90, 120, 150]);
//! assert_eq!(peer.addrs().collect::<Vec<_>>(),
//! &[Multiaddr::new("/ip4/10.11.12.13/tcp/20000").unwrap()]);
//! &["/ip4/10.11.12.13/tcp/20000".parse::<Multiaddr>().unwrap()]);
//! }
//! # }
//! ```

View File

@ -162,7 +162,7 @@ impl<'de> Deserialize<'de> for PeerInfo {
let addrs = {
let mut out = Vec::with_capacity(interm.addrs.len());
for (addr, since_epoch) in interm.addrs {
let addr = match Multiaddr::new(&addr) {
let addr = match addr.parse::<Multiaddr>() {
Ok(a) => a,
Err(err) => return Err(DeserializerError::custom(err)),
};

View File

@ -62,7 +62,7 @@ macro_rules! peerstore_tests {
$($stmt;)*
let peer_store = $create_peerstore;
let peer_id = multihash::encode(multihash::Hash::SHA2512, &[1, 2, 3]).unwrap();
let addr = Multiaddr::new("/ip4/0.0.0.0/tcp/0").unwrap();
let addr = "/ip4/0.0.0.0/tcp/0".parse::<Multiaddr>().unwrap();
peer_store.peer_or_create(&peer_id).add_addr(addr.clone(), Duration::from_millis(5000));
@ -76,7 +76,7 @@ macro_rules! peerstore_tests {
$($stmt;)*
let peer_store = $create_peerstore;
let peer_id = multihash::encode(multihash::Hash::SHA2512, &[1, 2, 3]).unwrap();
let addr = Multiaddr::new("/ip4/0.0.0.0/tcp/0").unwrap();
let addr = "/ip4/0.0.0.0/tcp/0".parse::<Multiaddr>().unwrap();
peer_store.peer_or_create(&peer_id).add_addr(addr.clone(), Duration::from_millis(0));
thread::sleep(Duration::from_millis(2));
@ -90,7 +90,7 @@ macro_rules! peerstore_tests {
$($stmt;)*
let peer_store = $create_peerstore;
let peer_id = multihash::encode(multihash::Hash::SHA2512, &[1, 2, 3]).unwrap();
let addr = Multiaddr::new("/ip4/0.0.0.0/tcp/0").unwrap();
let addr = "/ip4/0.0.0.0/tcp/0".parse::<Multiaddr>().unwrap();
peer_store.peer_or_create(&peer_id).add_addr(addr.clone(), Duration::from_millis(5000));
peer_store.peer(&peer_id).unwrap().clear_addrs();
@ -105,8 +105,8 @@ macro_rules! peerstore_tests {
let peer_store = $create_peerstore;
let peer_id = multihash::encode(multihash::Hash::SHA2512, &[1, 2, 3]).unwrap();
let addr1 = Multiaddr::new("/ip4/0.0.0.0/tcp/0").unwrap();
let addr2 = Multiaddr::new("/ip4/0.0.0.1/tcp/0").unwrap();
let addr1 = "/ip4/0.0.0.0/tcp/0".parse::<Multiaddr>().unwrap();
let addr2 = "/ip4/0.0.0.1/tcp/0".parse::<Multiaddr>().unwrap();
peer_store.peer_or_create(&peer_id).add_addr(addr1.clone(), Duration::from_millis(5000));
peer_store.peer_or_create(&peer_id).add_addr(addr2.clone(), Duration::from_millis(5000));
@ -124,8 +124,8 @@ macro_rules! peerstore_tests {
let peer_store = $create_peerstore;
let peer_id = multihash::encode(multihash::Hash::SHA2512, &[1, 2, 3]).unwrap();
let addr1 = Multiaddr::new("/ip4/0.0.0.0/tcp/0").unwrap();
let addr2 = Multiaddr::new("/ip4/0.0.0.1/tcp/0").unwrap();
let addr1 = "/ip4/0.0.0.0/tcp/0".parse::<Multiaddr>().unwrap();
let addr2 = "/ip4/0.0.0.1/tcp/0".parse::<Multiaddr>().unwrap();
peer_store.peer_or_create(&peer_id).add_addr(addr1.clone(), Duration::from_millis(5000));
peer_store.peer_or_create(&peer_id).add_addr(addr2.clone(), Duration::from_millis(5000));

View File

@ -43,7 +43,7 @@ let mut core = tokio_core::reactor::Core::new().unwrap();
let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
.with_upgrade(Ping)
.dial(libp2p_swarm::Multiaddr::new("127.0.0.1:12345").unwrap()).unwrap_or_else(|_| panic!())
.dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
.and_then(|(mut pinger, service)| {
pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
});

View File

@ -67,7 +67,7 @@
//!
//! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
//! .with_upgrade(Ping)
//! .dial(libp2p_swarm::Multiaddr::new("127.0.0.1:12345").unwrap()).unwrap_or_else(|_| panic!())
//! .dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(mut pinger, service)| {
//! pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
//! });

View File

@ -37,7 +37,7 @@ let transport = TcpConfig::new(core.handle())
}
});
let future = transport.dial(Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap())
let future = transport.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
.unwrap_or_else(|_| panic!("Unable to dial node"))
.and_then(|connection| {
// Sends "hello world" on the connection, will be encrypted.

View File

@ -58,7 +58,7 @@
//! }
//! });
//!
//! let future = transport.dial(Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap())
//! let future = transport.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
//! .unwrap_or_else(|_| panic!("Unable to dial node"))
//! .and_then(|connection| {
//! // Sends "hello world" on the connection, will be encrypted.

View File

@ -1,8 +1,9 @@
# libp2p-swarm
Transport and protocol upgrade system of *libp2p*.
Transport, protocol upgrade and swarm systems of *libp2p*.
This crate contains all the core traits and mechanisms of the transport system of *libp2p*.
This crate contains all the core traits and mechanisms of the transport and swarm systems
of *libp2p*.
# The `Transport` trait
@ -27,11 +28,12 @@ multiple times in a row in order to chain as many implementations as you want.
The `MuxedTransport` trait is an extension to the `Transport` trait, and is implemented on
transports that can receive incoming connections on streams that have been opened with `dial()`.
The trait provides the `dial_and_listen()` method, which returns both a dialer and a stream of
incoming connections.
The trait provides the `next_incoming()` method, which returns a future that will resolve to
the next substream that arrives from a dialed node.
> **Note**: This trait is mainly implemented for transports that provide stream muxing
> capabilities.
> capabilities, but it can also be implemented in a dummy way by returning an empty
> iterator.
# Connection upgrades
@ -57,7 +59,7 @@ A middleware can be applied on a transport by using the `with_upgrade` method of
`Transport` trait. The return value of this method also implements the `Transport` trait, which
means that you can call `dial()` and `listen_on()` on it in order to directly obtain an
upgraded connection or a listener that will yield upgraded connections. Similarly, the
`dial_and_listen()` method will automatically apply the upgrade on both the dialer and the
`next_incoming()` method will automatically apply the upgrade on both the dialer and the
listener. An error is produced if the remote doesn't support the protocol corresponding to the
connection upgrade.
@ -100,11 +102,11 @@ implement the `AsyncRead` and `AsyncWrite` traits. This means that that the retu
transport.
However the `UpgradedNode` struct returned by `with_upgrade` still provides methods named
`dial`, `listen_on`, and `dial_and_listen`, which will yield you a `Future` or a `Stream`,
`dial`, `listen_on`, and `next_incoming`, which will yield you a `Future` or a `Stream`,
which you can use to obtain the `Output`. This `Output` can then be used in a protocol-specific
way to use the protocol.
```no_run
```rust
extern crate futures;
extern crate libp2p_ping;
extern crate libp2p_swarm;
@ -115,7 +117,6 @@ use futures::Future;
use libp2p_ping::Ping;
use libp2p_swarm::Transport;
# fn main() {
let mut core = tokio_core::reactor::Core::new().unwrap();
let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
@ -123,14 +124,13 @@ let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
.with_upgrade(Ping)
// TODO: right now the only available protocol is ping, but we want to replace it with
// something that is more simple to use
.dial(libp2p_swarm::Multiaddr::new("127.0.0.1:12345").unwrap()).unwrap_or_else(|_| panic!())
.dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
.and_then(|(mut pinger, service)| {
pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
});
// Runs until the ping arrives.
core.run(ping_finished_future).unwrap();
# }
```
## Grouping protocols
@ -138,3 +138,39 @@ core.run(ping_finished_future).unwrap();
You can use the `.or_upgrade()` method to group multiple upgrades together. The return value
also implements the `ConnectionUpgrade` trait and will choose one of the protocols amongst the
ones supported.
# Swarm
Once you have created an object that implements the `Transport` trait, you can put it in a
*swarm*. This is done by calling the `swarm()` freestanding function with the transport
alongside with a function or a closure that will turn the output of the upgrade (usually an
actual protocol, as explained above) into a `Future` producing `()`.
```rust
extern crate futures;
extern crate libp2p_ping;
extern crate libp2p_swarm;
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use futures::Future;
use libp2p_ping::Ping;
use libp2p_swarm::Transport;
let mut core = tokio_core::reactor::Core::new().unwrap();
let transport = libp2p_tcp_transport::TcpConfig::new(core.handle())
.with_dummy_muxing();
let (swarm_controller, swarm_future) = libp2p_swarm::swarm(transport, Ping, |(mut pinger, service), client_addr| {
pinger.ping().map_err(|_| panic!())
.select(service).map_err(|_| panic!())
.map(|_| ())
});
// The `swarm_controller` can then be used to do some operations.
swarm_controller.listen_on("/ip4/0.0.0.0/tcp/0".parse().unwrap());
// Runs until everything is finished.
core.run(swarm_future).unwrap();
```

View File

@ -21,9 +21,10 @@
// TODO: use this once stable ; for now we just copy-paste the content of the README.md
//#![doc(include = "../README.md")]
//! Transport and protocol upgrade system of *libp2p*.
//! Transport, protocol upgrade and swarm systems of *libp2p*.
//!
//! This crate contains all the core traits and mechanisms of the transport system of *libp2p*.
//! This crate contains all the core traits and mechanisms of the transport and swarm systems
//! of *libp2p*.
//!
//! # The `Transport` trait
//!
@ -48,11 +49,12 @@
//! The `MuxedTransport` trait is an extension to the `Transport` trait, and is implemented on
//! transports that can receive incoming connections on streams that have been opened with `dial()`.
//!
//! The trait provides the `dial_and_listen()` method, which returns both a dialer and a stream of
//! incoming connections.
//! The trait provides the `next_incoming()` method, which returns a future that will resolve to
//! the next substream that arrives from a dialed node.
//!
//! > **Note**: This trait is mainly implemented for transports that provide stream muxing
//! > capabilities.
//! > capabilities, but it can also be implemented in a dummy way by returning an empty
//! > iterator.
//!
//! # Connection upgrades
//!
@ -78,7 +80,7 @@
//! `Transport` trait. The return value of this method also implements the `Transport` trait, which
//! means that you can call `dial()` and `listen_on()` on it in order to directly obtain an
//! upgraded connection or a listener that will yield upgraded connections. Similarly, the
//! `dial_and_listen()` method will automatically apply the upgrade on both the dialer and the
//! `next_incoming()` method will automatically apply the upgrade on both the dialer and the
//! listener. An error is produced if the remote doesn't support the protocol corresponding to the
//! connection upgrade.
//!
@ -123,7 +125,7 @@
//! transport.
//!
//! However the `UpgradedNode` struct returned by `with_upgrade` still provides methods named
//! `dial`, `listen_on`, and `dial_and_listen`, which will yield you a `Future` or a `Stream`,
//! `dial`, `listen_on`, and `next_incoming`, which will yield you a `Future` or a `Stream`,
//! which you can use to obtain the `Output`. This `Output` can then be used in a protocol-specific
//! way to use the protocol.
//!
@ -146,7 +148,7 @@
//! .with_upgrade(Ping)
//! // TODO: right now the only available protocol is ping, but we want to replace it with
//! // something that is more simple to use
//! .dial(libp2p_swarm::Multiaddr::new("127.0.0.1:12345").unwrap()).unwrap_or_else(|_| panic!())
//! .dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(mut pinger, service)| {
//! pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
//! });
@ -162,6 +164,43 @@
//! also implements the `ConnectionUpgrade` trait and will choose one of the protocols amongst the
//! ones supported.
//!
//! # Swarm
//!
//! Once you have created an object that implements the `Transport` trait, you can put it in a
//! *swarm*. This is done by calling the `swarm()` freestanding function with the transport
//! alongside with a function or a closure that will turn the output of the upgrade (usually an
//! actual protocol, as explained above) into a `Future` producing `()`.
//!
//! ```no_run
//! extern crate futures;
//! extern crate libp2p_ping;
//! extern crate libp2p_swarm;
//! extern crate libp2p_tcp_transport;
//! extern crate tokio_core;
//!
//! use futures::Future;
//! use libp2p_ping::Ping;
//! use libp2p_swarm::Transport;
//!
//! # fn main() {
//! let mut core = tokio_core::reactor::Core::new().unwrap();
//!
//! let transport = libp2p_tcp_transport::TcpConfig::new(core.handle())
//! .with_dummy_muxing();
//!
//! let (swarm_controller, swarm_future) = libp2p_swarm::swarm(transport, Ping, |(mut pinger, service), client_addr| {
//! pinger.ping().map_err(|_| panic!())
//! .select(service).map_err(|_| panic!())
//! .map(|_| ())
//! });
//!
//! // The `swarm_controller` can then be used to do some operations.
//! swarm_controller.listen_on("/ip4/0.0.0.0/tcp/0".parse().unwrap());
//!
//! // Runs until everything is finished.
//! core.run(swarm_future).unwrap();
//! # }
//! ```
extern crate bytes;
#[macro_use]
@ -175,11 +214,14 @@ extern crate tokio_io;
pub extern crate multiaddr;
mod connection_reuse;
pub mod swarm;
pub mod muxing;
pub mod transport;
pub use self::connection_reuse::ConnectionReuse;
pub use self::multiaddr::Multiaddr;
pub use self::muxing::StreamMuxer;
pub use self::swarm::{swarm, SwarmController, SwarmFuture};
pub use self::transport::{ConnectionUpgrade, PlainTextConfig, Transport, UpgradedNode, OrUpgrade};
pub use self::transport::{Endpoint, SimpleProtocol, MuxedTransport, UpgradeExt};
pub use self::transport::{DeniedConnectionUpgrade};

279
libp2p-swarm/src/swarm.rs Normal file
View File

@ -0,0 +1,279 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use std::io::Error as IoError;
use futures::{IntoFuture, Future, Stream, Async, Poll, future};
use futures::sync::mpsc;
use {ConnectionUpgrade, Multiaddr, MuxedTransport, UpgradedNode};
/// Creates a swarm.
///
/// Requires an upgraded transport, and a function or closure that will turn the upgrade into a
/// `Future` that produces a `()`.
///
/// Produces a `SwarmController` and an implementation of `Future`. The controller can be used to
/// control, and the `Future` must be driven to completion in order for things to work.
///
pub fn swarm<T, C, H, F>(transport: T, upgrade: C, handler: H)
-> (SwarmController<T, C>, SwarmFuture<T, C, H, F::Future>)
where T: MuxedTransport + Clone + 'static, // TODO: 'static :-/
C: ConnectionUpgrade<T::RawConn> + Clone + 'static, // TODO: 'static :-/
C::NamesIter: Clone, // TODO: not elegant
H: FnMut(C::Output, Multiaddr) -> F,
F: IntoFuture<Item = (), Error = IoError>,
{
let (new_dialers_tx, new_dialers_rx) = mpsc::unbounded();
let (new_listeners_tx, new_listeners_rx) = mpsc::unbounded();
let (new_toprocess_tx, new_toprocess_rx) = mpsc::unbounded();
let upgraded = transport.clone().with_upgrade(upgrade);
let future = SwarmFuture {
upgraded: upgraded.clone(),
handler: handler,
new_listeners: new_listeners_rx,
next_incoming: upgraded.clone().next_incoming(),
listeners: Vec::new(),
listeners_upgrade: Vec::new(),
dialers: Vec::new(),
new_dialers: new_dialers_rx,
to_process: Vec::new(),
new_toprocess: new_toprocess_rx,
};
let controller = SwarmController {
transport: transport,
upgraded: upgraded,
new_listeners: new_listeners_tx,
new_dialers: new_dialers_tx,
new_toprocess: new_toprocess_tx,
};
(controller, future)
}
/// Allows control of what the swarm is doing.
pub struct SwarmController<T, C>
where T: MuxedTransport + 'static, // TODO: 'static :-/
C: ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
transport: T,
upgraded: UpgradedNode<T, C>,
new_listeners: mpsc::UnboundedSender<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
new_dialers: mpsc::UnboundedSender<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
new_toprocess: mpsc::UnboundedSender<Box<Future<Item = (), Error = IoError>>>,
}
impl<T, C> SwarmController<T, C>
where T: MuxedTransport + Clone + 'static, // TODO: 'static :-/
C: ConnectionUpgrade<T::RawConn> + Clone + 'static, // TODO: 'static :-/
C::NamesIter: Clone, // TODO: not elegant
{
/// Asks the swarm to dial the node with the given multiaddress. The connection is then
/// upgraded using the `upgrade`, and the output is sent to the handler that was passed when
/// calling `swarm`.
// TODO: consider returning a future so that errors can be processed?
pub fn dial_to_handler<Du>(&self, multiaddr: Multiaddr, upgrade: Du) -> Result<(), Multiaddr>
where Du: ConnectionUpgrade<T::RawConn> + Clone + 'static, // TODO: 'static :-/
Du::Output: Into<C::Output>,
{
match self.transport.clone().with_upgrade(upgrade).dial(multiaddr.clone()) {
Ok(dial) => {
let dial = Box::new(dial.map(Into::into)) as Box<Future<Item = _, Error = _>>;
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_dialers.unbounded_send((dial, multiaddr));
Ok(())
},
Err((_, multiaddr)) => {
Err(multiaddr)
},
}
}
/// Asks the swarm to dial the node with the given multiaddress. The connection is then
/// upgraded using the `upgrade`, and the output is then passed to `and_then`.
///
/// Contrary to `dial_to_handler`, the output of the upgrade is not given to the handler that
/// was passed at initialization.
// TODO: consider returning a future so that errors can be processed?
pub fn dial_custom_handler<Du, Df, Dfu>(&self, multiaddr: Multiaddr, upgrade: Du, and_then: Df)
-> Result<(), Multiaddr>
where Du: ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
Df: FnOnce(Du::Output) -> Dfu + 'static, // TODO: 'static :-/
Dfu: IntoFuture<Item = (), Error = IoError> + 'static, // TODO: 'static :-/
{
match self.transport.clone().with_upgrade(upgrade).dial(multiaddr) {
Ok(dial) => {
let dial = Box::new(dial.and_then(and_then)) as Box<_>;
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_toprocess.unbounded_send(dial);
Ok(())
},
Err((_, multiaddr)) => {
Err(multiaddr)
},
}
}
/// Adds a multiaddr to listen on. All the incoming connections will use the `upgrade` that
/// was passed to `swarm`.
pub fn listen_on(&self, multiaddr: Multiaddr) -> Result<Multiaddr, Multiaddr> {
match self.upgraded.clone().listen_on(multiaddr) {
Ok((listener, new_addr)) => {
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_listeners.unbounded_send(listener);
Ok(new_addr)
},
Err((_, multiaddr)) => {
Err(multiaddr)
},
}
}
}
/// Future that must be driven to completion in order for the swarm to work.
pub struct SwarmFuture<T, C, H, F>
where T: MuxedTransport + 'static, // TODO: 'static :-/
C: ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
upgraded: UpgradedNode<T, C>,
handler: H,
new_listeners: mpsc::UnboundedReceiver<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
next_incoming: Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>,
listeners: Vec<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
listeners_upgrade: Vec<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
dialers: Vec<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
new_dialers: mpsc::UnboundedReceiver<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
to_process: Vec<future::Either<F, Box<Future<Item = (), Error = IoError>>>>,
new_toprocess: mpsc::UnboundedReceiver<Box<Future<Item = (), Error = IoError>>>,
}
impl<T, C, H, If, F> Future for SwarmFuture<T, C, H, F>
where T: MuxedTransport + Clone + 'static, // TODO: 'static :-/,
C: ConnectionUpgrade<T::RawConn> + Clone + 'static, // TODO: 'static :-/
C::NamesIter: Clone, // TODO: not elegant
H: FnMut(C::Output, Multiaddr) -> If,
If: IntoFuture<Future = F, Item = (), Error = IoError>,
F: Future<Item = (), Error = IoError>,
{
type Item = ();
type Error = IoError;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
let handler = &mut self.handler;
match self.next_incoming.poll() {
Ok(Async::Ready((connec, client_addr))) => {
self.next_incoming = self.upgraded.clone().next_incoming();
self.to_process.push(future::Either::A(handler(connec, client_addr).into_future()));
},
Ok(Async::NotReady) => {},
// TODO: may not be the best idea because we're killing the whole server
Err(err) => return Err(err),
};
match self.new_listeners.poll() {
Ok(Async::Ready(Some(new_listener))) => {
self.listeners.push(new_listener);
},
Ok(Async::Ready(None)) | Err(_) => {
// New listener sender has been closed.
},
Ok(Async::NotReady) => {},
};
match self.new_dialers.poll() {
Ok(Async::Ready(Some((new_dialer, multiaddr)))) => {
self.dialers.push((new_dialer, multiaddr));
},
Ok(Async::Ready(None)) | Err(_) => {
// New dialers sender has been closed.
},
Ok(Async::NotReady) => {},
};
match self.new_toprocess.poll() {
Ok(Async::Ready(Some(new_toprocess))) => {
self.to_process.push(future::Either::B(new_toprocess));
},
Ok(Async::Ready(None)) | Err(_) => {
// New to-process sender has been closed.
},
Ok(Async::NotReady) => {},
};
for n in (0 .. self.listeners.len()).rev() {
let mut listener = self.listeners.swap_remove(n);
match listener.poll() {
Ok(Async::Ready(Some((upgrade, client_addr)))) => {
self.listeners.push(listener);
self.listeners_upgrade.push((upgrade, client_addr));
},
Ok(Async::NotReady) => {
self.listeners.push(listener);
},
Ok(Async::Ready(None)) => {},
Err(err) => return Err(err),
};
}
for n in (0 .. self.listeners_upgrade.len()).rev() {
let (mut upgrade, addr) = self.listeners_upgrade.swap_remove(n);
match upgrade.poll() {
Ok(Async::Ready(output)) => {
self.to_process.push(future::Either::A(handler(output, addr).into_future()));
},
Ok(Async::NotReady) => {
self.listeners_upgrade.push((upgrade, addr));
},
Err(err) => return Err(err),
}
}
for n in (0 .. self.dialers.len()).rev() {
let (mut dialer, addr) = self.dialers.swap_remove(n);
match dialer.poll() {
Ok(Async::Ready(output)) => {
self.to_process.push(future::Either::A(handler(output, addr).into_future()));
},
Ok(Async::NotReady) => {
self.dialers.push((dialer, addr));
},
Err(err) => return Err(err),
}
}
for n in (0 .. self.to_process.len()).rev() {
let mut to_process = self.to_process.swap_remove(n);
match to_process.poll() {
Ok(Async::Ready(())) => {},
Ok(Async::NotReady) => self.to_process.push(to_process),
Err(err) => return Err(err),
}
}
// TODO: we never return `Ok(Ready)` because there's no way to know whether
// `next_incoming()` can produce anything more in the future
Ok(Async::NotReady)
}
}

View File

@ -118,6 +118,18 @@ pub trait Transport {
upgrade: upgrade,
}
}
/// Builds a dummy implementation of `MuxedTransport` that uses this transport.
///
/// The resulting object will not actually use muxing. This means that dialing the same node
/// twice will result in two different connections instead of two substreams on the same
/// connection.
#[inline]
fn with_dummy_muxing(self) -> DummyMuxing<Self>
where Self: Sized
{
DummyMuxing { inner: self }
}
}
/// Extension trait for `Transport`. Implemented on structs that provide a `Transport` on which
@ -522,6 +534,29 @@ pub enum Endpoint {
Listener,
}
/// Implementation of `ConnectionUpgrade` that always fails to negotiate.
#[derive(Debug, Copy, Clone)]
pub struct DeniedConnectionUpgrade;
impl<C> ConnectionUpgrade<C> for DeniedConnectionUpgrade
where C: AsyncRead + AsyncWrite
{
type NamesIter = iter::Empty<(Bytes, ())>;
type UpgradeIdentifier = (); // TODO: could use `!`
type Output = (); // TODO: could use `!`
type Future = Box<Future<Item = (), Error = IoError>>; // TODO: could use `!`
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::empty()
}
#[inline]
fn upgrade(self, _: C, _: Self::UpgradeIdentifier, _: Endpoint) -> Self::Future {
unreachable!("the denied connection upgrade always fails to negotiate")
}
}
/// Extension trait for `ConnectionUpgrade`. Automatically implemented on everything.
pub trait UpgradeExt {
/// Builds a struct that will choose an upgrade between `self` and `other`, depending on what
@ -684,6 +719,53 @@ where
}
}
/// Dummy implementation of `MuxedTransport` that uses an inner `Transport`.
#[derive(Debug, Copy, Clone)]
pub struct DummyMuxing<T> {
inner: T,
}
impl<T> MuxedTransport for DummyMuxing<T>
where T: Transport
{
type Incoming = future::Empty<(T::RawConn, Multiaddr), IoError>;
fn next_incoming(self) -> Self::Incoming
where Self: Sized
{
future::empty()
}
}
impl<T> Transport for DummyMuxing<T>
where T: Transport
{
type RawConn = T::RawConn;
type Listener = T::Listener;
type ListenerUpgrade = T::ListenerUpgrade;
type Dial = T::Dial;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)>
where
Self: Sized
{
self.inner.listen_on(addr).map_err(|(inner, addr)| {
(DummyMuxing { inner }, addr)
})
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)>
where
Self: Sized
{
self.inner.dial(addr).map_err(|(inner, addr)| {
(DummyMuxing { inner }, addr)
})
}
}
/// Implements the `Transport` trait. Dials or listens, then upgrades any dialed or received
/// connection.
///
@ -752,7 +834,9 @@ where
/// This function returns the next incoming substream. You are strongly encouraged to call it
/// if you have a muxed transport.
pub fn next_incoming(self) -> Box<Future<Item = (C::Output, Multiaddr), Error = IoError> + 'a>
where T: MuxedTransport
where T: MuxedTransport,
C::NamesIter: Clone, // TODO: not elegant
C: Clone,
{
let upgrade = self.upgrade;
@ -760,8 +844,8 @@ where
// Try to negotiate the protocol.
.and_then(move |(connection, addr)| {
let iter = upgrade.protocol_names()
.map(|(name, id)| (name, <Bytes as PartialEq>::eq, id));
let negotiated = multistream_select::dialer_select_proto(connection, iter)
.map::<_, fn(_) -> _>(|(name, id)| (name, <Bytes as PartialEq>::eq, id));
let negotiated = multistream_select::listener_select_proto(connection, iter)
.map_err(|err| IoError::new(IoErrorKind::Other, err));
negotiated.map(|(upgrade_id, conn)| (upgrade_id, conn, upgrade, addr))
})

View File

@ -169,33 +169,32 @@ mod tests {
fn multiaddr_to_tcp_conversion() {
use std::net::Ipv6Addr;
assert!(multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/udp/1234").unwrap()).is_err());
assert!(multiaddr_to_socketaddr(&"/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap()).is_err());
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap()),
multiaddr_to_socketaddr(&"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip4/255.255.255.255/tcp/8080").unwrap()),
multiaddr_to_socketaddr(&"/ip4/255.255.255.255/tcp/8080".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(255, 255, 255, 255)),
8080,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new("/ip6/::1/tcp/12345").unwrap()),
multiaddr_to_socketaddr(&"/ip6/::1/tcp/12345".parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
12345,
))
);
assert_eq!(
multiaddr_to_socketaddr(&Multiaddr::new(
"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080",
).unwrap()),
multiaddr_to_socketaddr(&"/ip6/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/tcp/8080"
.parse::<Multiaddr>().unwrap()),
Ok(SocketAddr::new(
IpAddr::V6(Ipv6Addr::new(
65535,
@ -218,7 +217,7 @@ mod tests {
std::thread::spawn(move || {
let mut core = Core::new().unwrap();
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
let tcp = TcpConfig::new(core.handle());
let handle = core.handle();
let listener = tcp.listen_on(addr).unwrap().0.for_each(|(sock, _)| {
@ -239,7 +238,7 @@ mod tests {
core.run(listener).unwrap();
});
std::thread::sleep(std::time::Duration::from_millis(100));
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345").unwrap();
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
let mut core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
// Obtain a future socket through dialing
@ -262,7 +261,7 @@ mod tests {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/0").unwrap();
let addr = "/ip4/127.0.0.1/tcp/0".parse::<Multiaddr>().unwrap();
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
@ -274,7 +273,7 @@ mod tests {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr = Multiaddr::new("/ip6/::1/tcp/0").unwrap();
let addr: Multiaddr = "/ip6/::1/tcp/0".parse().unwrap();
assert!(addr.to_string().contains("tcp/0"));
let (_, new_addr) = tcp.listen_on(addr).unwrap();
@ -286,7 +285,7 @@ mod tests {
let core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let addr = Multiaddr::new("/ip4/127.0.0.1/tcp/12345/tcp/12345").unwrap();
let addr = "/ip4/127.0.0.1/tcp/12345/tcp/12345".parse::<Multiaddr>().unwrap();
assert!(tcp.listen_on(addr).is_err());
}
}

View File

@ -38,7 +38,7 @@ extern crate multiaddr;
use multiaddr::{Multiaddr, ToMultiaddr};
let address = Multiaddr::new("/ip4/127.0.0.1/udp/1234").unwrap();
let address = "/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap();
// or directly from a string
let other = "/ip4/127.0.0.1".to_multiaddr().unwrap();

View File

@ -38,7 +38,7 @@ impl fmt::Display for Multiaddr {
/// ```
/// use multiaddr::Multiaddr;
///
/// let address = Multiaddr::new("/ip4/127.0.0.1/udt").unwrap();
/// let address: Multiaddr = "/ip4/127.0.0.1/udt".parse().unwrap();
/// assert_eq!(address.to_string(), "/ip4/127.0.0.1/udt");
/// ```
///
@ -52,51 +52,6 @@ impl fmt::Display for Multiaddr {
}
impl Multiaddr {
/// Create a new multiaddr based on a string representation, like
/// `/ip4/127.0.0.1/udp/1234`.
///
/// # Examples
///
/// Simple construction
///
/// ```
/// use multiaddr::Multiaddr;
///
/// let address = Multiaddr::new("/ip4/127.0.0.1/udp/1234").unwrap();
/// assert_eq!(address.to_bytes(), [
/// 4, 127, 0, 0, 1,
/// 17, 4, 210
/// ]);
/// ```
///
#[deprecated(note = "Use `string.parse()` instead")]
pub fn new(input: &str) -> Result<Multiaddr> {
let mut bytes = Vec::new();
let mut parts = input.split('/');
// A multiaddr must start with `/`
if !parts.next().ok_or(Error::InvalidMultiaddr)?.is_empty() {
return Err(Error::InvalidMultiaddr);
}
while let Some(part) = parts.next() {
let protocol: ProtocolId = part.parse()?;
let addr_component = match protocol.size() {
ProtocolArgSize::Fixed { bytes: 0 } => {
protocol.parse_data("")? // TODO: bad design
},
_ => {
let data = parts.next().ok_or(Error::MissingAddress)?;
protocol.parse_data(data)?
},
};
addr_component.write_bytes(&mut bytes).expect("writing to a Vec never fails");
}
Ok(Multiaddr { bytes: bytes })
}
/// Return a copy to disallow changing the bytes directly
pub fn to_bytes(&self) -> Vec<u8> {
self.bytes.to_owned()
@ -116,7 +71,7 @@ impl Multiaddr {
/// ```
/// use multiaddr::{Multiaddr, ProtocolId};
///
/// let address = Multiaddr::new("/ip4/127.0.0.1").unwrap();
/// let address: Multiaddr = "/ip4/127.0.0.1".parse().unwrap();
/// assert_eq!(address.protocol(), vec![ProtocolId::IP4]);
/// ```
///
@ -133,9 +88,9 @@ impl Multiaddr {
/// ```
/// use multiaddr::Multiaddr;
///
/// let address = Multiaddr::new("/ip4/127.0.0.1").unwrap();
/// let address: Multiaddr = "/ip4/127.0.0.1".parse().unwrap();
/// let nested = address.encapsulate("/udt").unwrap();
/// assert_eq!(nested, Multiaddr::new("/ip4/127.0.0.1/udt").unwrap());
/// assert_eq!(nested, "/ip4/127.0.0.1/udt".parse().unwrap());
/// ```
///
pub fn encapsulate<T: ToMultiaddr>(&self, input: T) -> Result<Multiaddr> {
@ -154,9 +109,9 @@ impl Multiaddr {
/// ```
/// use multiaddr::{Multiaddr, ToMultiaddr};
///
/// let address = Multiaddr::new("/ip4/127.0.0.1/udt/sctp/5678").unwrap();
/// let address: Multiaddr = "/ip4/127.0.0.1/udt/sctp/5678".parse().unwrap();
/// let unwrapped = address.decapsulate("/udt").unwrap();
/// assert_eq!(unwrapped, Multiaddr::new("/ip4/127.0.0.1").unwrap());
/// assert_eq!(unwrapped, "/ip4/127.0.0.1".parse().unwrap());
///
/// assert_eq!(
/// address.decapsulate("/udt").unwrap(),
@ -281,8 +236,31 @@ impl FromStr for Multiaddr {
type Err = Error;
#[inline]
fn from_str(s: &str) -> Result<Self> {
Multiaddr::new(s)
fn from_str(input: &str) -> Result<Self> {
let mut bytes = Vec::new();
let mut parts = input.split('/');
// A multiaddr must start with `/`
if !parts.next().ok_or(Error::InvalidMultiaddr)?.is_empty() {
return Err(Error::InvalidMultiaddr);
}
while let Some(part) = parts.next() {
let protocol: ProtocolId = part.parse()?;
let addr_component = match protocol.size() {
ProtocolArgSize::Fixed { bytes: 0 } => {
protocol.parse_data("")? // TODO: bad design
},
_ => {
let data = parts.next().ok_or(Error::MissingAddress)?;
protocol.parse_data(data)?
},
};
addr_component.write_bytes(&mut bytes).expect("writing to a Vec never fails");
}
Ok(Multiaddr { bytes: bytes })
}
}
@ -337,14 +315,14 @@ impl ToMultiaddr for SocketAddr {
impl ToMultiaddr for SocketAddrV4 {
fn to_multiaddr(&self) -> Result<Multiaddr> {
Multiaddr::new(&format!("/ip4/{}/tcp/{}", self.ip(), self.port()))
format!("/ip4/{}/tcp/{}", self.ip(), self.port()).parse()
}
}
impl ToMultiaddr for SocketAddrV6 {
fn to_multiaddr(&self) -> Result<Multiaddr> {
// TODO: Should how should we handle `flowinfo` and `scope_id`?
Multiaddr::new(&format!("/ip6/{}/tcp/{}", self.ip(), self.port()))
format!("/ip6/{}/tcp/{}", self.ip(), self.port()).parse()
}
}
@ -359,25 +337,25 @@ impl ToMultiaddr for IpAddr {
impl ToMultiaddr for Ipv4Addr {
fn to_multiaddr(&self) -> Result<Multiaddr> {
Multiaddr::new(&format!("/ip4/{}", &self))
format!("/ip4/{}", &self).parse()
}
}
impl ToMultiaddr for Ipv6Addr {
fn to_multiaddr(&self) -> Result<Multiaddr> {
Multiaddr::new(&format!("/ip6/{}", &self))
format!("/ip6/{}", &self).parse()
}
}
impl ToMultiaddr for String {
fn to_multiaddr(&self) -> Result<Multiaddr> {
Multiaddr::new(self)
self.parse()
}
}
impl<'a> ToMultiaddr for &'a str {
fn to_multiaddr(&self) -> Result<Multiaddr> {
Multiaddr::new(self)
self.parse()
}
}

View File

@ -17,20 +17,20 @@ fn protocol_to_name() {
fn assert_bytes(source: &str, target: &str, protocols: Vec<ProtocolId>) -> () {
let address = Multiaddr::new(source).unwrap();
let address = source.parse::<Multiaddr>().unwrap();
assert_eq!(hex::encode(address.to_bytes().as_slice()), target);
assert_eq!(address.protocol(), protocols);
assert_eq!(address.iter().map(|addr| addr.protocol_id()).collect::<Vec<_>>(), protocols);
}
fn ma_valid(source: &str, target: &str, protocols: Vec<ProtocolId>) -> () {
assert_bytes(source, target, protocols);
assert_eq!(Multiaddr::new(source).unwrap().to_string(), source);
assert_eq!(source.parse::<Multiaddr>().unwrap().to_string(), source);
}
#[test]
fn multiaddr_eq() {
let m1 = Multiaddr::new("/ip4/127.0.0.1/udp/1234").unwrap();
let m2 = Multiaddr::new("/ip4/127.0.0.1/tcp/1234").unwrap();
let m3 = Multiaddr::new("/ip4/127.0.0.1/tcp/1234").unwrap();
let m1 = "/ip4/127.0.0.1/udp/1234".parse::<Multiaddr>().unwrap();
let m2 = "/ip4/127.0.0.1/tcp/1234".parse::<Multiaddr>().unwrap();
let m3 = "/ip4/127.0.0.1/tcp/1234".parse::<Multiaddr>().unwrap();
assert_ne!(m1, m2);
assert_ne!(m2, m1);
@ -135,7 +135,7 @@ fn construct_fail() {
"/p2p-circuit/50"];
for address in &addresses {
assert!(Multiaddr::new(address).is_err(), address.to_string());
assert!(address.parse::<Multiaddr>().is_err(), address.to_string());
}
}
@ -143,17 +143,17 @@ fn construct_fail() {
#[test]
fn to_multiaddr() {
assert_eq!(Ipv4Addr::new(127, 0, 0, 1).to_multiaddr().unwrap(),
Multiaddr::new("/ip4/127.0.0.1").unwrap());
"/ip4/127.0.0.1".parse::<Multiaddr>().unwrap());
assert_eq!(Ipv6Addr::new(0x2601, 0x9, 0x4f81, 0x9700, 0x803e, 0xca65, 0x66e8, 0xc21)
.to_multiaddr()
.unwrap(),
Multiaddr::new("/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21").unwrap());
"/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21".parse::<Multiaddr>().unwrap());
assert_eq!("/ip4/127.0.0.1/tcp/1234".to_string().to_multiaddr().unwrap(),
Multiaddr::new("/ip4/127.0.0.1/tcp/1234").unwrap());
"/ip4/127.0.0.1/tcp/1234".parse::<Multiaddr>().unwrap());
assert_eq!("/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21".to_multiaddr().unwrap(),
Multiaddr::new("/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21").unwrap());
"/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21".parse::<Multiaddr>().unwrap());
assert_eq!(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 1234).to_multiaddr().unwrap(),
Multiaddr::new("/ip4/127.0.0.1/tcp/1234").unwrap());
"/ip4/127.0.0.1/tcp/1234".parse::<Multiaddr>().unwrap());
assert_eq!(SocketAddrV6::new(Ipv6Addr::new(0x2601,
0x9,
0x4f81,
@ -167,5 +167,5 @@ fn to_multiaddr() {
0)
.to_multiaddr()
.unwrap(),
Multiaddr::new("/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21/tcp/1234").unwrap());
"/ip6/2601:9:4f81:9700:803e:ca65:66e8:c21/tcp/1234".parse::<Multiaddr>().unwrap());
}

View File

@ -123,34 +123,48 @@ pub trait EncoderHelper: Sized {
/// Helper trait to allow multiple integer types to be encoded
pub trait DecoderHelper: Sized {
/// Decode a single byte
fn decode_one(decoder: &mut DecoderState<Self>, byte: u8) -> Option<Self>;
fn decode_one(decoder: &mut DecoderState<Self>, byte: u8) -> errors::Result<Option<Self>>;
/// Read as much of the varint as possible
fn read<R: AsyncRead>(decoder: &mut DecoderState<Self>, input: R) -> Poll<Option<Self>, Error>;
}
macro_rules! impl_decoderstate {
($t:ty) => { impl_decoderstate!($t, <$t>::from, |v| v); };
($t:ty) => {
impl_decoderstate!(
$t,
|a| a as $t,
|a: $t, b| -> Option<$t> { a.checked_shl(b as u32) }
);
};
($t:ty, $make_fn:expr) => { impl_decoderstate!($t, $make_fn, $make_fn); };
($t:ty, $make_fn:expr, $make_shift_fn:expr) => {
($t:ty, $make_fn:expr, $shift_fn:expr) => {
impl DecoderHelper for $t {
#[inline]
fn decode_one(decoder: &mut DecoderState<Self>, byte: u8) -> Option<$t> {
decoder.accumulator.take().and_then(|accumulator| {
let out = accumulator |
(
$make_fn(byte & 0x7F) <<
$make_shift_fn(decoder.shift * USABLE_BITS_PER_BYTE)
);
fn decode_one(decoder: &mut DecoderState<Self>, byte: u8) -> ::errors::Result<Option<$t>> {
let res = decoder.accumulator.take().and_then(|accumulator| {
let out = accumulator | match $shift_fn(
$make_fn(byte & 0x7F),
decoder.shift * USABLE_BITS_PER_BYTE,
) {
Some(a) => a,
None => return Some(Err(ErrorKind::ParseError.into())),
};
decoder.shift += 1;
if byte & 0x80 == 0 {
Some(out)
Some(Ok(out))
} else {
decoder.accumulator = AccumulatorState::InProgress(out);
None
}
})
});
match res {
Some(Ok(number)) => Ok(Some(number)),
Some(Err(err)) => Err(err),
None => Ok(None),
}
}
fn read<R: AsyncRead>(
@ -173,7 +187,7 @@ macro_rules! impl_decoderstate {
match input.read_exact(&mut buffer) {
Ok(()) => {
if let Some(out) = Self::decode_one(decoder, buffer[0]) {
if let Some(out) = Self::decode_one(decoder, buffer[0])? {
break Ok(Async::Ready(Some(out)));
}
}
@ -258,9 +272,9 @@ impl_encoderstate!(u64, (|val| val as u64));
impl_encoderstate!(u32, (|val| val as u32));
impl_decoderstate!(usize);
impl_decoderstate!(BigUint);
impl_decoderstate!(u64, (|val| val as u64));
impl_decoderstate!(u32, (|val| val as u32));
impl_decoderstate!(BigUint, BigUint::from, |a, b| Some(a << b));
impl_decoderstate!(u64);
impl_decoderstate!(u32);
impl<T> EncoderState<T> {
pub fn source(&self) -> &T {
@ -368,7 +382,8 @@ impl<T: Default + DecoderHelper> Decoder for VarintDecoder<T> {
// We know that the length is not 0, so this cannot fail.
let first_byte = src.split_to(1)[0];
let mut state = self.state.take().unwrap_or_default();
let out = T::decode_one(&mut state, first_byte);
let out = T::decode_one(&mut state, first_byte)
.map_err(|_| io::Error::from(io::ErrorKind::Other))?;
if let Some(out) = out {
break Ok(Some(out));
@ -390,10 +405,12 @@ pub fn decode<R: Read, T: Default + DecoderHelper>(mut input: R) -> errors::Resu
match input.read_exact(&mut buffer) {
Ok(()) => {
if let Some(out) = T::decode_one(&mut decoder, buffer[0]) {
break Ok(out);
}
}
if let Some(out) = T::decode_one(&mut decoder, buffer[0])
.map_err(|_| io::Error::from(io::ErrorKind::Other))?
{
break Ok(out);
}
}
Err(inner) => break Err(Error::with_chain(inner, ErrorKind::ParseError)),
}
}
@ -417,6 +434,34 @@ mod tests {
use num_bigint::BigUint;
use futures::{Future, Stream};
#[test]
fn large_number_fails() {
use std::io::Cursor;
use futures::Async;
use super::WriteState;
let mut out = vec![0u8; 10];
{
let writable: Cursor<&mut [_]> = Cursor::new(&mut out);
let mut state = EncoderState::new(::std::u64::MAX);
assert_eq!(
state.write(writable).unwrap(),
Async::Ready(WriteState::Done(10))
);
}
let result: Result<Option<u32>, _> = FramedRead::new(&out[..], VarintDecoder::new())
.into_future()
.map(|(out, _)| out)
.map_err(|(out, _)| out)
.wait();
assert!(result.is_err());
}
#[test]
fn can_decode_basic_biguint() {
assert_eq!(