Implement Kademlia peer discovery (#120)

* Impl Clone for SwarmController and remove 'static

* Implement Kademlia

* Implement ConnectionReuse correctly

* Implement ConnectionReuse correctly

* Add some tests and fixes

* Remove useless boolean in active_connections

* Correctly run tests

* Optimize the processing

* Rustfmt on libp2p-kad

* Improve Kademlia example

* Next incoming is now in two steps

* Some work

* Remove log

* Fix dialing a node even if we already have a connection

* Add a proper PeerId to Peerstore

* Turn identify into a transport layer

* Expose the dialed multiaddress

* Add identified nodes to the peerstore

* Allow configuring the TTL of the addresses

* Split identify in two modules

* Some comments and tweaks

* Run rustfmt

* More work

* Add test and bugfix

* Fix everything

* Start transition to new identify system

* More work

* Minor style

* Start implementation of Kademlia server upgrade

* Continue implementing the Kademlia server

* Start reimplementing high-level kademlia code

* Continue reimplementing high-level code

* More work

* More work

* More work

* Fix wrong address reported when dialing

* Make it work

* Remove cluster_level field everywhere

* Fix bug in varint-rs when encoding

* More work

* More work

* More work

* More work

* More work

* Bugfix

* More work

* Implement ping

* Style in kademlia_handler

* More work

* Better error handling in query.rs

* More work

* More work

* More work

* Debug impls

* Some cleanup in swarm

* More work

* Clean up changes in swarm

* Unpublish the kbucket module

* Fix examples and some warnings

* Fix websocket browser code

* Rustfmt on libp2p-kad

* Kad initialization process

* Add logging to the example

* Fix concerns

* Fix style
This commit is contained in:
Pierre Krieger
2018-03-15 15:18:21 +01:00
committed by GitHub
parent 89f95f7136
commit 68299c40a5
20 changed files with 4026 additions and 12 deletions

View File

@ -6,6 +6,7 @@ members = [
"libp2p-dns",
"libp2p-floodsub",
"libp2p-identify",
"libp2p-kad",
"libp2p-peerstore",
"libp2p-ping",
"libp2p-secio",

View File

@ -4,11 +4,14 @@ version = "0.1.0"
authors = ["pierre <pierre.krieger1708@gmail.com>"]
[dependencies]
bigint = "4.2"
bytes = "0.4"
env_logger = "0.5.3"
futures = "0.1"
multiaddr = "0.2"
multiplex = { path = "../multiplex-rs" }
libp2p-identify = { path = "../libp2p-identify" }
libp2p-kad = { path = "../libp2p-kad" }
libp2p-floodsub = { path = "../libp2p-floodsub" }
libp2p-peerstore = { path = "../libp2p-peerstore" }
libp2p-ping = { path = "../libp2p-ping" }

View File

@ -0,0 +1,151 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
extern crate bigint;
extern crate bytes;
extern crate env_logger;
extern crate example;
extern crate futures;
extern crate libp2p_identify as identify;
extern crate libp2p_kad as kad;
extern crate libp2p_peerstore as peerstore;
extern crate libp2p_secio as secio;
extern crate libp2p_swarm as swarm;
extern crate libp2p_tcp_transport as tcp;
extern crate multiplex;
extern crate tokio_core;
extern crate tokio_io;
use bigint::U512;
use futures::future::Future;
use peerstore::PeerId;
use std::env;
use std::sync::Arc;
use std::time::Duration;
use swarm::{Transport, UpgradeExt};
use tcp::TcpConfig;
use tokio_core::reactor::Core;
fn main() {
env_logger::init();
// Determine which addresses to listen to.
let listen_addrs = {
let mut args = env::args().skip(1).collect::<Vec<_>>();
if args.is_empty() {
args.push("/ip4/0.0.0.0/tcp/0".to_owned());
}
args
};
// We start by building the tokio engine that will run all the sockets.
let mut core = Core::new().unwrap();
let peer_store = Arc::new(peerstore::memory_peerstore::MemoryPeerstore::empty());
example::ipfs_bootstrap(&*peer_store);
// Now let's build the transport stack.
// We create a `TcpConfig` that indicates that we want TCP/IP.
let transport = identify::IdentifyTransport::new(
TcpConfig::new(core.handle())
// On top of TCP/IP, we will use either the plaintext protocol or the secio protocol,
// depending on which one the remote supports.
.with_upgrade({
let plain_text = swarm::PlainTextConfig;
let secio = {
let private_key = include_bytes!("test-private-key.pk8");
let public_key = include_bytes!("test-public-key.der").to_vec();
secio::SecioConfig {
key: secio::SecioKeyPair::rsa_from_pkcs8(private_key, public_key).unwrap(),
}
};
plain_text.or_upgrade(secio)
})
// On top of plaintext or secio, we will use the multiplex protocol.
.with_upgrade(multiplex::MultiplexConfig)
// The object returned by the call to `with_upgrade(MultiplexConfig)` can't be used as a
// `Transport` because the output of the upgrade is not a stream but a controller for
// muxing. We have to explicitly call `into_connection_reuse()` in order to turn this into
// a `Transport`.
.into_connection_reuse(),
peer_store.clone(),
);
// We now have a `transport` variable that can be used either to dial nodes or listen to
// incoming connections, and that will automatically apply secio and multiplex on top
// of any opened stream.
let my_peer_id = PeerId::from_public_key(include_bytes!("test-public-key.der"));
println!("Local peer id is: {:?}", my_peer_id);
// Let's put this `transport` into a Kademlia *swarm*. The swarm will handle all the incoming
// and outgoing connections for us.
let kad_config = kad::KademliaConfig {
parallelism: 3,
record_store: (),
peer_store: peer_store,
local_peer_id: my_peer_id.clone(),
timeout: Duration::from_secs(2),
};
let kad_ctl_proto = kad::KademliaControllerPrototype::new(kad_config);
let proto = kad::KademliaUpgrade::from_prototype(&kad_ctl_proto);
// Let's put this `transport` into a *swarm*. The swarm will handle all the incoming and
// outgoing connections for us.
let (swarm_controller, swarm_future) = swarm::swarm(transport, proto, |upgrade, _| upgrade);
let (kad_controller, _kad_init) = kad_ctl_proto.start(swarm_controller.clone());
for listen_addr in listen_addrs {
let addr = swarm_controller
.listen_on(listen_addr.parse().expect("invalid multiaddr"))
.expect("unsupported multiaddr");
println!("Now listening on {:?}", addr);
}
let finish_enum = kad_controller
.find_node(my_peer_id.clone())
.and_then(|out| {
let local_hash = U512::from(my_peer_id.hash());
println!("Results of peer discovery for {:?}:", my_peer_id);
for n in out {
let other_hash = U512::from(n.hash());
let dist = 512 - (local_hash ^ other_hash).leading_zeros();
println!("* {:?} (distance bits = {:?} (lower is better))", n, dist);
}
Ok(())
});
// `swarm_future` is a future that contains all the behaviour that we want, but nothing has
// actually started yet. Because we created the `TcpConfig` with tokio, we need to run the
// future through the tokio core.
core.run(
finish_enum
.select(swarm_future)
.map(|(n, _)| n)
.map_err(|(err, _)| err),
).unwrap();
}

View File

@ -32,15 +32,8 @@ where
P: Peerstore + Clone,
{
const ADDRESSES: &[&str] = &[
"/ip4/104.131.131.82/tcp/4001/ipfs/QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ",
"/ip4/104.236.179.241/tcp/4001/ipfs/QmSoLPppuBtQSGwKDZT2M73ULpjvfd3aZ6ha4oFGL1KrGM",
"/ip4/162.243.248.213/tcp/4001/ipfs/QmSoLueR4xBeUbY9WZ9xGUUxunbKWcrNFTDAadQJmocnWm",
"/ip4/128.199.219.111/tcp/4001/ipfs/QmSoLSafTMBsPKadTEgaXctDQVcqN88CNLHXMkTNwMKPnu",
"/ip4/104.236.76.40/tcp/4001/ipfs/QmSoLV4Bbm51jM9C4gDYZQ9Cy3U6aXMJDAbzgu2fzaDs64",
"/ip4/178.62.158.247/tcp/4001/ipfs/QmSoLer265NRgSp2LA3dPaeykiS1J6DifTC88f5uVQKNAd",
"/ip4/178.62.61.185/tcp/4001/ipfs/QmSoLMeWqB7YGVLJN3pNLQpmmEk35v6wYtsMGLzSr5QBU3",
"/dns4/wss0.bootstrap.libp2p.io/tcp/443/wss/ipfs/QmZMxNdpMkewiVZLMRxaNxUeZpDUb34pWjZ1kZvsd16Zic",
"/dns4/wss1.bootstrap.libp2p.io/tcp/443/wss/ipfs/Qmbut9Ywz9YEDrz8ySBSgWyJk41Uvm2QJPhwDJzJyGFsD6"
"/ip4/127.0.0.1/tcp/4001/ipfs/QmaCpDMGvV2BGHeYERUEnRQAwe3N8SzbUtfsmvsqQLuvuJ",
// TODO: add some bootstrap nodes here
];
let ttl = Duration::from_secs(100 * 365 * 24 * 3600);
@ -51,14 +44,16 @@ where
.expect("failed to parse hard-coded multiaddr");
let ipfs_component = multiaddr.pop().expect("hard-coded multiaddr is empty");
let public_key = match ipfs_component {
multiaddr::AddrComponent::IPFS(key) => key,
let peer = match ipfs_component {
multiaddr::AddrComponent::IPFS(key) => {
PeerId::from_bytes(key).expect("invalid peer id")
}
_ => panic!("hard-coded multiaddr didn't end with /ipfs/"),
};
peer_store
.clone()
.peer_or_create(&PeerId::from_bytes(public_key).unwrap())
.peer_or_create(&peer)
.add_addr(multiaddr, ttl.clone());
}
}

30
libp2p-kad/Cargo.toml Normal file
View File

@ -0,0 +1,30 @@
[package]
name = "libp2p-kad"
version = "0.1.0"
authors = ["Parity Technologies <admin@parity.io>"]
[dependencies]
arrayvec = "0.4.7"
base58 = "0.1.0"
bigint = "4.2"
bytes = "0.4"
datastore = { path = "../datastore" }
fnv = "1.0"
futures = "0.1"
libp2p-identify = { path = "../libp2p-identify" }
libp2p-peerstore = { path = "../libp2p-peerstore" }
libp2p-ping = { path = "../libp2p-ping" }
libp2p-swarm = { path = "../libp2p-swarm" }
multiaddr = "0.2"
parking_lot = "0.5.1"
protobuf = "1.4.2"
rand = "0.4.2"
smallvec = "0.5"
tokio-io = "0.1"
tokio-timer = "0.1.2"
varint = { path = "../varint-rs" }
[dev-dependencies]
libp2p-tcp-transport = { path = "../libp2p-tcp-transport" }
rand = "0.4.2"
tokio-core = "0.1"

63
libp2p-kad/dht.proto Normal file
View File

@ -0,0 +1,63 @@
syntax = "proto2";
package dht.pb;
import "record.proto";
message Message {
enum MessageType {
PUT_VALUE = 0;
GET_VALUE = 1;
ADD_PROVIDER = 2;
GET_PROVIDERS = 3;
FIND_NODE = 4;
PING = 5;
}
enum ConnectionType {
// sender does not have a connection to peer, and no extra information (default)
NOT_CONNECTED = 0;
// sender has a live connection to peer
CONNECTED = 1;
// sender recently connected to peer
CAN_CONNECT = 2;
// sender recently tried to connect to peer repeatedly but failed to connect
// ("try" here is loose, but this should signal "made strong effort, failed")
CANNOT_CONNECT = 3;
}
message Peer {
// ID of a given peer.
optional bytes id = 1;
// multiaddrs for a given peer
repeated bytes addrs = 2;
// used to signal the sender's connection capabilities to the peer
optional ConnectionType connection = 3;
}
// defines what type of message it is.
optional MessageType type = 1;
// defines what coral cluster level this query/response belongs to.
optional int32 clusterLevelRaw = 10;
// Used to specify the key associated with this message.
// PUT_VALUE, GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
optional bytes key = 2;
// Used to return a value
// PUT_VALUE, GET_VALUE
optional record.pb.Record record = 3;
// Used to return peers closer to a key in a query
// GET_VALUE, GET_PROVIDERS, FIND_NODE
repeated Peer closerPeers = 8;
// Used to return Providers
// GET_VALUE, ADD_PROVIDER, GET_PROVIDERS
repeated Peer providerPeers = 9;
}

21
libp2p-kad/record.proto Normal file
View File

@ -0,0 +1,21 @@
syntax = "proto2";
package record.pb;
// Record represents a dht record that contains a value
// for a key value pair
message Record {
// The key that references this record
optional string key = 1;
// The actual value this record is storing
optional bytes value = 2;
// hash of the authors public key
optional string author = 3;
// A PKI signature for the key+value+author
optional bytes signature = 4;
// Time the record was received, set by receiver
optional string timeReceived = 5;
}

13
libp2p-kad/regen_dht_proto.sh Executable file
View File

@ -0,0 +1,13 @@
#!/bin/sh
# This script regenerates the `src/dht_proto.rs` file from `dht.proto`.
docker run --rm -v `pwd`:/usr/code:z -w /usr/code rust /bin/bash -c " \
apt-get update; \
apt-get install -y protobuf-compiler; \
cargo install protobuf; \
protoc --rust_out . dht.proto;\
protoc --rust_out . record.proto"
mv -f dht.rs ./src/protobuf_structs/dht.rs
mv -f record.rs ./src/protobuf_structs/record.rs

View File

@ -0,0 +1,488 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! High-level structs/traits of the crate.
//!
//! Lies on top of the `kad_server` module.
use bytes::Bytes;
use fnv::FnvHashMap;
use futures::{self, future, Future};
use futures::sync::oneshot;
use kad_server::{KadServerInterface, KademliaServerConfig, KademliaServerController};
use kbucket::{KBucketsTable, UpdateOutcome};
use libp2p_peerstore::{PeerAccess, PeerId, Peerstore};
use libp2p_swarm::{Endpoint, MuxedTransport, SwarmController};
use libp2p_swarm::ConnectionUpgrade;
use multiaddr::Multiaddr;
use parking_lot::Mutex;
use query;
use std::collections::hash_map::Entry;
use std::fmt;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use std::ops::Deref;
use std::sync::Arc;
use std::time::Duration;
use tokio_io::{AsyncRead, AsyncWrite};
use tokio_timer;
/// Prototype for a future Kademlia protocol running on a socket.
#[derive(Debug, Clone)]
pub struct KademliaConfig<P, R> {
/// Degree of parallelism on the network. Often called `alpha` in technical papers.
/// No more than this number of remotes will be used at a given time for any given operation.
// TODO: ^ share this number between operations? or does each operation use `alpha` remotes?
pub parallelism: u32,
/// Used to load and store data requests of peers.
// TODO: say that must implement the `Recordstore` trait.
pub record_store: R,
/// Used to load and store information about peers.
pub peer_store: P,
/// Id of the local peer.
pub local_peer_id: PeerId,
/// When contacting a node, duration after which we consider it unresponsive.
pub timeout: Duration,
}
/// Object that allows one to make queries on the Kademlia system.
#[derive(Debug)]
pub struct KademliaControllerPrototype<P, R> {
inner: Arc<Inner<P, R>>,
}
impl<P, Pc, R> KademliaControllerPrototype<P, R>
where
P: Deref<Target = Pc>,
for<'r> &'r Pc: Peerstore,
{
/// Creates a new controller from that configuration.
pub fn new(config: KademliaConfig<P, R>) -> KademliaControllerPrototype<P, R> {
let buckets = KBucketsTable::new(config.local_peer_id.clone(), config.timeout);
for peer_id in config.peer_store.deref().peers() {
let _ = buckets.update(peer_id, ());
}
let inner = Arc::new(Inner {
kbuckets: buckets,
timer: tokio_timer::wheel().build(),
record_store: config.record_store,
peer_store: config.peer_store,
connections: Default::default(),
timeout: config.timeout,
parallelism: config.parallelism as usize,
});
KademliaControllerPrototype { inner: inner }
}
/// Turns the prototype into an actual controller by feeding it a swarm.
pub fn start<T, C>(
self,
swarm: SwarmController<T, C>,
) -> (
KademliaController<P, R, T, C>,
Box<Future<Item = (), Error = IoError>>,
)
where
P: Clone + Deref<Target = Pc> + 'static, // TODO: 'static :-/
for<'r> &'r Pc: Peerstore,
R: Clone + 'static, // TODO: 'static :-/
T: Clone + MuxedTransport + 'static, // TODO: 'static :-/
C: Clone + ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
C::NamesIter: Clone,
C::Output: From<KademliaProcessingFuture>,
{
// TODO: initialization
let controller = KademliaController {
inner: self.inner.clone(),
swarm_controller: swarm,
};
let init_future = {
let futures: Vec<_> = (0..256)
.map(|n| query::refresh(controller.clone(), n))
.collect();
future::loop_fn(futures, |futures| {
if futures.is_empty() {
let fut = future::ok(future::Loop::Break(()));
return future::Either::A(fut);
}
let fut = future::select_all(futures)
.map_err(|(err, _, _)| err)
.map(|(_, _, rest)| future::Loop::Continue(rest));
future::Either::B(fut)
})
};
(controller, Box::new(init_future))
}
}
/// Object that allows one to make queries on the Kademlia system.
#[derive(Debug)]
pub struct KademliaController<P, R, T, C>
where
T: MuxedTransport + 'static, // TODO: 'static :-/
C: ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
inner: Arc<Inner<P, R>>,
swarm_controller: SwarmController<T, C>,
}
impl<P, R, T, C> Clone for KademliaController<P, R, T, C>
where
T: Clone + MuxedTransport + 'static, // TODO: 'static :-/
C: Clone + ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
#[inline]
fn clone(&self) -> Self {
KademliaController {
inner: self.inner.clone(),
swarm_controller: self.swarm_controller.clone(),
}
}
}
impl<P, Pc, R, T, C> KademliaController<P, R, T, C>
where
P: Deref<Target = Pc>,
for<'r> &'r Pc: Peerstore,
R: Clone,
T: Clone + MuxedTransport + 'static, // TODO: 'static :-/
C: Clone + ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
/// Performs an iterative find node query on the network.
///
/// Will query the network for the peers that are the closest to `searched_key` and return
/// the results.
///
/// The algorithm used is a standard Kademlia algorithm. The details are not documented, so
/// that the implementation is free to modify them.
#[inline]
pub fn find_node(
&self,
searched_key: PeerId,
) -> Box<Future<Item = Vec<PeerId>, Error = IoError>>
where
P: Clone + 'static,
R: 'static,
C::NamesIter: Clone,
C::Output: From<KademliaProcessingFuture>,
{
query::find_node(self.clone(), searched_key)
}
}
/// Connection upgrade to the Kademlia protocol.
#[derive(Clone)]
pub struct KademliaUpgrade<P, R> {
inner: Arc<Inner<P, R>>,
upgrade: KademliaServerConfig<Arc<Inner<P, R>>>,
}
impl<P, R> KademliaUpgrade<P, R> {
/// Builds a connection upgrade from the controller.
#[inline]
pub fn from_prototype(proto: &KademliaControllerPrototype<P, R>) -> Self {
KademliaUpgrade {
inner: proto.inner.clone(),
upgrade: KademliaServerConfig::new(proto.inner.clone()),
}
}
/// Builds a connection upgrade from the controller.
#[inline]
pub fn from_controller<T, C>(ctl: &KademliaController<P, R, T, C>) -> Self
where
T: MuxedTransport,
C: ConnectionUpgrade<T::RawConn>,
{
KademliaUpgrade {
inner: ctl.inner.clone(),
upgrade: KademliaServerConfig::new(ctl.inner.clone()),
}
}
}
impl<C, P, Pc, R> ConnectionUpgrade<C> for KademliaUpgrade<P, R>
where
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
P: Deref<Target = Pc> + Clone + 'static, // TODO: 'static :-/
for<'r> &'r Pc: Peerstore,
R: 'static, // TODO: 'static :-/
{
type Output = KademliaProcessingFuture;
type Future = Box<Future<Item = Self::Output, Error = IoError>>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
ConnectionUpgrade::<C>::protocol_names(&self.upgrade)
}
#[inline]
fn upgrade(self, incoming: C, id: (), endpoint: Endpoint, addr: &Multiaddr) -> Self::Future {
let inner = self.inner;
let client_addr = addr.clone();
let future = self.upgrade.upgrade(incoming, id, endpoint, addr).map(
move |(controller, future)| {
match inner.connections.lock().entry(client_addr) {
Entry::Occupied(mut entry) => {
match entry.insert(Connection::Active(controller)) {
// If there was already an active connection to this remote, it gets
// replaced by the new more recent one.
Connection::Active(_old_connection) => {}
Connection::Pending(closures) => {
let new_ctl = match entry.get_mut() {
&mut Connection::Active(ref mut ctl) => ctl,
_ => unreachable!(
"logic error: an Active enum variant was \
inserted, but reading back didn't give \
an Active"
),
};
for mut closure in closures {
closure(new_ctl);
}
}
};
}
Entry::Vacant(entry) => {
entry.insert(Connection::Active(controller));
}
};
KademliaProcessingFuture { inner: future }
},
);
Box::new(future) as Box<_>
}
}
/// Future that must be processed for the Kademlia system to work.
pub struct KademliaProcessingFuture {
inner: Box<Future<Item = (), Error = IoError>>,
}
impl Future for KademliaProcessingFuture {
type Item = ();
type Error = IoError;
#[inline]
fn poll(&mut self) -> futures::Poll<Self::Item, Self::Error> {
self.inner.poll()
}
}
// Inner struct shared throughout the Kademlia system.
#[derive(Debug)]
struct Inner<P, R> {
// The remotes are identified by their public keys.
kbuckets: KBucketsTable<PeerId, ()>,
// Timer used for building the timeouts.
timer: tokio_timer::Timer,
// Same as in the config.
timeout: Duration,
// Same as in the config.
parallelism: usize,
// Same as in the config.
record_store: R,
// Same as in the config.
peer_store: P,
// List of open connections with remotes.
//
// Since the keys are the nodes' multiaddress, it is expected that each node only has one
// multiaddress. This should be the case if the user uses the identify transport that
// automatically maps peer IDs to multiaddresses.
// TODO: is it correct to use FnvHashMap with a Multiaddr? needs benchmarks
connections: Mutex<FnvHashMap<Multiaddr, Connection>>,
}
// Current state of a connection to a specific multiaddr.
//
// There is no `Inactive` entry, as an inactive connection corresponds to no entry in the
// `connections` hash map.
enum Connection {
// The connection has already been opened and is ready to be controlled through the given
// controller.
Active(KademliaServerController),
// The connection is in the process of being opened. Any closure added to this `Vec` will be
// executed on the controller once it is available.
// Once the connection is open, it will be replaced with `Active`.
// TODO: should be FnOnce once Rust allows that
Pending(Vec<Box<FnMut(&mut KademliaServerController)>>),
}
impl fmt::Debug for Connection {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Connection::Active(_) => write!(f, "Connection::Active"),
Connection::Pending(_) => write!(f, "Connection::Pending"),
}
}
}
impl<P, Pc, R> KadServerInterface for Arc<Inner<P, R>>
where
P: Deref<Target = Pc>,
for<'r> &'r Pc: Peerstore,
{
#[inline]
fn local_id(&self) -> &PeerId {
self.kbuckets.my_id()
}
#[inline]
fn kbuckets_update(&self, peer: &PeerId) {
// TODO: is this the right place for this check?
if peer == self.kbuckets.my_id() {
return;
}
match self.kbuckets.update(peer.clone(), ()) {
UpdateOutcome::NeedPing(node_to_ping) => {
// TODO: return this info somehow
println!("need to ping {:?}", node_to_ping);
}
_ => (),
}
}
#[inline]
fn kbuckets_find_closest(&self, addr: &PeerId) -> Vec<PeerId> {
self.kbuckets.find_closest(addr).collect()
}
}
impl<R, P, Pc, T, C> query::QueryInterface for KademliaController<P, R, T, C>
where
P: Clone + Deref<Target = Pc> + 'static, // TODO: 'static :-/
for<'r> &'r Pc: Peerstore,
R: Clone + 'static, // TODO: 'static :-/
T: Clone + MuxedTransport + 'static, // TODO: 'static :-/
C: Clone + ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
C::NamesIter: Clone,
C::Output: From<KademliaProcessingFuture>,
{
#[inline]
fn local_id(&self) -> &PeerId {
self.inner.kbuckets.my_id()
}
#[inline]
fn kbuckets_find_closest(&self, addr: &PeerId) -> Vec<PeerId> {
self.inner.kbuckets.find_closest(addr).collect()
}
#[inline]
fn peer_add_addrs<I>(&self, peer: &PeerId, multiaddrs: I, ttl: Duration)
where
I: Iterator<Item = Multiaddr>,
{
self.inner
.peer_store
.peer_or_create(peer)
.add_addrs(multiaddrs, ttl);
}
#[inline]
fn parallelism(&self) -> usize {
self.inner.parallelism
}
#[inline]
fn send<F, FRet>(
&self,
addr: Multiaddr,
and_then: F,
) -> Box<Future<Item = FRet, Error = IoError>>
where
F: FnOnce(&KademliaServerController) -> FRet + 'static,
FRet: 'static,
{
let mut lock = self.inner.connections.lock();
let pending_list = match lock.entry(addr.clone()) {
Entry::Occupied(entry) => {
match entry.into_mut() {
&mut Connection::Pending(ref mut list) => list,
&mut Connection::Active(ref mut ctrl) => {
// If we have an active connection, entirely short-circuit the function.
let output = future::ok(and_then(ctrl));
return Box::new(output) as Box<_>;
}
}
}
Entry::Vacant(entry) => {
// Need to open a connection.
let proto = KademliaUpgrade {
inner: self.inner.clone(),
upgrade: KademliaServerConfig::new(self.inner.clone()),
};
match self.swarm_controller.dial_to_handler(addr, proto) {
Ok(()) => (),
Err(_addr) => {
let fut = future::err(IoError::new(
IoErrorKind::InvalidData,
"unsupported multiaddress",
));
return Box::new(fut) as Box<_>;
}
}
match entry.insert(Connection::Pending(Vec::with_capacity(1))) {
&mut Connection::Pending(ref mut list) => list,
_ => unreachable!("we just inserted a Pending variant"),
}
}
};
let (tx, rx) = oneshot::channel();
let mut tx = Some(tx);
let mut and_then = Some(and_then);
pending_list.push(Box::new(move |ctrl: &mut KademliaServerController| {
let and_then = and_then
.take()
.expect("Programmer error: 'pending' closure was called multiple times");
let tx = tx.take()
.expect("Programmer error: 'pending' closure was called multiple times");
let ret = and_then(ctrl);
let _ = tx.send(ret);
}) as Box<_>);
let future = rx.map_err(|_| IoErrorKind::ConnectionAborted.into());
let future = self.inner.timer.timeout(future, self.inner.timeout);
Box::new(future) as Box<_>
}
}

View File

@ -0,0 +1,440 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Contains a `ConnectionUpgrade` that makes it possible to send requests and receive responses
//! from nodes after the upgrade.
//!
//! # Usage
//!
//! - Implement the `KadServerInterface` trait on something clonable (usually an `Arc`).
//!
//! - Create a `KademliaServerConfig` object from that interface. This struct implements
//! `ConnectionUpgrade`.
//!
//! - Update a connection through that `KademliaServerConfig`. The output yields you a
//! `KademliaServerController` and a future that must be driven to completion. The controller
//! allows you to perform queries and receive responses.
//!
//! This `KademliaServerController` is usually extracted and stored in some sort of hash map in an
//! `Arc` in order to be available whenever we need to request something from a node.
use bytes::Bytes;
use futures::{future, Future, Sink, Stream};
use futures::sync::{mpsc, oneshot};
use libp2p_peerstore::PeerId;
use libp2p_swarm::ConnectionUpgrade;
use libp2p_swarm::Endpoint;
use multiaddr::{AddrComponent, Multiaddr};
use protocol::{self, KadMsg, KademliaProtocolConfig, Peer};
use std::collections::VecDeque;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_io::{AsyncRead, AsyncWrite};
/// Interface that this server system uses to communicate with the rest of the system.
pub trait KadServerInterface: Clone {
/// Returns the peer ID of the local node.
fn local_id(&self) -> &PeerId;
/// Updates an entry in the K-Buckets. Called whenever that peer sends us a message.
fn kbuckets_update(&self, peer: &PeerId);
/// Finds the nodes closest to a peer ID.
fn kbuckets_find_closest(&self, addr: &PeerId) -> Vec<PeerId>;
}
/// Configuration for a Kademlia server.
///
/// Implements `ConnectionUpgrade`. On a successful upgrade, produces a `KademliaServerController`
/// and a `Future`. The controller lets you send queries to the remote and receive answers, while
/// the `Future` must be driven to completion in order for things to work.
#[derive(Debug, Clone)]
pub struct KademliaServerConfig<I> {
raw_proto: KademliaProtocolConfig,
interface: I,
}
impl<I> KademliaServerConfig<I> {
/// Builds a configuration object for an upcoming Kademlia server.
#[inline]
pub fn new(interface: I) -> Self {
KademliaServerConfig {
raw_proto: KademliaProtocolConfig,
interface: interface,
}
}
}
impl<C, I> ConnectionUpgrade<C> for KademliaServerConfig<I>
where
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
I: KadServerInterface + 'static, // TODO: 'static :-/
{
type Output = (
KademliaServerController,
Box<Future<Item = (), Error = IoError>>,
);
type Future = Box<Future<Item = Self::Output, Error = IoError>>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
ConnectionUpgrade::<C>::protocol_names(&self.raw_proto)
}
#[inline]
fn upgrade(self, incoming: C, id: (), endpoint: Endpoint, addr: &Multiaddr) -> Self::Future {
let peer_id = {
let mut iter = addr.iter();
let protocol = iter.next();
let after_proto = iter.next();
match (protocol, after_proto) {
(Some(AddrComponent::P2P(key)), None) | (Some(AddrComponent::IPFS(key)), None) => {
match PeerId::from_bytes(key) {
Ok(id) => id,
Err(_) => {
let err = IoError::new(
IoErrorKind::InvalidData,
"invalid peer ID sent by remote identification",
);
return Box::new(future::err(err));
}
}
}
_ => {
let err =
IoError::new(IoErrorKind::InvalidData, "couldn't identify connected node");
return Box::new(future::err(err));
}
}
};
let interface = self.interface;
let future = self.raw_proto
.upgrade(incoming, id, endpoint, addr)
.map(move |connec| {
let (tx, rx) = mpsc::unbounded();
let future = kademlia_handler(connec, peer_id, rx, interface);
let controller = KademliaServerController { inner: tx };
(controller, future)
});
Box::new(future) as Box<_>
}
}
/// Allows sending Kademlia requests and receiving responses.
#[derive(Debug, Clone)]
pub struct KademliaServerController {
// In order to send a request, we use this sender to send a tuple. The first element of the
// tuple is the message to send to the remote, and the second element is what is used to
// receive the response. If the query doesn't expect a response (eg. `PUT_VALUE`), then the
// one-shot sender will be dropped without being used.
inner: mpsc::UnboundedSender<(KadMsg, oneshot::Sender<KadMsg>)>,
}
impl KademliaServerController {
/// Sends a `FIND_NODE` query to the node and provides a future that will contain the response.
// TODO: future item could be `impl Iterator` instead
pub fn find_node(
&self,
searched_key: &PeerId,
) -> Box<Future<Item = Vec<Peer>, Error = IoError>> {
let message = protocol::KadMsg::FindNodeReq {
key: searched_key.clone().into_bytes(),
};
let (tx, rx) = oneshot::channel();
match self.inner.unbounded_send((message, tx)) {
Ok(()) => (),
Err(_) => {
let fut = future::err(IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
));
return Box::new(fut) as Box<_>;
}
};
let future = rx.map_err(|_| {
IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
)
}).and_then(|msg| match msg {
KadMsg::FindNodeRes { closer_peers, .. } => Ok(closer_peers),
_ => Err(IoError::new(
IoErrorKind::InvalidData,
"invalid response type received from the remote",
)),
});
Box::new(future) as Box<_>
}
/// Sends a `PING` query to the node. Because of the way the protocol is designed, there is
/// no way to differentiate between a ping and a pong. Therefore this function doesn't return a
/// future, and the only way to be notified of the result is through the `kbuckets_update`
/// method in the `KadServerInterface` trait.
pub fn ping(&self) -> Result<(), IoError> {
// Dummy channel.
let (tx, _rx) = oneshot::channel();
match self.inner.unbounded_send((protocol::KadMsg::Ping, tx)) {
Ok(()) => Ok(()),
Err(_) => Err(IoError::new(
IoErrorKind::ConnectionAborted,
"connection to remote has aborted",
)),
}
}
}
// Handles a newly-opened Kademlia stream with a remote peer.
//
// Takes a `Stream` and `Sink` of Kademlia messages representing the connection to the client,
// plus the ID of the peer that we are handling, plus a `Receiver` that will receive messages to
// transmit to that connection, plus the interface.
//
// Returns a `Future` that must be resolved in order for progress to work. It will never yield any
// item (unless both `rx` and `kad_bistream` are closed) but will propagate any I/O of protocol
// error that could happen. If the `Receiver` closes, no error is generated.
fn kademlia_handler<'a, S, I>(
kad_bistream: S,
peer_id: PeerId,
rx: mpsc::UnboundedReceiver<(KadMsg, oneshot::Sender<KadMsg>)>,
interface: I,
) -> Box<Future<Item = (), Error = IoError> + 'a>
where
S: Stream<Item = KadMsg, Error = IoError> + Sink<SinkItem = KadMsg, SinkError = IoError> + 'a,
I: KadServerInterface + Clone + 'a,
{
let (kad_sink, kad_stream) = kad_bistream
.sink_map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
.split();
// We combine `kad_stream` and `rx` into one so that the loop wakes up whenever either
// generates something.
let messages = rx.map(|(m, o)| (m, Some(o)))
.map_err(|_| unreachable!())
.select(kad_stream.map(|m| (m, None)));
// Loop forever.
let future = future::loop_fn(
(kad_sink, messages, VecDeque::new(), 0),
move |(kad_sink, messages, mut send_back_queue, mut expected_pongs)| {
let interface = interface.clone();
let peer_id = peer_id.clone();
// The `send_back_queue` is a queue of `UnboundedSender`s in the correct order of
// expected answers.
// Whenever we send a message to the remote and this message expects a response, we
// push the sender to the end of `send_back_queue`. Whenever a remote sends us a
// response, we pop the first element of `send_back_queue`.
// The value of `expected_pongs` is the number of PING requests that we sent and that
// haven't been answered by the remote yet. Because of the way the protocol is designed,
// there is no way to differentiate between a ping and a pong. Therefore whenever we
// send a ping request we suppose that the next ping we receive is an answer, even
// though that may not be the case in reality.
// Because of this behaviour, pings do not pop from the `send_back_queue`.
messages
.into_future()
.map_err(|(err, _)| err)
.and_then(move |(message, rest)| {
if let Some((_, None)) = message {
// If we received a message from the remote (as opposed to a message from
// `rx`) then we update the k-buckets.
interface.kbuckets_update(&peer_id);
}
match message {
None => {
// Both the connection stream and `rx` are empty, so we break the loop.
let future = future::ok(future::Loop::Break(()));
Box::new(future) as Box<Future<Item = _, Error = _>>
}
Some((message @ KadMsg::PutValue { .. }, Some(_))) => {
// A `PutValue` message has been received on `rx`. Contrary to other
// types of messages, this one doesn't expect any answer and therefore
// we ignore the sender.
let future = kad_sink.send(message).map(move |kad_sink| {
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
Some((message @ KadMsg::Ping { .. }, Some(_))) => {
// A `Ping` message has been received on `rx`.
expected_pongs += 1;
let future = kad_sink.send(message).map(move |kad_sink| {
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
Some((message, Some(send_back))) => {
// Any message other than `PutValue` or `Ping` has been received on
// `rx`. Send it to the remote.
let future = kad_sink.send(message).map(move |kad_sink| {
send_back_queue.push_back(send_back);
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
Some((KadMsg::Ping, None)) => {
// Note: The way the protocol was designed, there is no way to
// differentiate between a ping and a pong.
if expected_pongs == 0 {
let message = KadMsg::Ping;
let future = kad_sink.send(message).map(move |kad_sink| {
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
} else {
expected_pongs -= 1;
let future = future::ok({
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
}
Some((message @ KadMsg::FindNodeRes { .. }, None))
| Some((message @ KadMsg::GetValueRes { .. }, None)) => {
// `FindNodeRes` or `GetValueRes` received on the socket.
// Send it back through `send_back_queue`.
if let Some(send_back) = send_back_queue.pop_front() {
let _ = send_back.send(message);
let future = future::ok(future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
)));
return Box::new(future) as Box<_>;
} else {
let future = future::err(IoErrorKind::InvalidData.into());
return Box::new(future) as Box<_>;
}
}
Some((KadMsg::FindNodeReq { key, .. }, None)) => {
// `FindNodeReq` received on the socket.
let message = handle_find_node_req(&interface, &key);
let future = kad_sink.send(message).map(move |kad_sink| {
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
Some((KadMsg::GetValueReq { key, .. }, None)) => {
// `GetValueReq` received on the socket.
let message = handle_get_value_req(&interface, &key);
let future = kad_sink.send(message).map(move |kad_sink| {
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
Some((KadMsg::PutValue { .. }, None)) => {
// `PutValue` received on the socket.
handle_put_value_req(&interface);
let future = future::ok({
future::Loop::Continue((
kad_sink,
rest,
send_back_queue,
expected_pongs,
))
});
Box::new(future) as Box<_>
}
}
})
},
);
Box::new(future) as Box<Future<Item = (), Error = IoError>>
}
// Builds a `KadMsg` that handles a `FIND_NODE` request received from the remote.
fn handle_find_node_req<I>(interface: &I, _requested_key: &[u8]) -> KadMsg
where
I: ?Sized + KadServerInterface,
{
KadMsg::FindNodeRes {
closer_peers: vec![
protocol::Peer {
node_id: interface.local_id().clone(),
multiaddrs: vec![],
connection_ty: protocol::ConnectionType::Connected,
},
], // TODO: fill the multiaddresses from the peer store
}
}
// Builds a `KadMsg` that handles a `FIND_VALUE` request received from the remote.
fn handle_get_value_req<I>(_interface: &I, _requested_key: &[u8]) -> KadMsg
where
I: ?Sized + KadServerInterface,
{
unimplemented!()
}
// Handles a `STORE` request received from the remote.
fn handle_put_value_req<I>(_interface: &I)
where
I: ?Sized + KadServerInterface,
{
unimplemented!()
}

474
libp2p-kad/src/kbucket.rs Normal file
View File

@ -0,0 +1,474 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Key-value storage, with a refresh and a time-to-live system.
//!
//! A k-buckets table allows one to store a value identified by keys, ordered by their distance
//! to a reference key passed to the constructor.
//!
//! If the local ID has `N` bits, then the k-buckets table contains `N` *buckets* each containing
//! a constant number of entries. Storing a key in the k-buckets table adds it to the bucket
//! corresponding to its distance with the reference key.
use arrayvec::ArrayVec;
use bigint::U512;
use libp2p_peerstore::PeerId;
use parking_lot::{Mutex, MutexGuard};
use std::mem;
use std::slice::Iter as SliceIter;
use std::time::{Duration, Instant};
use std::vec::IntoIter as VecIntoIter;
/// Maximum number of nodes in a bucket.
pub const MAX_NODES_PER_BUCKET: usize = 20;
/// Table of k-buckets with interior mutability.
#[derive(Debug)]
pub struct KBucketsTable<Id, Val> {
my_id: Id,
tables: Vec<Mutex<KBucket<Id, Val>>>,
// The timeout when pinging the first node after which we consider that it no longer responds.
ping_timeout: Duration,
}
impl<Id, Val> Clone for KBucketsTable<Id, Val>
where
Id: Clone,
Val: Clone,
{
#[inline]
fn clone(&self) -> Self {
KBucketsTable {
my_id: self.my_id.clone(),
tables: self.tables
.iter()
.map(|t| t.lock().clone())
.map(Mutex::new)
.collect(),
ping_timeout: self.ping_timeout.clone(),
}
}
}
#[derive(Debug, Clone)]
struct KBucket<Id, Val> {
// Nodes are always ordered from oldest to newest.
// Note that we will very often move elements to the end of this. No benchmarking has been
// performed, but it is very likely that a `ArrayVec` is the most performant data structure.
nodes: ArrayVec<[Node<Id, Val>; MAX_NODES_PER_BUCKET]>,
// Node received when the bucket was full. Will be added to the list if the first node doesn't
// respond in time to our ping. The second element is the time when the pending node was added.
// If it is too much in the past, then we drop the first node and add the pending node to the
// end of the list.
pending_node: Option<(Node<Id, Val>, Instant)>,
// Last time this bucket was updated.
last_update: Instant,
}
impl<Id, Val> KBucket<Id, Val> {
// Puts the kbucket into a coherent state.
// If a node is pending and the timeout has expired, removes the first element of `nodes`
// and pushes back the node in `pending_node`.
fn flush(&mut self, timeout: Duration) {
if let Some((_, instant)) = self.pending_node {
if instant.elapsed() >= timeout {
let (pending_node, _) = self.pending_node.take().unwrap();
let _ = self.nodes.remove(0);
self.nodes.push(pending_node);
}
}
}
}
#[derive(Debug, Clone)]
struct Node<Id, Val> {
id: Id,
value: Val,
}
/// Trait that must be implemented on types that can be used as an identifier in a k-bucket.
pub trait KBucketsPeerId: Eq + Clone {
/// Distance between two peer IDs.
type Distance: Ord;
/// Computes the XOR of this value and another one.
fn distance_with(&self, other: &Self) -> Self::Distance;
/// Returns then number of bits that are necessary to store the distance between peer IDs.
/// Used for pre-allocations.
///
/// > **Note**: Returning 0 would lead to a panic.
fn num_bits() -> usize;
/// Returns the number of leading zeroes of the distance between peer IDs.
fn leading_zeros(Self::Distance) -> u32;
}
impl KBucketsPeerId for PeerId {
type Distance = U512;
#[inline]
fn num_bits() -> usize {
512
}
#[inline]
fn distance_with(&self, other: &Self) -> Self::Distance {
// Note that we don't compare the hash functions because there's no chance of collision
// of the same value hashed with two different hash functions.
let my_hash = U512::from(self.hash());
let other_hash = U512::from(other.hash());
my_hash ^ other_hash
}
#[inline]
fn leading_zeros(distance: Self::Distance) -> u32 {
distance.leading_zeros()
}
}
impl<Id, Val> KBucketsTable<Id, Val>
where
Id: KBucketsPeerId,
{
/// Builds a new routing table.
pub fn new(my_id: Id, ping_timeout: Duration) -> Self {
KBucketsTable {
my_id: my_id,
tables: (0..Id::num_bits())
.map(|_| KBucket {
nodes: ArrayVec::new(),
pending_node: None,
last_update: Instant::now(),
})
.map(Mutex::new)
.collect(),
ping_timeout: ping_timeout,
}
}
// Returns the id of the bucket that should contain the peer with the given ID.
//
// Returns `None` if out of range, which happens if `id` is the same as the local peer id.
#[inline]
fn bucket_num(&self, id: &Id) -> Option<usize> {
(Id::num_bits() - 1).checked_sub(Id::leading_zeros(self.my_id.distance_with(id)) as usize)
}
/// Returns an iterator to all the buckets of this table.
///
/// Ordered by proximity to the local node. Closest bucket (with max. one node in it) comes
/// first.
#[inline]
pub fn buckets(&self) -> BucketsIter<Id, Val> {
BucketsIter(self.tables.iter(), self.ping_timeout)
}
/// Returns the ID of the local node.
#[inline]
pub fn my_id(&self) -> &Id {
&self.my_id
}
/// Finds the `num` nodes closest to `id`, ordered by distance.
pub fn find_closest(&self, id: &Id) -> VecIntoIter<Id>
where
Id: Clone,
{
// TODO: optimize
let mut out = Vec::new();
for table in self.tables.iter() {
let mut table = table.lock();
table.flush(self.ping_timeout);
for node in table.nodes.iter() {
out.push(node.id.clone());
}
}
out.sort_by(|a, b| b.distance_with(id).cmp(&a.distance_with(id)));
out.into_iter()
}
/// Marks the node as "most recent" in its bucket and modifies the value associated to it.
/// This function should be called whenever we receive a communication from a node.
///
/// # Panic
///
/// Panics if `id` is equal to the local node ID.
///
pub fn update(&self, id: Id, value: Val) -> UpdateOutcome<Id, Val> {
let table = match self.bucket_num(&id) {
Some(n) => &self.tables[n],
None => panic!("tried to update our own node in the kbuckets table"),
};
let mut table = table.lock();
table.flush(self.ping_timeout);
if let Some(pos) = table.nodes.iter().position(|n| n.id == id) {
// Node is already in the bucket.
let mut existing = table.nodes.remove(pos);
let old_val = mem::replace(&mut existing.value, value);
if pos == 0 {
// If it's the first node of the bucket that we update, then we drop the node that
// was waiting for a ping.
table.nodes.truncate(MAX_NODES_PER_BUCKET - 1);
table.pending_node = None;
}
table.nodes.push(existing);
table.last_update = Instant::now();
UpdateOutcome::Refreshed(old_val)
} else if table.nodes.len() < MAX_NODES_PER_BUCKET {
// Node not yet in the bucket, but there's plenty of space.
table.nodes.push(Node {
id: id,
value: value,
});
table.last_update = Instant::now();
UpdateOutcome::Added
} else {
// Not enough space to put the node, but we can add it to the end as "pending". We
// then need to tell the caller that we want it to ping the node at the top of the
// list.
if table.pending_node.is_none() {
table.pending_node = Some((
Node {
id: id,
value: value,
},
Instant::now(),
));
UpdateOutcome::NeedPing(table.nodes[0].id.clone())
} else {
UpdateOutcome::Discarded
}
}
}
}
/// Return value of the `update()` method.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[must_use]
pub enum UpdateOutcome<Id, Val> {
/// The node has been added to the bucket.
Added,
/// The node was already in the bucket and has been refreshed.
Refreshed(Val),
/// The node wasn't added. Instead we need to ping the node passed as parameter.
NeedPing(Id),
/// The node wasn't added at all because a node was already pending.
Discarded,
}
/// Iterator giving access to a bucket.
pub struct BucketsIter<'a, Id: 'a, Val: 'a>(SliceIter<'a, Mutex<KBucket<Id, Val>>>, Duration);
impl<'a, Id: 'a, Val: 'a> Iterator for BucketsIter<'a, Id, Val> {
type Item = Bucket<'a, Id, Val>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|bucket| {
let mut bucket = bucket.lock();
bucket.flush(self.1);
Bucket(bucket)
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl<'a, Id: 'a, Val: 'a> ExactSizeIterator for BucketsIter<'a, Id, Val> {}
/// Access to a bucket.
pub struct Bucket<'a, Id: 'a, Val: 'a>(MutexGuard<'a, KBucket<Id, Val>>);
impl<'a, Id: 'a, Val: 'a> Bucket<'a, Id, Val> {
/// Returns the number of entries in that bucket.
///
/// > **Note**: Keep in mind that this operation can be racy. If `update()` is called on the
/// > table while this function is running, the `update()` may or may not be taken
/// > into account.
#[inline]
pub fn num_entries(&self) -> usize {
self.0.nodes.len()
}
/// Returns true if this bucket has a pending node.
#[inline]
pub fn has_pending(&self) -> bool {
self.0.pending_node.is_some()
}
/// Returns the time when any of the values in this bucket was last updated.
///
/// If the bucket is empty, this returns the time when the whole table was created.
#[inline]
pub fn last_update(&self) -> Instant {
self.0.last_update.clone()
}
}
#[cfg(test)]
mod tests {
extern crate rand;
use self::rand::random;
use kbucket::{KBucketsTable, UpdateOutcome, MAX_NODES_PER_BUCKET};
use libp2p_peerstore::PeerId;
use std::thread;
use std::time::Duration;
#[test]
fn basic_closest() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let other_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
let _ = table.update(other_id.clone(), ());
let res = table.find_closest(&other_id).collect::<Vec<_>>();
assert_eq!(res.len(), 1);
assert_eq!(res[0], other_id);
}
#[test]
#[should_panic(expected = "tried to update our own node in the kbuckets table")]
fn update_local_id_panic() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(5));
let _ = table.update(my_id, ());
}
#[test]
fn update_time_last_refresh() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
// Generate some other IDs varying by just one bit.
let other_ids = (0..random::<usize>() % 20)
.map(|_| {
let bit_num = random::<usize>() % 256;
let mut id = my_id.as_bytes().to_vec().clone();
id[33 - (bit_num / 8)] ^= 1 << (bit_num % 8);
(PeerId::from_bytes(id).unwrap(), bit_num)
})
.collect::<Vec<_>>();
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
let before_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
thread::sleep(Duration::from_secs(2));
for &(ref id, _) in &other_ids {
let _ = table.update(id.clone(), ());
}
let after_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
for (offset, (bef, aft)) in before_update.iter().zip(after_update.iter()).enumerate() {
if other_ids.iter().any(|&(_, bucket)| bucket == offset) {
assert_ne!(bef, aft);
} else {
assert_eq!(bef, aft);
}
}
}
#[test]
fn full_kbucket() {
let my_id = {
let mut bytes = vec![random(); 34];
bytes[0] = 18;
bytes[1] = 32;
PeerId::from_bytes(bytes).unwrap()
};
assert!(MAX_NODES_PER_BUCKET <= 251); // Test doesn't work otherwise.
let mut fill_ids = (0..MAX_NODES_PER_BUCKET + 3)
.map(|n| {
let mut id = my_id.clone().into_bytes();
id[2] ^= 0x80; // Flip the first bit so that we get in the most distant bucket.
id[33] = id[33].wrapping_add(n as u8);
PeerId::from_bytes(id).unwrap()
})
.collect::<Vec<_>>();
let first_node = fill_ids[0].clone();
let second_node = fill_ids[1].clone();
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(1));
for (num, id) in fill_ids.drain(..MAX_NODES_PER_BUCKET).enumerate() {
assert_eq!(table.update(id, ()), UpdateOutcome::Added);
assert_eq!(table.buckets().nth(255).unwrap().num_entries(), num + 1);
}
assert_eq!(
table.buckets().nth(255).unwrap().num_entries(),
MAX_NODES_PER_BUCKET
);
assert!(!table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::NeedPing(first_node)
);
assert_eq!(
table.buckets().nth(255).unwrap().num_entries(),
MAX_NODES_PER_BUCKET
);
assert!(table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::Discarded
);
thread::sleep(Duration::from_secs(2));
assert!(!table.buckets().nth(255).unwrap().has_pending());
assert_eq!(
table.update(fill_ids.remove(0), ()),
UpdateOutcome::NeedPing(second_node)
);
}
}

92
libp2p-kad/src/lib.rs Normal file
View File

@ -0,0 +1,92 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Kademlia protocol. Allows peer discovery, records store and records fetch.
//!
//! # Usage
//!
//! Usage is done in the following steps:
//!
//! - Build a `KademliaConfig` that contains the way you want the Kademlia protocol to behave.
//!
//! - Build a `KademliaControllerPrototype` from that configuration object.
//!
//! - Build a `KademliaUpgrade` from that prototype. Then create a swarm (from the *swarm* crate)
//! and pass the `KademliaUpgrade` you built as part of the list of protocols.
//!
//! - Then turn the controller prototype into an actual `KademliaController` by passing to it the
//! swarm controller you got.
//!
//! - You can now perform operations using that controller.
//!
// TODO: we allow dead_code for now because this library contains a lot of unused code that will
// be useful later for record store
#![allow(dead_code)]
// # Crate organization
//
// The crate contains three levels of abstractions over the Kademlia protocol.
//
// - The first level of abstraction is in `protocol`. The API of this module lets you turn a raw
// bytes stream (`AsyncRead + AsyncWrite`) into a `Sink + Stream` of raw but strongly-typed
// Kademlia messages.
//
// - The second level of abstraction is in `kad_server`. Its API lets you upgrade a connection and
// obtain a future (that must be driven to completion), plus a controller. Processing the future
// will automatically respond to Kad requests received by the remote. The controller lets you
// send your own requests to this remote and obtain strongly-typed responses.
//
// - The third level of abstraction is in `high_level`. This module also provides a
// `ConnectionUpgrade`, but all the upgraded connections share informations through a struct in
// an `Arc`. The user has a single clonable controller that operates on all the upgraded
// connections. This controller lets you perform peer discovery and record load operations over
// the whole network.
//
extern crate arrayvec;
extern crate base58;
extern crate bigint;
extern crate bytes;
extern crate datastore;
extern crate fnv;
extern crate futures;
extern crate libp2p_identify;
extern crate libp2p_peerstore;
extern crate libp2p_ping;
extern crate libp2p_swarm;
extern crate multiaddr;
extern crate parking_lot;
extern crate protobuf;
extern crate rand;
extern crate smallvec;
extern crate tokio_io;
extern crate tokio_timer;
extern crate varint;
pub use self::high_level::{KademliaConfig, KademliaController, KademliaControllerPrototype};
pub use self::high_level::KademliaUpgrade;
mod high_level;
mod kad_server;
mod kbucket;
mod protobuf_structs;
mod protocol;
mod query;

View File

@ -0,0 +1,990 @@
// This file is generated. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Message {
// message fields
field_type: ::std::option::Option<Message_MessageType>,
clusterLevelRaw: ::std::option::Option<i32>,
key: ::protobuf::SingularField<::std::vec::Vec<u8>>,
record: ::protobuf::SingularPtrField<super::record::Record>,
closerPeers: ::protobuf::RepeatedField<Message_Peer>,
providerPeers: ::protobuf::RepeatedField<Message_Peer>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
// see codegen.rs for the explanation why impl Sync explicitly
unsafe impl ::std::marker::Sync for Message {}
impl Message {
pub fn new() -> Message {
::std::default::Default::default()
}
pub fn default_instance() -> &'static Message {
static mut instance: ::protobuf::lazy::Lazy<Message> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Message,
};
unsafe {
instance.get(Message::new)
}
}
// optional .dht.pb.Message.MessageType type = 1;
pub fn clear_field_type(&mut self) {
self.field_type = ::std::option::Option::None;
}
pub fn has_field_type(&self) -> bool {
self.field_type.is_some()
}
// Param is passed by value, moved
pub fn set_field_type(&mut self, v: Message_MessageType) {
self.field_type = ::std::option::Option::Some(v);
}
pub fn get_field_type(&self) -> Message_MessageType {
self.field_type.unwrap_or(Message_MessageType::PUT_VALUE)
}
fn get_field_type_for_reflect(&self) -> &::std::option::Option<Message_MessageType> {
&self.field_type
}
fn mut_field_type_for_reflect(&mut self) -> &mut ::std::option::Option<Message_MessageType> {
&mut self.field_type
}
// optional int32 clusterLevelRaw = 10;
pub fn clear_clusterLevelRaw(&mut self) {
self.clusterLevelRaw = ::std::option::Option::None;
}
pub fn has_clusterLevelRaw(&self) -> bool {
self.clusterLevelRaw.is_some()
}
// Param is passed by value, moved
pub fn set_clusterLevelRaw(&mut self, v: i32) {
self.clusterLevelRaw = ::std::option::Option::Some(v);
}
pub fn get_clusterLevelRaw(&self) -> i32 {
self.clusterLevelRaw.unwrap_or(0)
}
fn get_clusterLevelRaw_for_reflect(&self) -> &::std::option::Option<i32> {
&self.clusterLevelRaw
}
fn mut_clusterLevelRaw_for_reflect(&mut self) -> &mut ::std::option::Option<i32> {
&mut self.clusterLevelRaw
}
// optional bytes key = 2;
pub fn clear_key(&mut self) {
self.key.clear();
}
pub fn has_key(&self) -> bool {
self.key.is_some()
}
// Param is passed by value, moved
pub fn set_key(&mut self, v: ::std::vec::Vec<u8>) {
self.key = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_key(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.key.is_none() {
self.key.set_default();
}
self.key.as_mut().unwrap()
}
// Take field
pub fn take_key(&mut self) -> ::std::vec::Vec<u8> {
self.key.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_key(&self) -> &[u8] {
match self.key.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_key_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.key
}
fn mut_key_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.key
}
// optional .record.pb.Record record = 3;
pub fn clear_record(&mut self) {
self.record.clear();
}
pub fn has_record(&self) -> bool {
self.record.is_some()
}
// Param is passed by value, moved
pub fn set_record(&mut self, v: super::record::Record) {
self.record = ::protobuf::SingularPtrField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_record(&mut self) -> &mut super::record::Record {
if self.record.is_none() {
self.record.set_default();
}
self.record.as_mut().unwrap()
}
// Take field
pub fn take_record(&mut self) -> super::record::Record {
self.record.take().unwrap_or_else(|| super::record::Record::new())
}
pub fn get_record(&self) -> &super::record::Record {
self.record.as_ref().unwrap_or_else(|| super::record::Record::default_instance())
}
fn get_record_for_reflect(&self) -> &::protobuf::SingularPtrField<super::record::Record> {
&self.record
}
fn mut_record_for_reflect(&mut self) -> &mut ::protobuf::SingularPtrField<super::record::Record> {
&mut self.record
}
// repeated .dht.pb.Message.Peer closerPeers = 8;
pub fn clear_closerPeers(&mut self) {
self.closerPeers.clear();
}
// Param is passed by value, moved
pub fn set_closerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
self.closerPeers = v;
}
// Mutable pointer to the field.
pub fn mut_closerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.closerPeers
}
// Take field
pub fn take_closerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
::std::mem::replace(&mut self.closerPeers, ::protobuf::RepeatedField::new())
}
pub fn get_closerPeers(&self) -> &[Message_Peer] {
&self.closerPeers
}
fn get_closerPeers_for_reflect(&self) -> &::protobuf::RepeatedField<Message_Peer> {
&self.closerPeers
}
fn mut_closerPeers_for_reflect(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.closerPeers
}
// repeated .dht.pb.Message.Peer providerPeers = 9;
pub fn clear_providerPeers(&mut self) {
self.providerPeers.clear();
}
// Param is passed by value, moved
pub fn set_providerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
self.providerPeers = v;
}
// Mutable pointer to the field.
pub fn mut_providerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.providerPeers
}
// Take field
pub fn take_providerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
::std::mem::replace(&mut self.providerPeers, ::protobuf::RepeatedField::new())
}
pub fn get_providerPeers(&self) -> &[Message_Peer] {
&self.providerPeers
}
fn get_providerPeers_for_reflect(&self) -> &::protobuf::RepeatedField<Message_Peer> {
&self.providerPeers
}
fn mut_providerPeers_for_reflect(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
&mut self.providerPeers
}
}
impl ::protobuf::Message for Message {
fn is_initialized(&self) -> bool {
for v in &self.record {
if !v.is_initialized() {
return false;
}
};
for v in &self.closerPeers {
if !v.is_initialized() {
return false;
}
};
for v in &self.providerPeers {
if !v.is_initialized() {
return false;
}
};
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
if wire_type != ::protobuf::wire_format::WireTypeVarint {
return ::std::result::Result::Err(::protobuf::rt::unexpected_wire_type(wire_type));
}
let tmp = is.read_enum()?;
self.field_type = ::std::option::Option::Some(tmp);
},
10 => {
if wire_type != ::protobuf::wire_format::WireTypeVarint {
return ::std::result::Result::Err(::protobuf::rt::unexpected_wire_type(wire_type));
}
let tmp = is.read_int32()?;
self.clusterLevelRaw = ::std::option::Option::Some(tmp);
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.key)?;
},
3 => {
::protobuf::rt::read_singular_message_into(wire_type, is, &mut self.record)?;
},
8 => {
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.closerPeers)?;
},
9 => {
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.providerPeers)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(v) = self.field_type {
my_size += ::protobuf::rt::enum_size(1, v);
}
if let Some(v) = self.clusterLevelRaw {
my_size += ::protobuf::rt::value_size(10, v, ::protobuf::wire_format::WireTypeVarint);
}
if let Some(ref v) = self.key.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
if let Some(ref v) = self.record.as_ref() {
let len = v.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
}
for value in &self.closerPeers {
let len = value.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
};
for value in &self.providerPeers {
let len = value.compute_size();
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
};
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(v) = self.field_type {
os.write_enum(1, v.value())?;
}
if let Some(v) = self.clusterLevelRaw {
os.write_int32(10, v)?;
}
if let Some(ref v) = self.key.as_ref() {
os.write_bytes(2, &v)?;
}
if let Some(ref v) = self.record.as_ref() {
os.write_tag(3, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
}
for v in &self.closerPeers {
os.write_tag(8, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
};
for v in &self.providerPeers {
os.write_tag(9, ::protobuf::wire_format::WireTypeLengthDelimited)?;
os.write_raw_varint32(v.get_cached_size())?;
v.write_to_with_cached_sizes(os)?;
};
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
::protobuf::MessageStatic::descriptor_static(None::<Self>)
}
}
impl ::protobuf::MessageStatic for Message {
fn new() -> Message {
Message::new()
}
fn descriptor_static(_: ::std::option::Option<Message>) -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_MessageType>>(
"type",
Message::get_field_type_for_reflect,
Message::mut_field_type_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeInt32>(
"clusterLevelRaw",
Message::get_clusterLevelRaw_for_reflect,
Message::mut_clusterLevelRaw_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"key",
Message::get_key_for_reflect,
Message::mut_key_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_ptr_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<super::record::Record>>(
"record",
Message::get_record_for_reflect,
Message::mut_record_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
"closerPeers",
Message::get_closerPeers_for_reflect,
Message::mut_closerPeers_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
"providerPeers",
Message::get_providerPeers_for_reflect,
Message::mut_providerPeers_for_reflect,
));
::protobuf::reflect::MessageDescriptor::new::<Message>(
"Message",
fields,
file_descriptor_proto()
)
})
}
}
}
impl ::protobuf::Clear for Message {
fn clear(&mut self) {
self.clear_field_type();
self.clear_clusterLevelRaw();
self.clear_key();
self.clear_record();
self.clear_closerPeers();
self.clear_providerPeers();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Message {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Message {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
#[derive(PartialEq,Clone,Default)]
pub struct Message_Peer {
// message fields
id: ::protobuf::SingularField<::std::vec::Vec<u8>>,
addrs: ::protobuf::RepeatedField<::std::vec::Vec<u8>>,
connection: ::std::option::Option<Message_ConnectionType>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
// see codegen.rs for the explanation why impl Sync explicitly
unsafe impl ::std::marker::Sync for Message_Peer {}
impl Message_Peer {
pub fn new() -> Message_Peer {
::std::default::Default::default()
}
pub fn default_instance() -> &'static Message_Peer {
static mut instance: ::protobuf::lazy::Lazy<Message_Peer> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Message_Peer,
};
unsafe {
instance.get(Message_Peer::new)
}
}
// optional bytes id = 1;
pub fn clear_id(&mut self) {
self.id.clear();
}
pub fn has_id(&self) -> bool {
self.id.is_some()
}
// Param is passed by value, moved
pub fn set_id(&mut self, v: ::std::vec::Vec<u8>) {
self.id = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_id(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.id.is_none() {
self.id.set_default();
}
self.id.as_mut().unwrap()
}
// Take field
pub fn take_id(&mut self) -> ::std::vec::Vec<u8> {
self.id.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_id(&self) -> &[u8] {
match self.id.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_id_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.id
}
fn mut_id_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.id
}
// repeated bytes addrs = 2;
pub fn clear_addrs(&mut self) {
self.addrs.clear();
}
// Param is passed by value, moved
pub fn set_addrs(&mut self, v: ::protobuf::RepeatedField<::std::vec::Vec<u8>>) {
self.addrs = v;
}
// Mutable pointer to the field.
pub fn mut_addrs(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.addrs
}
// Take field
pub fn take_addrs(&mut self) -> ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
::std::mem::replace(&mut self.addrs, ::protobuf::RepeatedField::new())
}
pub fn get_addrs(&self) -> &[::std::vec::Vec<u8>] {
&self.addrs
}
fn get_addrs_for_reflect(&self) -> &::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&self.addrs
}
fn mut_addrs_for_reflect(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
&mut self.addrs
}
// optional .dht.pb.Message.ConnectionType connection = 3;
pub fn clear_connection(&mut self) {
self.connection = ::std::option::Option::None;
}
pub fn has_connection(&self) -> bool {
self.connection.is_some()
}
// Param is passed by value, moved
pub fn set_connection(&mut self, v: Message_ConnectionType) {
self.connection = ::std::option::Option::Some(v);
}
pub fn get_connection(&self) -> Message_ConnectionType {
self.connection.unwrap_or(Message_ConnectionType::NOT_CONNECTED)
}
fn get_connection_for_reflect(&self) -> &::std::option::Option<Message_ConnectionType> {
&self.connection
}
fn mut_connection_for_reflect(&mut self) -> &mut ::std::option::Option<Message_ConnectionType> {
&mut self.connection
}
}
impl ::protobuf::Message for Message_Peer {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.id)?;
},
2 => {
::protobuf::rt::read_repeated_bytes_into(wire_type, is, &mut self.addrs)?;
},
3 => {
if wire_type != ::protobuf::wire_format::WireTypeVarint {
return ::std::result::Result::Err(::protobuf::rt::unexpected_wire_type(wire_type));
}
let tmp = is.read_enum()?;
self.connection = ::std::option::Option::Some(tmp);
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.id.as_ref() {
my_size += ::protobuf::rt::bytes_size(1, &v);
}
for value in &self.addrs {
my_size += ::protobuf::rt::bytes_size(2, &value);
};
if let Some(v) = self.connection {
my_size += ::protobuf::rt::enum_size(3, v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.id.as_ref() {
os.write_bytes(1, &v)?;
}
for v in &self.addrs {
os.write_bytes(2, &v)?;
};
if let Some(v) = self.connection {
os.write_enum(3, v.value())?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
::protobuf::MessageStatic::descriptor_static(None::<Self>)
}
}
impl ::protobuf::MessageStatic for Message_Peer {
fn new() -> Message_Peer {
Message_Peer::new()
}
fn descriptor_static(_: ::std::option::Option<Message_Peer>) -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"id",
Message_Peer::get_id_for_reflect,
Message_Peer::mut_id_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"addrs",
Message_Peer::get_addrs_for_reflect,
Message_Peer::mut_addrs_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_ConnectionType>>(
"connection",
Message_Peer::get_connection_for_reflect,
Message_Peer::mut_connection_for_reflect,
));
::protobuf::reflect::MessageDescriptor::new::<Message_Peer>(
"Message_Peer",
fields,
file_descriptor_proto()
)
})
}
}
}
impl ::protobuf::Clear for Message_Peer {
fn clear(&mut self) {
self.clear_id();
self.clear_addrs();
self.clear_connection();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Message_Peer {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Message_Peer {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
pub enum Message_MessageType {
PUT_VALUE = 0,
GET_VALUE = 1,
ADD_PROVIDER = 2,
GET_PROVIDERS = 3,
FIND_NODE = 4,
PING = 5,
}
impl ::protobuf::ProtobufEnum for Message_MessageType {
fn value(&self) -> i32 {
*self as i32
}
fn from_i32(value: i32) -> ::std::option::Option<Message_MessageType> {
match value {
0 => ::std::option::Option::Some(Message_MessageType::PUT_VALUE),
1 => ::std::option::Option::Some(Message_MessageType::GET_VALUE),
2 => ::std::option::Option::Some(Message_MessageType::ADD_PROVIDER),
3 => ::std::option::Option::Some(Message_MessageType::GET_PROVIDERS),
4 => ::std::option::Option::Some(Message_MessageType::FIND_NODE),
5 => ::std::option::Option::Some(Message_MessageType::PING),
_ => ::std::option::Option::None
}
}
fn values() -> &'static [Self] {
static values: &'static [Message_MessageType] = &[
Message_MessageType::PUT_VALUE,
Message_MessageType::GET_VALUE,
Message_MessageType::ADD_PROVIDER,
Message_MessageType::GET_PROVIDERS,
Message_MessageType::FIND_NODE,
Message_MessageType::PING,
];
values
}
fn enum_descriptor_static(_: ::std::option::Option<Message_MessageType>) -> &'static ::protobuf::reflect::EnumDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
};
unsafe {
descriptor.get(|| {
::protobuf::reflect::EnumDescriptor::new("Message_MessageType", file_descriptor_proto())
})
}
}
}
impl ::std::marker::Copy for Message_MessageType {
}
impl ::protobuf::reflect::ProtobufValue for Message_MessageType {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
}
}
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
pub enum Message_ConnectionType {
NOT_CONNECTED = 0,
CONNECTED = 1,
CAN_CONNECT = 2,
CANNOT_CONNECT = 3,
}
impl ::protobuf::ProtobufEnum for Message_ConnectionType {
fn value(&self) -> i32 {
*self as i32
}
fn from_i32(value: i32) -> ::std::option::Option<Message_ConnectionType> {
match value {
0 => ::std::option::Option::Some(Message_ConnectionType::NOT_CONNECTED),
1 => ::std::option::Option::Some(Message_ConnectionType::CONNECTED),
2 => ::std::option::Option::Some(Message_ConnectionType::CAN_CONNECT),
3 => ::std::option::Option::Some(Message_ConnectionType::CANNOT_CONNECT),
_ => ::std::option::Option::None
}
}
fn values() -> &'static [Self] {
static values: &'static [Message_ConnectionType] = &[
Message_ConnectionType::NOT_CONNECTED,
Message_ConnectionType::CONNECTED,
Message_ConnectionType::CAN_CONNECT,
Message_ConnectionType::CANNOT_CONNECT,
];
values
}
fn enum_descriptor_static(_: ::std::option::Option<Message_ConnectionType>) -> &'static ::protobuf::reflect::EnumDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
};
unsafe {
descriptor.get(|| {
::protobuf::reflect::EnumDescriptor::new("Message_ConnectionType", file_descriptor_proto())
})
}
}
}
impl ::std::marker::Copy for Message_ConnectionType {
}
impl ::protobuf::reflect::ProtobufValue for Message_ConnectionType {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\tdht.proto\x12\x06dht.pb\x1a\x0crecord.proto\"\xc7\x04\n\x07Message\
\x12/\n\x04type\x18\x01\x20\x01(\x0e2\x1b.dht.pb.Message.MessageTypeR\
\x04type\x12(\n\x0fclusterLevelRaw\x18\n\x20\x01(\x05R\x0fclusterLevelRa\
w\x12\x10\n\x03key\x18\x02\x20\x01(\x0cR\x03key\x12)\n\x06record\x18\x03\
\x20\x01(\x0b2\x11.record.pb.RecordR\x06record\x126\n\x0bcloserPeers\x18\
\x08\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\x0bcloserPeers\x12:\n\rprovi\
derPeers\x18\t\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\rproviderPeers\x1a\
l\n\x04Peer\x12\x0e\n\x02id\x18\x01\x20\x01(\x0cR\x02id\x12\x14\n\x05add\
rs\x18\x02\x20\x03(\x0cR\x05addrs\x12>\n\nconnection\x18\x03\x20\x01(\
\x0e2\x1e.dht.pb.Message.ConnectionTypeR\nconnection\"i\n\x0bMessageType\
\x12\r\n\tPUT_VALUE\x10\0\x12\r\n\tGET_VALUE\x10\x01\x12\x10\n\x0cADD_PR\
OVIDER\x10\x02\x12\x11\n\rGET_PROVIDERS\x10\x03\x12\r\n\tFIND_NODE\x10\
\x04\x12\x08\n\x04PING\x10\x05\"W\n\x0eConnectionType\x12\x11\n\rNOT_CON\
NECTED\x10\0\x12\r\n\tCONNECTED\x10\x01\x12\x0f\n\x0bCAN_CONNECT\x10\x02\
\x12\x12\n\x0eCANNOT_CONNECT\x10\x03J\xc9\x10\n\x06\x12\x04\0\0>\x01\n\
\x08\n\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x0e\n\t\n\
\x02\x03\0\x12\x03\x03\x07\x15\n\n\n\x02\x04\0\x12\x04\x05\0>\x01\n\n\n\
\x03\x04\0\x01\x12\x03\x05\x08\x0f\n\x0c\n\x04\x04\0\x04\0\x12\x04\x06\
\x08\r\t\n\x0c\n\x05\x04\0\x04\0\x01\x12\x03\x06\r\x18\n\r\n\x06\x04\0\
\x04\0\x02\0\x12\x03\x07\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\0\x01\x12\
\x03\x07\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\0\x02\x12\x03\x07\x1c\x1d\n\
\r\n\x06\x04\0\x04\0\x02\x01\x12\x03\x08\x10\x1e\n\x0e\n\x07\x04\0\x04\0\
\x02\x01\x01\x12\x03\x08\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x01\x02\x12\
\x03\x08\x1c\x1d\n\r\n\x06\x04\0\x04\0\x02\x02\x12\x03\t\x10!\n\x0e\n\
\x07\x04\0\x04\0\x02\x02\x01\x12\x03\t\x10\x1c\n\x0e\n\x07\x04\0\x04\0\
\x02\x02\x02\x12\x03\t\x1f\x20\n\r\n\x06\x04\0\x04\0\x02\x03\x12\x03\n\
\x10\"\n\x0e\n\x07\x04\0\x04\0\x02\x03\x01\x12\x03\n\x10\x1d\n\x0e\n\x07\
\x04\0\x04\0\x02\x03\x02\x12\x03\n\x20!\n\r\n\x06\x04\0\x04\0\x02\x04\
\x12\x03\x0b\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\x04\x01\x12\x03\x0b\x10\
\x19\n\x0e\n\x07\x04\0\x04\0\x02\x04\x02\x12\x03\x0b\x1c\x1d\n\r\n\x06\
\x04\0\x04\0\x02\x05\x12\x03\x0c\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x05\
\x01\x12\x03\x0c\x10\x14\n\x0e\n\x07\x04\0\x04\0\x02\x05\x02\x12\x03\x0c\
\x17\x18\n\x0c\n\x04\x04\0\x04\x01\x12\x04\x0f\x08\x1c\t\n\x0c\n\x05\x04\
\0\x04\x01\x01\x12\x03\x0f\r\x1b\n^\n\x06\x04\0\x04\x01\x02\0\x12\x03\
\x11\x10\"\x1aO\x20sender\x20does\x20not\x20have\x20a\x20connection\x20t\
o\x20peer,\x20and\x20no\x20extra\x20information\x20(default)\n\n\x0e\n\
\x07\x04\0\x04\x01\x02\0\x01\x12\x03\x11\x10\x1d\n\x0e\n\x07\x04\0\x04\
\x01\x02\0\x02\x12\x03\x11\x20!\n5\n\x06\x04\0\x04\x01\x02\x01\x12\x03\
\x14\x10\x1e\x1a&\x20sender\x20has\x20a\x20live\x20connection\x20to\x20p\
eer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x01\x01\x12\x03\x14\x10\x19\n\x0e\n\
\x07\x04\0\x04\x01\x02\x01\x02\x12\x03\x14\x1c\x1d\n2\n\x06\x04\0\x04\
\x01\x02\x02\x12\x03\x17\x10\x20\x1a#\x20sender\x20recently\x20connected\
\x20to\x20peer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x01\x12\x03\x17\x10\
\x1b\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x02\x12\x03\x17\x1e\x1f\n\xa7\x01\
\n\x06\x04\0\x04\x01\x02\x03\x12\x03\x1b\x10#\x1a\x97\x01\x20sender\x20r\
ecently\x20tried\x20to\x20connect\x20to\x20peer\x20repeatedly\x20but\x20\
failed\x20to\x20connect\n\x20(\"try\"\x20here\x20is\x20loose,\x20but\x20\
this\x20should\x20signal\x20\"made\x20strong\x20effort,\x20failed\")\n\n\
\x0e\n\x07\x04\0\x04\x01\x02\x03\x01\x12\x03\x1b\x10\x1e\n\x0e\n\x07\x04\
\0\x04\x01\x02\x03\x02\x12\x03\x1b!\"\n\x0c\n\x04\x04\0\x03\0\x12\x04\
\x1e\x08'\t\n\x0c\n\x05\x04\0\x03\0\x01\x12\x03\x1e\x10\x14\n$\n\x06\x04\
\0\x03\0\x02\0\x12\x03\x20\x10&\x1a\x15\x20ID\x20of\x20a\x20given\x20pee\
r.\n\n\x0e\n\x07\x04\0\x03\0\x02\0\x04\x12\x03\x20\x10\x18\n\x0e\n\x07\
\x04\0\x03\0\x02\0\x05\x12\x03\x20\x19\x1e\n\x0e\n\x07\x04\0\x03\0\x02\0\
\x01\x12\x03\x20\x1f!\n\x0e\n\x07\x04\0\x03\0\x02\0\x03\x12\x03\x20$%\n,\
\n\x06\x04\0\x03\0\x02\x01\x12\x03#\x10)\x1a\x1d\x20multiaddrs\x20for\
\x20a\x20given\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x01\x04\x12\x03#\
\x10\x18\n\x0e\n\x07\x04\0\x03\0\x02\x01\x05\x12\x03#\x19\x1e\n\x0e\n\
\x07\x04\0\x03\0\x02\x01\x01\x12\x03#\x1f$\n\x0e\n\x07\x04\0\x03\0\x02\
\x01\x03\x12\x03#'(\nP\n\x06\x04\0\x03\0\x02\x02\x12\x03&\x107\x1aA\x20u\
sed\x20to\x20signal\x20the\x20sender's\x20connection\x20capabilities\x20\
to\x20the\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x02\x04\x12\x03&\x10\x18\
\n\x0e\n\x07\x04\0\x03\0\x02\x02\x06\x12\x03&\x19'\n\x0e\n\x07\x04\0\x03\
\0\x02\x02\x01\x12\x03&(2\n\x0e\n\x07\x04\0\x03\0\x02\x02\x03\x12\x03&56\
\n2\n\x04\x04\0\x02\0\x12\x03*\x08&\x1a%\x20defines\x20what\x20type\x20o\
f\x20message\x20it\x20is.\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03*\x08\x10\
\n\x0c\n\x05\x04\0\x02\0\x06\x12\x03*\x11\x1c\n\x0c\n\x05\x04\0\x02\0\
\x01\x12\x03*\x1d!\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03*$%\nO\n\x04\x04\0\
\x02\x01\x12\x03-\x08,\x1aB\x20defines\x20what\x20coral\x20cluster\x20le\
vel\x20this\x20query/response\x20belongs\x20to.\n\n\x0c\n\x05\x04\0\x02\
\x01\x04\x12\x03-\x08\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03-\x11\x16\
\n\x0c\n\x05\x04\0\x02\x01\x01\x12\x03-\x17&\n\x0c\n\x05\x04\0\x02\x01\
\x03\x12\x03-)+\nw\n\x04\x04\0\x02\x02\x12\x031\x08\x1f\x1aj\x20Used\x20\
to\x20specify\x20the\x20key\x20associated\x20with\x20this\x20message.\n\
\x20PUT_VALUE,\x20GET_VALUE,\x20ADD_PROVIDER,\x20GET_PROVIDERS\n\n\x0c\n\
\x05\x04\0\x02\x02\x04\x12\x031\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\
\x12\x031\x11\x16\n\x0c\n\x05\x04\0\x02\x02\x01\x12\x031\x17\x1a\n\x0c\n\
\x05\x04\0\x02\x02\x03\x12\x031\x1d\x1e\n;\n\x04\x04\0\x02\x03\x12\x035\
\x08-\x1a.\x20Used\x20to\x20return\x20a\x20value\n\x20PUT_VALUE,\x20GET_\
VALUE\n\n\x0c\n\x05\x04\0\x02\x03\x04\x12\x035\x08\x10\n\x0c\n\x05\x04\0\
\x02\x03\x06\x12\x035\x11!\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x035\"(\n\
\x0c\n\x05\x04\0\x02\x03\x03\x12\x035+,\nc\n\x04\x04\0\x02\x04\x12\x039\
\x08&\x1aV\x20Used\x20to\x20return\x20peers\x20closer\x20to\x20a\x20key\
\x20in\x20a\x20query\n\x20GET_VALUE,\x20GET_PROVIDERS,\x20FIND_NODE\n\n\
\x0c\n\x05\x04\0\x02\x04\x04\x12\x039\x08\x10\n\x0c\n\x05\x04\0\x02\x04\
\x06\x12\x039\x11\x15\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x039\x16!\n\x0c\
\n\x05\x04\0\x02\x04\x03\x12\x039$%\nO\n\x04\x04\0\x02\x05\x12\x03=\x08(\
\x1aB\x20Used\x20to\x20return\x20Providers\n\x20GET_VALUE,\x20ADD_PROVID\
ER,\x20GET_PROVIDERS\n\n\x0c\n\x05\x04\0\x02\x05\x04\x12\x03=\x08\x10\n\
\x0c\n\x05\x04\0\x02\x05\x06\x12\x03=\x11\x15\n\x0c\n\x05\x04\0\x02\x05\
\x01\x12\x03=\x16#\n\x0c\n\x05\x04\0\x02\x05\x03\x12\x03=&'\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

View File

@ -0,0 +1,22 @@
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
pub mod dht;
pub mod record;

View File

@ -0,0 +1,498 @@
// This file is generated. Do not edit
// @generated
// https://github.com/Manishearth/rust-clippy/issues/702
#![allow(unknown_lints)]
#![allow(clippy)]
#![cfg_attr(rustfmt, rustfmt_skip)]
#![allow(box_pointers)]
#![allow(dead_code)]
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(trivial_casts)]
#![allow(unsafe_code)]
#![allow(unused_imports)]
#![allow(unused_results)]
use protobuf::Message as Message_imported_for_functions;
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
#[derive(PartialEq,Clone,Default)]
pub struct Record {
// message fields
key: ::protobuf::SingularField<::std::string::String>,
value: ::protobuf::SingularField<::std::vec::Vec<u8>>,
author: ::protobuf::SingularField<::std::string::String>,
signature: ::protobuf::SingularField<::std::vec::Vec<u8>>,
timeReceived: ::protobuf::SingularField<::std::string::String>,
// special fields
unknown_fields: ::protobuf::UnknownFields,
cached_size: ::protobuf::CachedSize,
}
// see codegen.rs for the explanation why impl Sync explicitly
unsafe impl ::std::marker::Sync for Record {}
impl Record {
pub fn new() -> Record {
::std::default::Default::default()
}
pub fn default_instance() -> &'static Record {
static mut instance: ::protobuf::lazy::Lazy<Record> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const Record,
};
unsafe {
instance.get(Record::new)
}
}
// optional string key = 1;
pub fn clear_key(&mut self) {
self.key.clear();
}
pub fn has_key(&self) -> bool {
self.key.is_some()
}
// Param is passed by value, moved
pub fn set_key(&mut self, v: ::std::string::String) {
self.key = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_key(&mut self) -> &mut ::std::string::String {
if self.key.is_none() {
self.key.set_default();
}
self.key.as_mut().unwrap()
}
// Take field
pub fn take_key(&mut self) -> ::std::string::String {
self.key.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_key(&self) -> &str {
match self.key.as_ref() {
Some(v) => &v,
None => "",
}
}
fn get_key_for_reflect(&self) -> &::protobuf::SingularField<::std::string::String> {
&self.key
}
fn mut_key_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::string::String> {
&mut self.key
}
// optional bytes value = 2;
pub fn clear_value(&mut self) {
self.value.clear();
}
pub fn has_value(&self) -> bool {
self.value.is_some()
}
// Param is passed by value, moved
pub fn set_value(&mut self, v: ::std::vec::Vec<u8>) {
self.value = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_value(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.value.is_none() {
self.value.set_default();
}
self.value.as_mut().unwrap()
}
// Take field
pub fn take_value(&mut self) -> ::std::vec::Vec<u8> {
self.value.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_value(&self) -> &[u8] {
match self.value.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_value_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.value
}
fn mut_value_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.value
}
// optional string author = 3;
pub fn clear_author(&mut self) {
self.author.clear();
}
pub fn has_author(&self) -> bool {
self.author.is_some()
}
// Param is passed by value, moved
pub fn set_author(&mut self, v: ::std::string::String) {
self.author = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_author(&mut self) -> &mut ::std::string::String {
if self.author.is_none() {
self.author.set_default();
}
self.author.as_mut().unwrap()
}
// Take field
pub fn take_author(&mut self) -> ::std::string::String {
self.author.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_author(&self) -> &str {
match self.author.as_ref() {
Some(v) => &v,
None => "",
}
}
fn get_author_for_reflect(&self) -> &::protobuf::SingularField<::std::string::String> {
&self.author
}
fn mut_author_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::string::String> {
&mut self.author
}
// optional bytes signature = 4;
pub fn clear_signature(&mut self) {
self.signature.clear();
}
pub fn has_signature(&self) -> bool {
self.signature.is_some()
}
// Param is passed by value, moved
pub fn set_signature(&mut self, v: ::std::vec::Vec<u8>) {
self.signature = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_signature(&mut self) -> &mut ::std::vec::Vec<u8> {
if self.signature.is_none() {
self.signature.set_default();
}
self.signature.as_mut().unwrap()
}
// Take field
pub fn take_signature(&mut self) -> ::std::vec::Vec<u8> {
self.signature.take().unwrap_or_else(|| ::std::vec::Vec::new())
}
pub fn get_signature(&self) -> &[u8] {
match self.signature.as_ref() {
Some(v) => &v,
None => &[],
}
}
fn get_signature_for_reflect(&self) -> &::protobuf::SingularField<::std::vec::Vec<u8>> {
&self.signature
}
fn mut_signature_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::vec::Vec<u8>> {
&mut self.signature
}
// optional string timeReceived = 5;
pub fn clear_timeReceived(&mut self) {
self.timeReceived.clear();
}
pub fn has_timeReceived(&self) -> bool {
self.timeReceived.is_some()
}
// Param is passed by value, moved
pub fn set_timeReceived(&mut self, v: ::std::string::String) {
self.timeReceived = ::protobuf::SingularField::some(v);
}
// Mutable pointer to the field.
// If field is not initialized, it is initialized with default value first.
pub fn mut_timeReceived(&mut self) -> &mut ::std::string::String {
if self.timeReceived.is_none() {
self.timeReceived.set_default();
}
self.timeReceived.as_mut().unwrap()
}
// Take field
pub fn take_timeReceived(&mut self) -> ::std::string::String {
self.timeReceived.take().unwrap_or_else(|| ::std::string::String::new())
}
pub fn get_timeReceived(&self) -> &str {
match self.timeReceived.as_ref() {
Some(v) => &v,
None => "",
}
}
fn get_timeReceived_for_reflect(&self) -> &::protobuf::SingularField<::std::string::String> {
&self.timeReceived
}
fn mut_timeReceived_for_reflect(&mut self) -> &mut ::protobuf::SingularField<::std::string::String> {
&mut self.timeReceived
}
}
impl ::protobuf::Message for Record {
fn is_initialized(&self) -> bool {
true
}
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
while !is.eof()? {
let (field_number, wire_type) = is.read_tag_unpack()?;
match field_number {
1 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.key)?;
},
2 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.value)?;
},
3 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.author)?;
},
4 => {
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.signature)?;
},
5 => {
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.timeReceived)?;
},
_ => {
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
},
};
}
::std::result::Result::Ok(())
}
// Compute sizes of nested messages
#[allow(unused_variables)]
fn compute_size(&self) -> u32 {
let mut my_size = 0;
if let Some(ref v) = self.key.as_ref() {
my_size += ::protobuf::rt::string_size(1, &v);
}
if let Some(ref v) = self.value.as_ref() {
my_size += ::protobuf::rt::bytes_size(2, &v);
}
if let Some(ref v) = self.author.as_ref() {
my_size += ::protobuf::rt::string_size(3, &v);
}
if let Some(ref v) = self.signature.as_ref() {
my_size += ::protobuf::rt::bytes_size(4, &v);
}
if let Some(ref v) = self.timeReceived.as_ref() {
my_size += ::protobuf::rt::string_size(5, &v);
}
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
self.cached_size.set(my_size);
my_size
}
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
if let Some(ref v) = self.key.as_ref() {
os.write_string(1, &v)?;
}
if let Some(ref v) = self.value.as_ref() {
os.write_bytes(2, &v)?;
}
if let Some(ref v) = self.author.as_ref() {
os.write_string(3, &v)?;
}
if let Some(ref v) = self.signature.as_ref() {
os.write_bytes(4, &v)?;
}
if let Some(ref v) = self.timeReceived.as_ref() {
os.write_string(5, &v)?;
}
os.write_unknown_fields(self.get_unknown_fields())?;
::std::result::Result::Ok(())
}
fn get_cached_size(&self) -> u32 {
self.cached_size.get()
}
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
&self.unknown_fields
}
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
&mut self.unknown_fields
}
fn as_any(&self) -> &::std::any::Any {
self as &::std::any::Any
}
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
self as &mut ::std::any::Any
}
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
self
}
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
::protobuf::MessageStatic::descriptor_static(None::<Self>)
}
}
impl ::protobuf::MessageStatic for Record {
fn new() -> Record {
Record::new()
}
fn descriptor_static(_: ::std::option::Option<Record>) -> &'static ::protobuf::reflect::MessageDescriptor {
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
};
unsafe {
descriptor.get(|| {
let mut fields = ::std::vec::Vec::new();
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"key",
Record::get_key_for_reflect,
Record::mut_key_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"value",
Record::get_value_for_reflect,
Record::mut_value_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"author",
Record::get_author_for_reflect,
Record::mut_author_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
"signature",
Record::get_signature_for_reflect,
Record::mut_signature_for_reflect,
));
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
"timeReceived",
Record::get_timeReceived_for_reflect,
Record::mut_timeReceived_for_reflect,
));
::protobuf::reflect::MessageDescriptor::new::<Record>(
"Record",
fields,
file_descriptor_proto()
)
})
}
}
}
impl ::protobuf::Clear for Record {
fn clear(&mut self) {
self.clear_key();
self.clear_value();
self.clear_author();
self.clear_signature();
self.clear_timeReceived();
self.unknown_fields.clear();
}
}
impl ::std::fmt::Debug for Record {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
::protobuf::text_format::fmt(self, f)
}
}
impl ::protobuf::reflect::ProtobufValue for Record {
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
::protobuf::reflect::ProtobufValueRef::Message(self)
}
}
static file_descriptor_proto_data: &'static [u8] = b"\
\n\x0crecord.proto\x12\trecord.pb\"\x8a\x01\n\x06Record\x12\x10\n\x03key\
\x18\x01\x20\x01(\tR\x03key\x12\x14\n\x05value\x18\x02\x20\x01(\x0cR\x05\
value\x12\x16\n\x06author\x18\x03\x20\x01(\tR\x06author\x12\x1c\n\tsigna\
ture\x18\x04\x20\x01(\x0cR\tsignature\x12\"\n\x0ctimeReceived\x18\x05\
\x20\x01(\tR\x0ctimeReceivedJ\xac\x05\n\x06\x12\x04\0\0\x14\x01\n\x08\n\
\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x11\nX\n\x02\
\x04\0\x12\x04\x05\0\x14\x01\x1aL\x20Record\x20represents\x20a\x20dht\
\x20record\x20that\x20contains\x20a\x20value\n\x20for\x20a\x20key\x20val\
ue\x20pair\n\n\n\n\x03\x04\0\x01\x12\x03\x05\x08\x0e\n2\n\x04\x04\0\x02\
\0\x12\x03\x07\x08\x20\x1a%\x20The\x20key\x20that\x20references\x20this\
\x20record\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03\x07\x08\x10\n\x0c\n\x05\
\x04\0\x02\0\x05\x12\x03\x07\x11\x17\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\
\x07\x18\x1b\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03\x07\x1e\x1f\n6\n\x04\
\x04\0\x02\x01\x12\x03\n\x08!\x1a)\x20The\x20actual\x20value\x20this\x20\
record\x20is\x20storing\n\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\n\x08\
\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03\n\x11\x16\n\x0c\n\x05\x04\0\
\x02\x01\x01\x12\x03\n\x17\x1c\n\x0c\n\x05\x04\0\x02\x01\x03\x12\x03\n\
\x1f\x20\n-\n\x04\x04\0\x02\x02\x12\x03\r\x08#\x1a\x20\x20hash\x20of\x20\
the\x20authors\x20public\x20key\n\n\x0c\n\x05\x04\0\x02\x02\x04\x12\x03\
\r\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\r\x11\x17\n\x0c\n\x05\
\x04\0\x02\x02\x01\x12\x03\r\x18\x1e\n\x0c\n\x05\x04\0\x02\x02\x03\x12\
\x03\r!\"\n7\n\x04\x04\0\x02\x03\x12\x03\x10\x08%\x1a*\x20A\x20PKI\x20si\
gnature\x20for\x20the\x20key+value+author\n\n\x0c\n\x05\x04\0\x02\x03\
\x04\x12\x03\x10\x08\x10\n\x0c\n\x05\x04\0\x02\x03\x05\x12\x03\x10\x11\
\x16\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x10\x17\x20\n\x0c\n\x05\x04\0\
\x02\x03\x03\x12\x03\x10#$\n<\n\x04\x04\0\x02\x04\x12\x03\x13\x08)\x1a/\
\x20Time\x20the\x20record\x20was\x20received,\x20set\x20by\x20receiver\n\
\n\x0c\n\x05\x04\0\x02\x04\x04\x12\x03\x13\x08\x10\n\x0c\n\x05\x04\0\x02\
\x04\x05\x12\x03\x13\x11\x17\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x03\x13\
\x18$\n\x0c\n\x05\x04\0\x02\x04\x03\x12\x03\x13'(\
";
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
lock: ::protobuf::lazy::ONCE_INIT,
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
};
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
}
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
unsafe {
file_descriptor_proto_lazy.get(|| {
parse_descriptor_proto()
})
}
}

382
libp2p-kad/src/protocol.rs Normal file
View File

@ -0,0 +1,382 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! Provides the `KadMsg` enum of all the possible messages transmitted with the Kademlia protocol,
//! and the `KademliaProtocolConfig` connection upgrade whose output is a
//! `Stream<Item = KadMsg> + Sink<SinkItem = KadMsg>`.
//!
//! The `Stream` component is used to poll the underlying transport, and the `Sink` component is
//! used to send messages.
use bytes::Bytes;
use futures::{Sink, Stream};
use futures::future;
use libp2p_peerstore::PeerId;
use libp2p_swarm::{ConnectionUpgrade, Endpoint, Multiaddr};
use protobuf::{self, Message};
use protobuf_structs;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_io::{AsyncRead, AsyncWrite};
use varint::VarintCodec;
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum ConnectionType {
/// Sender hasn't tried to connect to peer.
NotConnected = 0,
/// Sender is currently connected to peer.
Connected = 1,
/// Sender was recently connected to peer.
CanConnect = 2,
/// Sender tried to connect to peer but failed.
CannotConnect = 3,
}
impl From<protobuf_structs::dht::Message_ConnectionType> for ConnectionType {
#[inline]
fn from(raw: protobuf_structs::dht::Message_ConnectionType) -> ConnectionType {
use protobuf_structs::dht::Message_ConnectionType::*;
match raw {
NOT_CONNECTED => ConnectionType::NotConnected,
CONNECTED => ConnectionType::Connected,
CAN_CONNECT => ConnectionType::CanConnect,
CANNOT_CONNECT => ConnectionType::CannotConnect,
}
}
}
impl Into<protobuf_structs::dht::Message_ConnectionType> for ConnectionType {
#[inline]
fn into(self) -> protobuf_structs::dht::Message_ConnectionType {
use protobuf_structs::dht::Message_ConnectionType::*;
match self {
ConnectionType::NotConnected => NOT_CONNECTED,
ConnectionType::Connected => CONNECTED,
ConnectionType::CanConnect => CAN_CONNECT,
ConnectionType::CannotConnect => CANNOT_CONNECT,
}
}
}
/// Information about a peer, as known by the sender.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Peer {
pub node_id: PeerId,
/// The multiaddresses that are known for that peer.
pub multiaddrs: Vec<Multiaddr>,
pub connection_ty: ConnectionType,
}
impl<'a> From<&'a mut protobuf_structs::dht::Message_Peer> for Peer {
fn from(peer: &'a mut protobuf_structs::dht::Message_Peer) -> Peer {
let node_id = PeerId::from_bytes(peer.get_id().to_vec()).unwrap(); // TODO: don't unwrap
let addrs = peer.take_addrs()
.into_iter()
.map(|a| Multiaddr::from_bytes(a).unwrap()) // TODO: don't unwrap
.collect();
let connection_ty = peer.get_connection().into();
Peer {
node_id: node_id,
multiaddrs: addrs,
connection_ty: connection_ty,
}
}
}
impl Into<protobuf_structs::dht::Message_Peer> for Peer {
fn into(self) -> protobuf_structs::dht::Message_Peer {
let mut out = protobuf_structs::dht::Message_Peer::new();
out.set_id(self.node_id.into_bytes());
for addr in self.multiaddrs {
out.mut_addrs().push(addr.into_bytes());
}
out.set_connection(self.connection_ty.into());
out
}
}
/// Configuration for a Kademlia connection upgrade. When applied to a connection, turns this
/// connection into a `Stream + Sink` whose items are of type `KadMsg`.
#[derive(Debug, Default, Copy, Clone)]
pub struct KademliaProtocolConfig;
impl<C> ConnectionUpgrade<C> for KademliaProtocolConfig
where
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
{
type Output =
Box<KadStreamSink<Item = KadMsg, Error = IoError, SinkItem = KadMsg, SinkError = IoError>>;
type Future = future::FutureResult<Self::Output, IoError>;
type NamesIter = iter::Once<(Bytes, ())>;
type UpgradeIdentifier = ();
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once(("/ipfs/kad/1.0.0".into(), ()))
}
#[inline]
fn upgrade(self, incoming: C, _: (), _: Endpoint, _: &Multiaddr) -> Self::Future {
future::ok(kademlia_protocol(incoming))
}
}
// Upgrades a socket to use the Kademlia protocol.
fn kademlia_protocol<'a, S>(
socket: S,
) -> Box<KadStreamSink<Item = KadMsg, Error = IoError, SinkItem = KadMsg, SinkError = IoError> + 'a>
where
S: AsyncRead + AsyncWrite + 'a,
{
let wrapped = socket
.framed(VarintCodec::default())
.from_err::<IoError>()
.with(|request| -> Result<_, IoError> {
let proto_struct = msg_to_proto(request);
Ok(proto_struct.write_to_bytes().unwrap()) // TODO: error?
})
.and_then(|bytes| {
let response = protobuf::parse_from_bytes(&bytes)?;
proto_to_msg(response)
});
Box::new(wrapped)
}
/// Custom trait that derives `Sink` and `Stream`, so that we can box it.
pub trait KadStreamSink
: Stream<Item = KadMsg, Error = IoError> + Sink<SinkItem = KadMsg, SinkError = IoError>
{
}
impl<T> KadStreamSink for T
where
T: Stream<Item = KadMsg, Error = IoError> + Sink<SinkItem = KadMsg, SinkError = IoError>,
{
}
/// Message that we can send to a peer or received from a peer.
// TODO: document the rest
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum KadMsg {
/// Ping request or response.
Ping,
/// Target must save the given record, can be queried later with `GetValueReq`.
PutValue {
/// Identifier of the record.
key: Vec<u8>,
/// The record itself.
record: (), //record: protobuf_structs::record::Record, // TODO: no
},
GetValueReq {
/// Identifier of the record.
key: Vec<u8>,
},
GetValueRes {
/// Identifier of the returned record.
key: Vec<u8>,
record: (), //record: Option<protobuf_structs::record::Record>, // TODO: no
closer_peers: Vec<Peer>,
},
/// Request for the list of nodes whose IDs are the closest to `key`. The number of nodes
/// returned is not specified, but should be around 20.
FindNodeReq {
/// Identifier of the node.
key: Vec<u8>,
},
/// Response to a `FindNodeReq`.
FindNodeRes {
/// Results of the request.
closer_peers: Vec<Peer>,
},
}
// Turns a type-safe kadmelia message into the corresponding row protobuf message.
fn msg_to_proto(kad_msg: KadMsg) -> protobuf_structs::dht::Message {
match kad_msg {
KadMsg::Ping => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PING);
msg
}
KadMsg::PutValue { key, .. } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PUT_VALUE);
msg.set_key(key);
//msg.set_record(record); // TODO:
msg
}
KadMsg::GetValueReq { key } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::GET_VALUE);
msg.set_key(key);
msg.set_clusterLevelRaw(10);
msg
}
KadMsg::GetValueRes { .. } => unimplemented!(),
KadMsg::FindNodeReq { key } => {
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
msg.set_key(key);
msg.set_clusterLevelRaw(10);
msg
}
KadMsg::FindNodeRes { closer_peers } => {
// TODO: if empty, the remote will think it's a request
assert!(!closer_peers.is_empty());
let mut msg = protobuf_structs::dht::Message::new();
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
msg.set_clusterLevelRaw(9);
for peer in closer_peers {
msg.mut_closerPeers().push(peer.into());
}
msg
}
}
}
/// Turns a raw Kademlia message into a type-safe message.
fn proto_to_msg(mut message: protobuf_structs::dht::Message) -> Result<KadMsg, IoError> {
match message.get_field_type() {
protobuf_structs::dht::Message_MessageType::PING => Ok(KadMsg::Ping),
protobuf_structs::dht::Message_MessageType::PUT_VALUE => {
let key = message.take_key();
let _record = message.take_record();
Ok(KadMsg::PutValue {
key: key,
record: (),
})
}
protobuf_structs::dht::Message_MessageType::GET_VALUE => {
let key = message.take_key();
Ok(KadMsg::GetValueReq { key: key })
}
protobuf_structs::dht::Message_MessageType::FIND_NODE => {
if message.get_closerPeers().is_empty() {
Ok(KadMsg::FindNodeReq {
key: message.take_key(),
})
} else {
Ok(KadMsg::FindNodeRes {
closer_peers: message
.mut_closerPeers()
.iter_mut()
.map(|peer| peer.into())
.collect(),
})
}
}
protobuf_structs::dht::Message_MessageType::GET_PROVIDERS
| protobuf_structs::dht::Message_MessageType::ADD_PROVIDER => {
// These messages don't seem to be used in the protocol in practice, so if we receive
// them we suppose that it's a mistake in the protocol usage.
Err(IoError::new(
IoErrorKind::InvalidData,
"received an unsupported kad message type",
))
}
}
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use self::libp2p_tcp_transport::TcpConfig;
use self::tokio_core::reactor::Core;
use futures::{Future, Sink, Stream};
use libp2p_peerstore::PeerId;
use libp2p_swarm::Transport;
use protocol::{ConnectionType, KadMsg, KademliaProtocolConfig, Peer};
use std::sync::mpsc;
use std::thread;
#[test]
fn correct_transfer() {
// We open a server and a client, send a message between the two, and check that they were
// successfully received.
test_one(KadMsg::Ping);
test_one(KadMsg::PutValue {
key: vec![1, 2, 3, 4],
record: (),
});
test_one(KadMsg::GetValueReq {
key: vec![10, 11, 12],
});
test_one(KadMsg::FindNodeReq {
key: vec![9, 12, 0, 245, 245, 201, 28, 95],
});
test_one(KadMsg::FindNodeRes {
closer_peers: vec![
Peer {
node_id: PeerId::from_public_key(&[93, 80, 12, 250]),
multiaddrs: vec!["/ip4/100.101.102.103/tcp/20105".parse().unwrap()],
connection_ty: ConnectionType::Connected,
},
],
});
// TODO: all messages
fn test_one(msg_server: KadMsg) {
let msg_client = msg_server.clone();
let (tx, rx) = mpsc::channel();
let bg_thread = thread::spawn(move || {
let mut core = Core::new().unwrap();
let transport = TcpConfig::new(core.handle()).with_upgrade(KademliaProtocolConfig);
let (listener, addr) = transport
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
.unwrap();
tx.send(addr).unwrap();
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|proto| proto.into_future().map_err(|(err, _)| err).map(|(v, _)| v))
.map(|recv_msg| {
assert_eq!(recv_msg.unwrap(), msg_server);
()
});
let _ = core.run(future).unwrap();
});
let mut core = Core::new().unwrap();
let transport = TcpConfig::new(core.handle()).with_upgrade(KademliaProtocolConfig);
let future = transport
.dial(rx.recv().unwrap())
.unwrap_or_else(|_| panic!())
.and_then(|proto| proto.0.send(msg_client))
.map(|_| ());
let _ = core.run(future).unwrap();
bg_thread.join().unwrap();
}
}
}

336
libp2p-kad/src/query.rs Normal file
View File

@ -0,0 +1,336 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! This module handles performing iterative queries about the network.
use fnv::FnvHashSet;
use futures::{future, Future};
use kad_server::KademliaServerController;
use kbucket::KBucketsPeerId;
use libp2p_peerstore::PeerId;
use multiaddr::{AddrComponent, Multiaddr};
use protocol;
use rand;
use smallvec::SmallVec;
use std::cmp::Ordering;
use std::io::Error as IoError;
use std::mem;
use std::time::Duration;
/// Interface that the query uses to communicate with the rest of the system.
pub trait QueryInterface: Clone {
/// Returns the peer ID of the local node.
fn local_id(&self) -> &PeerId;
/// Finds the nodes closest to a peer ID.
fn kbuckets_find_closest(&self, addr: &PeerId) -> Vec<PeerId>;
/// Adds new known multiaddrs for the given peer.
fn peer_add_addrs<I>(&self, peer: &PeerId, multiaddrs: I, ttl: Duration)
where
I: Iterator<Item = Multiaddr>;
/// Returns the level of parallelism wanted for this query.
fn parallelism(&self) -> usize;
/// Attempts to contact the given multiaddress, then calls `and_then` on success. Returns a
/// future that contains the output of `and_then`, or an error if we failed to contact the
/// remote.
// TODO: use HKTB once Rust supports that, to avoid boxing the future
fn send<F, FRet>(
&self,
addr: Multiaddr,
and_then: F,
) -> Box<Future<Item = FRet, Error = IoError>>
where
F: FnOnce(&KademliaServerController) -> FRet + 'static,
FRet: 'static;
}
/// Starts a query for an iterative `FIND_NODE` request.
#[inline]
pub fn find_node<'a, I>(
query_interface: I,
searched_key: PeerId,
) -> Box<Future<Item = Vec<PeerId>, Error = IoError> + 'a>
where
I: QueryInterface + 'a,
{
query(query_interface, searched_key, 20) // TODO: constant
}
/// Refreshes a specific bucket by performing an iterative `FIND_NODE` on a random ID of this
/// bucket.
///
/// Returns a dummy no-op future if `bucket_num` is out of range.
pub fn refresh<'a, I>(
query_interface: I,
bucket_num: usize,
) -> Box<Future<Item = (), Error = IoError> + 'a>
where
I: QueryInterface + 'a,
{
let peer_id = match gen_random_id(&query_interface, bucket_num) {
Ok(p) => p,
Err(()) => return Box::new(future::ok(())),
};
let future = find_node(query_interface, peer_id).map(|_| ());
Box::new(future) as Box<_>
}
// Generates a random `PeerId` that belongs to the given bucket.
//
// Returns an error if `bucket_num` is out of range.
fn gen_random_id<I>(query_interface: &I, bucket_num: usize) -> Result<PeerId, ()>
where
I: ?Sized + QueryInterface,
{
let my_id = query_interface.local_id();
let my_id_len = my_id.as_bytes().len();
// TODO: this 2 is magic here ; it is the length of the hash of the multihash
let bits_diff = bucket_num + 1;
if bits_diff > 8 * (my_id_len - 2) {
return Err(());
}
let mut random_id = [0; 64];
for byte in 0..my_id_len {
match byte.cmp(&(my_id_len - bits_diff / 8 - 1)) {
Ordering::Less => {
random_id[byte] = my_id.as_bytes()[byte];
}
Ordering::Equal => {
let mask: u8 = (1 << (bits_diff % 8)) - 1;
random_id[byte] = (my_id.as_bytes()[byte] & !mask) | (rand::random::<u8>() & mask);
}
Ordering::Greater => {
random_id[byte] = rand::random();
}
}
}
let peer_id = PeerId::from_bytes(random_id[..my_id_len].to_owned())
.expect("randomly-generated peer ID should always be valid");
Ok(peer_id)
}
// Generic query-performing function.
fn query<'a, I>(
query_interface: I,
searched_key: PeerId,
num_results: usize,
) -> Box<Future<Item = Vec<PeerId>, Error = IoError> + 'a>
where
I: QueryInterface + 'a,
{
// State of the current iterative process.
struct State<'a> {
// If true, we are still in the first step of the algorithm where we try to find the
// closest node. If false, then we are contacting the k closest nodes in order to fill the
// list with enough results.
looking_for_closer: bool,
// Final output of the iteration.
result: Vec<PeerId>,
// For each open connection, a future with the response of the remote.
// Note that don't use a `SmallVec` here because `select_all` produces a `Vec`.
current_attempts_fut: Vec<Box<Future<Item = Vec<protocol::Peer>, Error = IoError> + 'a>>,
// For each open connection, the peer ID that we are connected to.
// Must always have the same length as `current_attempts_fut`.
current_attempts_addrs: SmallVec<[PeerId; 32]>,
// Nodes that need to be attempted.
pending_nodes: Vec<PeerId>,
// Peers that we tried to contact but failed.
failed_to_contact: FnvHashSet<PeerId>,
}
let initial_state = State {
looking_for_closer: true,
result: Vec::with_capacity(num_results),
current_attempts_fut: Vec::new(),
current_attempts_addrs: SmallVec::new(),
pending_nodes: query_interface.kbuckets_find_closest(&searched_key),
failed_to_contact: Default::default(),
};
let parallelism = query_interface.parallelism();
// Start of the iterative process.
let stream = future::loop_fn(initial_state, move |mut state| {
let searched_key = searched_key.clone();
let query_interface = query_interface.clone();
let query_interface2 = query_interface.clone();
// Find out which nodes to contact at this iteration.
let to_contact = {
let wanted_len = if state.looking_for_closer {
parallelism.saturating_sub(state.current_attempts_fut.len())
} else {
num_results.saturating_sub(state.current_attempts_fut.len())
};
let mut to_contact = SmallVec::<[_; 16]>::new();
while to_contact.len() < wanted_len && !state.pending_nodes.is_empty() {
// Move the first element of `pending_nodes` to `to_contact`, but ignore nodes that
// are already part of the results or of a current attempt or if we failed to
// contact it before.
let peer = state.pending_nodes.remove(0);
if state.result.iter().any(|p| p == &peer) {
continue;
}
if state.current_attempts_addrs.iter().any(|p| p == &peer) {
continue;
}
if state.failed_to_contact.iter().any(|p| p == &peer) {
continue;
}
to_contact.push(peer);
}
to_contact
};
// For each node in `to_contact`, start an RPC query and a corresponding entry in the two
// `state.current_attempts_*` fields.
for peer in to_contact {
let multiaddr: Multiaddr = AddrComponent::P2P(peer.clone().into_bytes()).into();
let searched_key2 = searched_key.clone();
let resp_rx =
query_interface.send(multiaddr.clone(), move |ctl| ctl.find_node(&searched_key2));
state.current_attempts_addrs.push(peer.clone());
let current_attempt = resp_rx.flatten();
state
.current_attempts_fut
.push(Box::new(current_attempt) as Box<_>);
}
debug_assert_eq!(
state.current_attempts_addrs.len(),
state.current_attempts_fut.len()
);
// Extract `current_attempts_fut` so that we can pass it to `select_all`. We will push the
// values back when inside the loop.
let current_attempts_fut = mem::replace(&mut state.current_attempts_fut, Vec::new());
if current_attempts_fut.is_empty() {
// If `current_attempts_fut` is empty, then `select_all` would panic. It attempts
// when we have no additional node to query.
let future = future::ok(future::Loop::Break(state));
return future::Either::A(future);
}
// This is the future that continues or breaks the `loop_fn`.
let future = future::select_all(current_attempts_fut.into_iter()).then(move |result| {
let (message, trigger_idx, other_current_attempts) = match result {
Err((err, trigger_idx, other_current_attempts)) => {
(Err(err), trigger_idx, other_current_attempts)
}
Ok((message, trigger_idx, other_current_attempts)) => {
(Ok(message), trigger_idx, other_current_attempts)
}
};
// Putting back the extracted elements in `state`.
let remote_id = state.current_attempts_addrs.remove(trigger_idx);
debug_assert!(state.current_attempts_fut.is_empty());
state.current_attempts_fut = other_current_attempts;
// `message` contains the reason why the current future was woken up.
let closer_peers = match message {
Ok(msg) => msg,
Err(_) => {
state.failed_to_contact.insert(remote_id);
return Ok(future::Loop::Continue(state));
}
};
// Update `state.result` with the fact that we received a valid message from a node.
if let Some(insert_pos) = state.result.iter().position(|e| {
e.distance_with(&searched_key) >= remote_id.distance_with(&searched_key)
}) {
if state.result[insert_pos] != remote_id {
state.result.pop();
state.result.insert(insert_pos, remote_id);
}
} else if state.result.len() < num_results {
state.result.push(remote_id);
}
// The loop below will set this variable to `true` if we find a new element to put at
// the top of the result. This would mean that we have to continue looping.
let mut local_nearest_node_updated = false;
// Update `state` with the actual content of the message.
for mut peer in closer_peers {
// Update the peerstore with the information sent by
// the remote.
{
let valid_multiaddrs = peer.multiaddrs.drain(..);
query_interface2.peer_add_addrs(
&peer.node_id,
valid_multiaddrs,
Duration::from_secs(3600),
); // TODO: which TTL?
}
if peer.node_id.distance_with(&searched_key)
<= state.result[0].distance_with(&searched_key)
{
local_nearest_node_updated = true;
}
if state.result.iter().any(|ma| ma == &peer.node_id) {
continue;
}
// Insert the node into `pending_nodes` at the right position, or do not
// insert it if it is already in there.
if let Some(insert_pos) = state.pending_nodes.iter().position(|e| {
e.distance_with(&searched_key) >= peer.node_id.distance_with(&searched_key)
}) {
if state.pending_nodes[insert_pos] != peer.node_id {
state.pending_nodes.insert(insert_pos, peer.node_id.clone());
}
} else {
state.pending_nodes.push(peer.node_id.clone());
}
}
if state.result.len() >= num_results
|| (!state.looking_for_closer && state.current_attempts_fut.is_empty())
{
// Check that our `Vec::with_capacity` is correct.
debug_assert_eq!(state.result.capacity(), num_results);
Ok(future::Loop::Break(state))
} else {
if !local_nearest_node_updated {
state.looking_for_closer = false;
}
Ok(future::Loop::Continue(state))
}
});
future::Either::B(future)
});
let stream = stream.map(|state| state.result);
Box::new(stream) as Box<_>
}

View File

@ -48,6 +48,7 @@ use multiaddr::Multiaddr;
use muxing::StreamMuxer;
use parking_lot::Mutex;
use std::io::Error as IoError;
use std::mem;
use std::sync::Arc;
use transport::{ConnectionUpgrade, MuxedTransport, Transport, UpgradedNode};

View File

@ -18,6 +18,7 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use std::fmt;
use std::io::Error as IoError;
use futures::{future, Async, Future, IntoFuture, Poll, Stream};
use futures::sync::mpsc;
@ -93,6 +94,18 @@ where
new_toprocess: mpsc::UnboundedSender<Box<Future<Item = (), Error = IoError>>>,
}
impl<T, C> fmt::Debug for SwarmController<T, C>
where
T: fmt::Debug + MuxedTransport + 'static, // TODO: 'static :-/
C: fmt::Debug + ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.debug_tuple("SwarmController")
.field(&self.upgraded)
.finish()
}
}
impl<T, C> Clone for SwarmController<T, C>
where
T: MuxedTransport + Clone + 'static, // TODO: 'static :-/

View File

@ -467,6 +467,7 @@ where
fn encode(&mut self, item: D, dst: &mut BytesMut) -> Result<(), io::Error> {
let encoded_len = encode(item.as_ref().len());
dst.reserve(encoded_len.len() + item.as_ref().len());
dst.put(encoded_len);
dst.put(item);
Ok(())