Rework libp2p-identify (#116)

* Add a proper PeerId to Peerstore

* Turn identify into a transport layer

* Expose the dialed multiaddress

* Add identified nodes to the peerstore

* Allow configuring the TTL of the addresses

* Split identify in two modules

* Some comments and tweaks

* Run rustfmt

* Add test and bugfix

* Fix wrong address reported when dialing

* Fix websocket browser code

* Support the p2p protocol in libp2p-identify

* Fix concerns

* Fix libp2p-dns

* More concerns
This commit is contained in:
Pierre Krieger
2018-03-07 10:49:11 +01:00
committed by GitHub
parent 3b859b6833
commit 39dde305b4
22 changed files with 894 additions and 313 deletions

View File

@ -99,7 +99,7 @@ fn main() {
// We now use the controller to dial to the address.
let (finished_tx, finished_rx) = oneshot::channel();
swarm_controller
.dial_custom_handler(target_addr.parse().expect("invalid multiaddr"), proto, |echo| {
.dial_custom_handler(target_addr.parse().expect("invalid multiaddr"), proto, |echo, _| {
// `echo` is what the closure used when initializing `proto` returns.
// Consequently, please note that the `send` method is available only because the type
// `length_delimited::Framed` has a `send` method.

View File

@ -83,7 +83,7 @@ fn main() {
let (tx, rx) = oneshot::channel();
swarm_controller
.dial_custom_handler(target_addr.parse().expect("invalid multiaddr"), ping::Ping,
|(mut pinger, future)| {
|(mut pinger, future), _| {
let ping = pinger.ping().map_err(|_| unreachable!()).inspect(|_| {
println!("Received pong from the remote");
let _ = tx.send(());

View File

@ -102,7 +102,7 @@ where
type RawConn = T::RawConn;
type Listener = T::Listener;
type ListenerUpgrade = T::ListenerUpgrade;
type Dial = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
@ -238,7 +238,7 @@ mod tests {
type RawConn = <TcpConfig as Transport>::RawConn;
type Listener = <TcpConfig as Transport>::Listener;
type ListenerUpgrade = <TcpConfig as Transport>::ListenerUpgrade;
type Dial = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(

View File

@ -23,200 +23,60 @@
//!
//! When two nodes connect to each other, the listening half sends a message to the dialing half,
//! indicating the information, and then the protocol stops.
//!
//! # Usage
//!
//! Both low-level and high-level usages are available.
//!
//! ## High-level usage through the `IdentifyTransport` struct
//!
//! This crate provides the `IdentifyTransport` struct, which wraps around a `Transport` and an
//! implementation of `Peerstore`. `IdentifyTransport` is itself a transport that accepts
//! multiaddresses of the form `/p2p/...` or `/ipfs/...`.
//!
//! > **Note**: All the documentation refers to `/p2p/...`, however `/ipfs/...` is also supported.
//!
//! If you dial a multiaddr of the form `/p2p/...`, then the `IdentifyTransport` will look into
//! the `Peerstore` for any known multiaddress for this peer and try to dial them using the
//! underlying transport. If you dial any other multiaddr, then it will dial this multiaddr using
//! the underlying transport, then negotiate the *identify* protocol with the remote in order to
//! obtain its ID, then add it to the peerstore, and finally dial the same multiaddr again and
//! return the connection.
//!
//! Listening doesn't support multiaddresses of the form `/p2p/...` (because that wouldn't make
//! sense). Any address passed to `listen_on` will be passed directly to the underlying transport.
//!
//! Whenever a remote connects to us, either through listening or through `next_incoming`, the
//! `IdentifyTransport` dials back the remote, upgrades the connection to the *identify* protocol
//! in order to obtain the ID of the remote, stores the information in the peerstore, and finally
//! only returns the connection. From the exterior, the multiaddress of the remote is of the form
//! `/p2p/...`. If the remote doesn't support the *identify* protocol, then the socket is closed.
//!
//! Because of the behaviour of `IdentifyProtocol`, it is recommended to build it on top of a
//! `ConnectionReuse`.
//!
//! ## Low-level usage through the `IdentifyProtocolConfig` struct
//!
//! The `IdentifyProtocolConfig` struct implements the `ConnectionUpgrade` trait. Using it will
//! negotiate the *identify* protocol.
//!
//! The output of the upgrade is a `IdentifyOutput`. If we are the dialer, then `IdentifyOutput`
//! will contain the information sent by the remote. If we are the listener, then it will contain
//! a `IdentifySender` struct that can be used to transmit back to the remote the information about
//! it.
extern crate bytes;
extern crate futures;
extern crate multiaddr;
extern crate libp2p_peerstore;
extern crate libp2p_swarm;
extern crate multiaddr;
extern crate protobuf;
extern crate tokio_io;
extern crate varint;
use bytes::{Bytes, BytesMut};
use futures::{Future, Stream, Sink};
use libp2p_swarm::{ConnectionUpgrade, Endpoint};
use multiaddr::Multiaddr;
use protobuf::Message as ProtobufMessage;
use protobuf::core::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::repeated::RepeatedField;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use tokio_io::{AsyncRead, AsyncWrite};
use varint::VarintCodec;
pub use self::protocol::{IdentifyInfo, IdentifyOutput, IdentifyProtocolConfig, IdentifySender};
pub use self::transport::IdentifyTransport;
mod protocol;
mod structs_proto;
/// Prototype for an upgrade to the identity protocol.
#[derive(Debug, Clone)]
pub struct IdentifyProtocol {
/// Our public key to report to the remote.
pub public_key: Vec<u8>,
/// Version of the "global" protocol, eg. `ipfs/1.0.0` or `polkadot/1.0.0`.
pub protocol_version: String,
/// Name and version of the client. Can be thought as similar to the `User-Agent` header
/// of HTTP.
pub agent_version: String,
/// Addresses that we are listening on.
pub listen_addrs: Vec<Multiaddr>,
/// Protocols supported by us.
pub protocols: Vec<String>,
}
/// Information sent from the listener to the dialer.
#[derive(Debug, Clone)]
pub struct IdentifyInfo {
/// Public key of the node.
pub public_key: Vec<u8>,
/// Version of the "global" protocol, eg. `ipfs/1.0.0` or `polkadot/1.0.0`.
pub protocol_version: String,
/// Name and version of the client. Can be thought as similar to the `User-Agent` header
/// of HTTP.
pub agent_version: String,
/// Addresses that the remote is listening on.
pub listen_addrs: Vec<Multiaddr>,
/// Our own address as reported by the remote.
pub observed_addr: Multiaddr,
/// Protocols supported by the remote.
pub protocols: Vec<String>,
}
impl<C> ConnectionUpgrade<C> for IdentifyProtocol
where C: AsyncRead + AsyncWrite + 'static
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
type Output = Option<IdentifyInfo>;
type Future = Box<Future<Item = Self::Output, Error = IoError>>;
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once((Bytes::from("/ipfs/id/1.0.0"), ()))
}
fn upgrade(self, socket: C, _: (), ty: Endpoint, remote_addr: &Multiaddr) -> Self::Future {
let socket = socket.framed(VarintCodec::default());
match ty {
Endpoint::Dialer => {
let future = socket.into_future()
.map(|(msg, _)| msg)
.map_err(|(err, _)| err)
.and_then(|msg| if let Some(msg) = msg {
Ok(Some(parse_proto_msg(msg)?))
} else {
Ok(None)
});
Box::new(future) as Box<_>
}
Endpoint::Listener => {
let listen_addrs = self.listen_addrs
.into_iter()
.map(|addr| addr.to_string().into_bytes())
.collect();
let mut message = structs_proto::Identify::new();
message.set_agentVersion(self.agent_version);
message.set_protocolVersion(self.protocol_version);
message.set_publicKey(self.public_key);
message.set_listenAddrs(listen_addrs);
message.set_observedAddr(remote_addr.to_string().into_bytes());
message.set_protocols(RepeatedField::from_vec(self.protocols));
let bytes = message.write_to_bytes()
.expect("writing protobuf failed ; should never happen");
// On the server side, after sending the information to the client we make the
// future produce a `None`. If we were on the client side, this would contain the
// information received by the server.
let future = socket.send(bytes).map(|_| None);
Box::new(future) as Box<_>
}
}
}
}
// Turns a protobuf message into an `IdentifyInfo`. If something bad happens, turn it into
// an `IoError`.
fn parse_proto_msg(msg: BytesMut) -> Result<IdentifyInfo, IoError> {
match protobuf_parse_from_bytes::<structs_proto::Identify>(&msg) {
Ok(mut msg) => {
let listen_addrs = {
let mut addrs = Vec::new();
for addr in msg.take_listenAddrs().into_iter() {
addrs.push(bytes_to_multiaddr(addr)?);
}
addrs
};
let observed_addr = bytes_to_multiaddr(msg.take_observedAddr())?;
Ok(IdentifyInfo {
public_key: msg.take_publicKey(),
protocol_version: msg.take_protocolVersion(),
agent_version: msg.take_agentVersion(),
listen_addrs: listen_addrs,
observed_addr: observed_addr,
protocols: msg.take_protocols().into_vec(),
})
}
Err(err) => {
Err(IoError::new(IoErrorKind::InvalidData, err))
}
}
}
// Turn a `Vec<u8>` into a `Multiaddr`. If something bad happens, turn it into an `IoError`.
fn bytes_to_multiaddr(bytes: Vec<u8>) -> Result<Multiaddr, IoError> {
String::from_utf8(bytes)
.map_err(|err| {
IoError::new(IoErrorKind::InvalidData, err)
})
.and_then(|s| {
s.parse()
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
})
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use self::libp2p_tcp_transport::TcpConfig;
use self::tokio_core::reactor::Core;
use IdentifyProtocol;
use futures::{IntoFuture, Future, Stream};
use libp2p_swarm::Transport;
#[test]
fn basic() {
let mut core = Core::new().unwrap();
let tcp = TcpConfig::new(core.handle());
let with_proto = tcp.with_upgrade(IdentifyProtocol {
public_key: vec![1, 2, 3, 4],
protocol_version: "ipfs/1.0.0".to_owned(),
agent_version: "agent/version".to_owned(),
listen_addrs: vec!["/ip4/5.6.7.8/tcp/12345".parse().unwrap()],
protocols: vec!["ping".to_owned(), "kad".to_owned()],
});
let (server, addr) = with_proto.clone()
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
.unwrap();
let server = server.into_future()
.map_err(|(err, _)| err)
.and_then(|(n, _)| n.unwrap().0);
let dialer = with_proto.dial(addr)
.unwrap()
.into_future();
let (recv, should_be_empty) = core.run(dialer.join(server)).unwrap();
assert!(should_be_empty.is_none());
let recv = recv.unwrap();
assert_eq!(recv.public_key, &[1, 2, 3, 4]);
}
}
mod transport;

View File

@ -0,0 +1,283 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use bytes::{Bytes, BytesMut};
use futures::{future, Future, Sink, Stream};
use libp2p_swarm::{ConnectionUpgrade, Endpoint};
use multiaddr::Multiaddr;
use protobuf::Message as ProtobufMessage;
use protobuf::core::parse_from_bytes as protobuf_parse_from_bytes;
use protobuf::repeated::RepeatedField;
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::iter;
use structs_proto;
use tokio_io::{AsyncRead, AsyncWrite};
use tokio_io::codec::Framed;
use varint::VarintCodec;
/// Configuration for an upgrade to the identity protocol.
#[derive(Debug, Clone)]
pub struct IdentifyProtocolConfig;
/// Output of the connection upgrade.
pub enum IdentifyOutput<T> {
/// We obtained information from the remote. Happens when we are the dialer.
RemoteInfo {
info: IdentifyInfo,
/// Address the remote sees for us.
observed_addr: Multiaddr,
},
/// We opened a connection to the remote and need to send it information. Happens when we are
/// the listener.
Sender {
/// Object used to send identify info to the client.
sender: IdentifySender<T>,
/// Observed multiaddress of the client.
observed_addr: Multiaddr,
},
}
/// Object used to send back information to the client.
pub struct IdentifySender<T> {
inner: Framed<T, VarintCodec<Vec<u8>>>,
}
impl<'a, T> IdentifySender<T>
where
T: AsyncWrite + 'a,
{
/// Sends back information to the client. Returns a future that is signalled whenever the
/// info have been sent.
pub fn send(
self,
info: IdentifyInfo,
observed_addr: &Multiaddr,
) -> Box<Future<Item = (), Error = IoError> + 'a> {
let listen_addrs = info.listen_addrs
.into_iter()
.map(|addr| addr.into_bytes())
.collect();
let mut message = structs_proto::Identify::new();
message.set_agentVersion(info.agent_version);
message.set_protocolVersion(info.protocol_version);
message.set_publicKey(info.public_key);
message.set_listenAddrs(listen_addrs);
message.set_observedAddr(observed_addr.to_bytes());
message.set_protocols(RepeatedField::from_vec(info.protocols));
let bytes = message
.write_to_bytes()
.expect("writing protobuf failed ; should never happen");
let future = self.inner.send(bytes).map(|_| ());
Box::new(future) as Box<_>
}
}
/// Information sent from the listener to the dialer.
#[derive(Debug, Clone)]
pub struct IdentifyInfo {
/// Public key of the node in the DER format.
pub public_key: Vec<u8>,
/// Version of the "global" protocol, eg. `ipfs/1.0.0` or `polkadot/1.0.0`.
pub protocol_version: String,
/// Name and version of the client. Can be thought as similar to the `User-Agent` header
/// of HTTP.
pub agent_version: String,
/// Addresses that the node is listening on.
pub listen_addrs: Vec<Multiaddr>,
/// Protocols supported by the node, eg. `/ipfs/ping/1.0.0`.
pub protocols: Vec<String>,
}
impl<C> ConnectionUpgrade<C> for IdentifyProtocolConfig
where
C: AsyncRead + AsyncWrite + 'static,
{
type NamesIter = iter::Once<(Bytes, Self::UpgradeIdentifier)>;
type UpgradeIdentifier = ();
type Output = IdentifyOutput<C>;
type Future = Box<Future<Item = Self::Output, Error = IoError>>;
#[inline]
fn protocol_names(&self) -> Self::NamesIter {
iter::once((Bytes::from("/ipfs/id/1.0.0"), ()))
}
fn upgrade(self, socket: C, _: (), ty: Endpoint, observed_addr: &Multiaddr) -> Self::Future {
let socket = socket.framed(VarintCodec::default());
match ty {
Endpoint::Dialer => {
let future = socket
.into_future()
.map(|(msg, _)| msg)
.map_err(|(err, _)| err)
.and_then(|msg| {
if let Some(msg) = msg {
let (info, observed_addr) = parse_proto_msg(msg)?;
Ok(IdentifyOutput::RemoteInfo {
info,
observed_addr,
})
} else {
Err(IoErrorKind::InvalidData.into())
}
});
Box::new(future) as Box<_>
}
Endpoint::Listener => {
let sender = IdentifySender { inner: socket };
let future = future::ok(IdentifyOutput::Sender {
sender,
observed_addr: observed_addr.clone(),
});
Box::new(future) as Box<_>
}
}
}
}
// Turns a protobuf message into an `IdentifyInfo` and an observed address. If something bad
// happens, turn it into an `IoError`.
fn parse_proto_msg(msg: BytesMut) -> Result<(IdentifyInfo, Multiaddr), IoError> {
match protobuf_parse_from_bytes::<structs_proto::Identify>(&msg) {
Ok(mut msg) => {
// Turn a `Vec<u8>` into a `Multiaddr`. If something bad happens, turn it into
// an `IoError`.
fn bytes_to_multiaddr(bytes: Vec<u8>) -> Result<Multiaddr, IoError> {
Multiaddr::from_bytes(bytes)
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))
}
let listen_addrs = {
let mut addrs = Vec::new();
for addr in msg.take_listenAddrs().into_iter() {
addrs.push(bytes_to_multiaddr(addr)?);
}
addrs
};
let observed_addr = bytes_to_multiaddr(msg.take_observedAddr())?;
let info = IdentifyInfo {
public_key: msg.take_publicKey(),
protocol_version: msg.take_protocolVersion(),
agent_version: msg.take_agentVersion(),
listen_addrs: listen_addrs,
protocols: msg.take_protocols().into_vec(),
};
Ok((info, observed_addr))
}
Err(err) => Err(IoError::new(IoErrorKind::InvalidData, err)),
}
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use self::libp2p_tcp_transport::TcpConfig;
use self::tokio_core::reactor::Core;
use {IdentifyProtocolConfig, IdentifyOutput, IdentifyInfo};
use futures::{Future, Stream};
use libp2p_swarm::Transport;
use std::sync::mpsc;
use std::thread;
#[test]
fn correct_transfer() {
// We open a server and a client, send info from the server to the client, and check that
// they were successfully received.
let (tx, rx) = mpsc::channel();
let bg_thread = thread::spawn(move || {
let mut core = Core::new().unwrap();
let transport = TcpConfig::new(core.handle())
.with_upgrade(IdentifyProtocolConfig);
let (listener, addr) = transport
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap()).unwrap();
tx.send(addr).unwrap();
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|identify| {
match identify {
IdentifyOutput::Sender { sender, .. } => {
sender.send(IdentifyInfo {
public_key: vec![1, 2, 3, 4, 5, 7],
protocol_version: "proto_version".to_owned(),
agent_version: "agent_version".to_owned(),
listen_addrs: vec![
"/ip4/80.81.82.83/tcp/500".parse().unwrap(),
"/ip6/::1/udp/1000".parse().unwrap()
],
protocols: vec!["proto1".to_string(), "proto2".to_string()],
}, &"/ip4/100.101.102.103/tcp/5000".parse().unwrap())
},
_ => panic!()
}
});
let _ = core.run(future).unwrap();
});
let mut core = Core::new().unwrap();
let transport = TcpConfig::new(core.handle())
.with_upgrade(IdentifyProtocolConfig);
let future = transport
.dial(rx.recv().unwrap())
.unwrap_or_else(|_| panic!())
.and_then(|(identify, _)| {
match identify {
IdentifyOutput::RemoteInfo { info, observed_addr } => {
assert_eq!(observed_addr, "/ip4/100.101.102.103/tcp/5000".parse().unwrap());
assert_eq!(info.public_key, &[1, 2, 3, 4, 5, 7]);
assert_eq!(info.protocol_version, "proto_version");
assert_eq!(info.agent_version, "agent_version");
assert_eq!(info.listen_addrs, &[
"/ip4/80.81.82.83/tcp/500".parse().unwrap(),
"/ip6/::1/udp/1000".parse().unwrap()
]);
assert_eq!(info.protocols, &["proto1".to_string(), "proto2".to_string()]);
Ok(())
},
_ => panic!()
}
});
let _ = core.run(future).unwrap();
bg_thread.join().unwrap();
}
}

View File

@ -0,0 +1,384 @@
// Copyright 2018 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use futures::{stream, Future, IntoFuture, Stream};
use libp2p_peerstore::{PeerAccess, PeerId, Peerstore};
use libp2p_swarm::{MuxedTransport, Transport};
use multiaddr::{AddrComponent, Multiaddr};
use protocol::{IdentifyInfo, IdentifyOutput, IdentifyProtocolConfig};
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
use std::ops::Deref;
use std::time::Duration;
/// Implementation of `Transport`. See [the crate root description](index.html).
#[derive(Debug, Clone)]
pub struct IdentifyTransport<Trans, PStoreRef> {
transport: Trans,
peerstore: PStoreRef,
addr_ttl: Duration,
}
impl<Trans, PStoreRef> IdentifyTransport<Trans, PStoreRef> {
/// Creates an `IdentifyTransport` that wraps around the given transport and peerstore.
#[inline]
pub fn new(transport: Trans, peerstore: PStoreRef) -> Self {
IdentifyTransport::with_ttl(transport, peerstore, Duration::from_secs(3600))
}
/// Same as `new`, but allows specifying a time-to-live for the addresses gathered from
/// remotes that connect to us.
///
/// The default value is one hour.
#[inline]
pub fn with_ttl(transport: Trans, peerstore: PStoreRef, ttl: Duration) -> Self {
IdentifyTransport {
transport: transport,
peerstore: peerstore,
addr_ttl: ttl,
}
}
}
impl<Trans, PStore, PStoreRef> Transport for IdentifyTransport<Trans, PStoreRef>
where
Trans: Transport + Clone + 'static, // TODO: 'static :(
PStoreRef: Deref<Target = PStore> + Clone + 'static, // TODO: 'static :(
for<'r> &'r PStore: Peerstore,
{
type RawConn = Trans::RawConn;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Trans::RawConn, Multiaddr), Error = IoError>>;
type Dial = Box<Future<Item = (Trans::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
// Note that `listen_on` expects a "regular" multiaddr (eg. `/ip/.../tcp/...`),
// and not `/p2p/<foo>`.
let (listener, new_addr) = match self.transport.clone().listen_on(addr.clone()) {
Ok((l, a)) => (l, a),
Err((inner, addr)) => {
let id = IdentifyTransport {
transport: inner,
peerstore: self.peerstore,
addr_ttl: self.addr_ttl,
};
return Err((id, addr));
}
};
let identify_upgrade = self.transport.with_upgrade(IdentifyProtocolConfig);
let peerstore = self.peerstore;
let addr_ttl = self.addr_ttl;
let listener = listener.map(move |connec| {
let peerstore = peerstore.clone();
let identify_upgrade = identify_upgrade.clone();
let fut = connec
.and_then(move |(connec, client_addr)| {
// Dial the address that connected to us and try upgrade with the
// identify protocol.
identify_upgrade
.clone()
.dial(client_addr.clone())
.map_err(|_| {
IoError::new(IoErrorKind::Other, "couldn't dial back incoming node")
})
.map(move |id| (id, connec))
})
.and_then(move |(dial, connec)| dial.map(move |dial| (dial, connec)))
.and_then(move |((identify, original_addr), connec)| {
// Compute the "real" address of the node (in the form `/p2p/...`) and add
// it to the peerstore.
let real_addr = match identify {
IdentifyOutput::RemoteInfo { info, .. } => process_identify_info(
&info,
&*peerstore.clone(),
original_addr,
addr_ttl,
)?,
_ => unreachable!(
"the identify protocol guarantees that we receive \
remote information when we dial a node"
),
};
Ok((connec, real_addr))
});
Box::new(fut) as Box<Future<Item = _, Error = _>>
});
Ok((Box::new(listener) as Box<_>, new_addr))
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
match multiaddr_to_peerid(addr.clone()) {
Ok(peer_id) => {
// If the multiaddress is a peer ID, try each known multiaddress (taken from the
// peerstore) one by one.
let addrs = self.peerstore
.deref()
.peer(&peer_id)
.into_iter()
.flat_map(|peer| peer.addrs())
.collect::<Vec<_>>()
.into_iter();
let transport = self.transport;
let future = stream::iter_ok(addrs)
// Try to dial each address through the transport.
.filter_map(move |addr| transport.clone().dial(addr).ok())
.and_then(move |dial| dial)
// Pick the first non-failing dial result.
.then(|res| Ok(res))
.filter_map(|res| res.ok())
.into_future()
.map_err(|(err, _)| err)
.and_then(|(val, _)| val.ok_or(IoErrorKind::InvalidData.into())) // TODO: wrong error
.map(move |(socket, _inner_client_addr)| (socket, addr));
Ok(Box::new(future) as Box<_>)
}
Err(addr) => {
// If the multiaddress is something else, propagate it to the underlying transport
// and identify the node.
let transport = self.transport;
let identify_upgrade = transport.clone().with_upgrade(IdentifyProtocolConfig);
// We dial a first time the node and upgrade it to identify.
let dial = match identify_upgrade.dial(addr) {
Ok(d) => d,
Err((_, addr)) => {
let id = IdentifyTransport {
transport,
peerstore: self.peerstore,
addr_ttl: self.addr_ttl,
};
return Err((id, addr));
}
};
let peerstore = self.peerstore;
let addr_ttl = self.addr_ttl;
let future = dial.and_then(move |identify| {
// On success, store the information in the peerstore and compute the
// "real" address of the node (of the form `/p2p/...`).
let (real_addr, old_addr);
match identify {
(IdentifyOutput::RemoteInfo { info, .. }, a) => {
old_addr = a.clone();
real_addr = process_identify_info(&info, &*peerstore, a, addr_ttl)?;
}
_ => unreachable!(
"the identify protocol guarantees that we receive \
remote information when we dial a node"
),
};
// Then dial the same node again.
Ok(transport
.dial(old_addr)
.unwrap_or_else(|_| {
panic!("the same multiaddr was determined to be valid earlier")
})
.into_future()
.map(move |(dial, _wrong_addr)| (dial, real_addr)))
}).flatten();
Ok(Box::new(future) as Box<_>)
}
}
}
#[inline]
fn nat_traversal(&self, a: &Multiaddr, b: &Multiaddr) -> Option<Multiaddr> {
self.transport.nat_traversal(a, b)
}
}
impl<Trans, PStore, PStoreRef> MuxedTransport for IdentifyTransport<Trans, PStoreRef>
where
Trans: MuxedTransport + Clone + 'static,
PStoreRef: Deref<Target = PStore> + Clone + 'static,
for<'r> &'r PStore: Peerstore,
{
type Incoming = Box<Future<Item = (Trans::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn next_incoming(self) -> Self::Incoming {
let identify_upgrade = self.transport.clone().with_upgrade(IdentifyProtocolConfig);
let peerstore = self.peerstore;
let addr_ttl = self.addr_ttl;
let future = self.transport
.next_incoming()
.and_then(move |(connec, client_addr)| {
// On an incoming connection, dial back the node and upgrade to the identify
// protocol.
identify_upgrade
.clone()
.dial(client_addr.clone())
.map_err(|_| {
IoError::new(IoErrorKind::Other, "couldn't dial back incoming node")
})
.map(move |id| (id, connec))
})
.and_then(move |(dial, connec)| dial.map(move |dial| (dial, connec)))
.and_then(move |(identify, connec)| {
// Add the info to the peerstore and compute the "real" address of the node (in
// the form `/p2p/...`).
let real_addr = match identify {
(IdentifyOutput::RemoteInfo { info, .. }, old_addr) => {
process_identify_info(&info, &*peerstore, old_addr, addr_ttl)?
}
_ => unreachable!(
"the identify protocol guarantees that we receive remote \
information when we dial a node"
),
};
Ok((connec, real_addr))
});
Box::new(future) as Box<_>
}
}
// If the multiaddress is in the form `/p2p/...`, turn it into a `PeerId`.
// Otherwise, return it as-is.
fn multiaddr_to_peerid(addr: Multiaddr) -> Result<PeerId, Multiaddr> {
let components = addr.iter().collect::<Vec<_>>();
if components.len() < 1 {
return Err(addr);
}
match components.last() {
Some(&AddrComponent::P2P(ref peer_id)) |
Some(&AddrComponent::IPFS(ref peer_id)) => {
// TODO: `peer_id` is sometimes in fact a CID here
match PeerId::from_bytes(peer_id.clone()) {
Ok(peer_id) => Ok(peer_id),
Err(_) => Err(addr),
}
}
_ => Err(addr),
}
}
// When passed the information sent by a remote, inserts the remote into the given peerstore and
// returns a multiaddr of the format `/p2p/...` corresponding to this node.
//
// > **Note**: This function is highly-specific, but this precise behaviour is needed in multiple
// > different places in the code.
fn process_identify_info<P>(
info: &IdentifyInfo,
peerstore: P,
client_addr: Multiaddr,
ttl: Duration,
) -> Result<Multiaddr, IoError>
where
P: Peerstore,
{
let peer_id = PeerId::from_public_key(&info.public_key);
peerstore
.peer_or_create(&peer_id)
.add_addr(client_addr, ttl);
Ok(AddrComponent::P2P(peer_id.into_bytes()).into())
}
#[cfg(test)]
mod tests {
extern crate libp2p_tcp_transport;
extern crate tokio_core;
use self::libp2p_tcp_transport::TcpConfig;
use self::tokio_core::reactor::Core;
use IdentifyTransport;
use futures::{Future, Stream};
use libp2p_peerstore::{PeerAccess, PeerId, Peerstore};
use libp2p_peerstore::memory_peerstore::MemoryPeerstore;
use libp2p_swarm::Transport;
use multiaddr::{AddrComponent, Multiaddr};
use std::io::Error as IoError;
use std::iter;
use std::sync::Arc;
use std::time::Duration;
#[test]
fn dial_peer_id() {
// When we dial an `/p2p/...` address, the `IdentifyTransport` should look into the
// peerstore and dial one of the known multiaddresses of the node instead.
#[derive(Debug, Clone)]
struct UnderlyingTrans {
inner: TcpConfig,
}
impl Transport for UnderlyingTrans {
type RawConn = <TcpConfig as Transport>::RawConn;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
type Dial = <TcpConfig as Transport>::Dial;
#[inline]
fn listen_on(
self,
_: Multiaddr,
) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
unreachable!()
}
#[inline]
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
assert_eq!(
addr,
"/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap()
);
Ok(self.inner.dial(addr).unwrap_or_else(|_| panic!()))
}
#[inline]
fn nat_traversal(&self, a: &Multiaddr, b: &Multiaddr) -> Option<Multiaddr> {
self.inner.nat_traversal(a, b)
}
}
let peer_id = PeerId::from_public_key(&vec![1, 2, 3, 4]);
let peerstore = MemoryPeerstore::empty();
peerstore.peer_or_create(&peer_id).add_addr(
"/ip4/127.0.0.1/tcp/12345".parse().unwrap(),
Duration::from_secs(3600),
);
let mut core = Core::new().unwrap();
let underlying = UnderlyingTrans {
inner: TcpConfig::new(core.handle()),
};
let transport = IdentifyTransport::new(underlying, Arc::new(peerstore));
let future = transport
.dial(iter::once(AddrComponent::P2P(peer_id.into_bytes())).collect())
.unwrap_or_else(|_| panic!())
.then::<_, Result<(), ()>>(|_| Ok(()));
let _ = core.run(future).unwrap();
}
}

View File

@ -32,6 +32,7 @@ use std::sync::{Mutex, MutexGuard};
use std::vec::IntoIter as VecIntoIter;
/// Implementation of the `Peerstore` trait that simply stores the peer information in memory.
#[derive(Debug)]
pub struct MemoryPeerstore {
store: Mutex<HashMap<PeerId, PeerInfo>>,
}

View File

@ -44,7 +44,7 @@ let mut core = tokio_core::reactor::Core::new().unwrap();
let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
.with_upgrade(Ping)
.dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
.and_then(|(mut pinger, service)| {
.and_then(|((mut pinger, service), _)| {
pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
});

View File

@ -68,7 +68,7 @@
//! let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
//! .with_upgrade(Ping)
//! .dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(mut pinger, service)| {
//! .and_then(|((mut pinger, service), _)| {
//! pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
//! });
//!

View File

@ -39,7 +39,7 @@ let transport = TcpConfig::new(core.handle())
let future = transport.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
.unwrap_or_else(|_| panic!("Unable to dial node"))
.and_then(|connection| {
.and_then(|(connection, _)| {
// Sends "hello world" on the connection, will be encrypted.
write_all(connection, "hello world")
});

View File

@ -60,7 +60,7 @@
//!
//! let future = transport.dial("/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap())
//! .unwrap_or_else(|_| panic!("Unable to dial node"))
//! .and_then(|connection| {
//! .and_then(|(connection, _)| {
//! // Sends "hello world" on the connection, will be encrypted.
//! write_all(connection, "hello world")
//! });

View File

@ -125,7 +125,7 @@ let ping_finished_future = libp2p_tcp_transport::TcpConfig::new(core.handle())
// TODO: right now the only available protocol is ping, but we want to replace it with
// something that is more simple to use
.dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
.and_then(|(mut pinger, service)| {
.and_then(|((mut pinger, service), _)| {
pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
});

View File

@ -105,9 +105,9 @@ where
C::NamesIter: Clone, // TODO: not elegant
{
type RawConn = <C::Output as StreamMuxer>::Substream;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>;
type ListenerUpgrade = FutureResult<Self::RawConn, IoError>;
type Dial = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = FutureResult<(Self::RawConn, Multiaddr), IoError>;
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
let (listener, new_addr) = match self.inner.listen_on(addr.clone()) {
@ -141,7 +141,7 @@ where
let ingoing = dial.clone()
.map(|muxer| stream::repeat(muxer))
.flatten_stream()
.map(move |muxer| ((&*muxer).clone(), addr.clone()));
.map(move |muxer| (&*muxer).clone());
let mut lock = self.shared.lock();
lock.incoming.push(Box::new(ingoing) as Box<_>);
@ -150,7 +150,10 @@ where
let future = dial
.map_err(|err| err.lock().take().expect("error can only be extracted once"))
.and_then(|dial| (&*dial).clone().outbound());
.and_then(|dial| {
let (dial, client_addr) = (&*dial).clone();
dial.outbound().map(|s| (s, client_addr))
});
Ok(Box::new(future) as Box<_>)
}
@ -184,27 +187,27 @@ where
/// `ConnectionReuse` struct.
pub struct ConnectionReuseListener<S, F, M>
where
S: Stream<Item = (F, Multiaddr), Error = IoError>,
F: Future<Item = M, Error = IoError>,
S: Stream<Item = F, Error = IoError>,
F: Future<Item = (M, Multiaddr), Error = IoError>,
M: StreamMuxer,
{
listener: StreamFuse<S>,
current_upgrades: Vec<(F, Multiaddr)>,
current_upgrades: Vec<F>,
connections: Vec<(M, <M as StreamMuxer>::InboundSubstream, Multiaddr)>,
}
impl<S, F, M> Stream for ConnectionReuseListener<S, F, M>
where S: Stream<Item = (F, Multiaddr), Error = IoError>,
F: Future<Item = M, Error = IoError>,
where S: Stream<Item = F, Error = IoError>,
F: Future<Item = (M, Multiaddr), Error = IoError>,
M: StreamMuxer + Clone + 'static // TODO: 'static :(
{
type Item = (FutureResult<M::Substream, IoError>, Multiaddr);
type Item = FutureResult<(M::Substream, Multiaddr), IoError>;
type Error = IoError;
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
match self.listener.poll() {
Ok(Async::Ready(Some((upgrade, client_addr)))) => {
self.current_upgrades.push((upgrade, client_addr));
Ok(Async::Ready(Some(upgrade))) => {
self.current_upgrades.push(upgrade);
}
Ok(Async::NotReady) => (),
Ok(Async::Ready(None)) => {
@ -225,11 +228,11 @@ where S: Stream<Item = (F, Multiaddr), Error = IoError>,
let mut upgrades_to_drop: SmallVec<[_; 8]> = SmallVec::new();
let mut early_ret = None;
for (index, &mut (ref mut current_upgrade, ref mut client_addr)) in
for (index, current_upgrade) in
self.current_upgrades.iter_mut().enumerate()
{
match current_upgrade.poll() {
Ok(Async::Ready(muxer)) => {
Ok(Async::Ready((muxer, client_addr))) => {
let next_incoming = muxer.clone().inbound();
self.connections.push((muxer, next_incoming, client_addr.clone()));
upgrades_to_drop.push(index);
@ -237,7 +240,7 @@ where S: Stream<Item = (F, Multiaddr), Error = IoError>,
Ok(Async::NotReady) => {},
Err(err) => {
upgrades_to_drop.push(index);
early_ret = Some(Async::Ready(Some((Err(err).into_future(), client_addr.clone()))));
early_ret = Some(Async::Ready(Some(Err(err).into_future())));
},
}
}
@ -261,7 +264,7 @@ where S: Stream<Item = (F, Multiaddr), Error = IoError>,
Ok(Async::Ready(incoming)) => {
let mut new_next = muxer.clone().inbound();
*next_incoming = new_next;
return Ok(Async::Ready(Some((Ok(incoming).into_future(), client_addr.clone()))));
return Ok(Async::Ready(Some(Ok((incoming, client_addr.clone())).into_future())));
}
Ok(Async::NotReady) => {}
Err(_) => {

View File

@ -149,7 +149,7 @@
//! // TODO: right now the only available protocol is ping, but we want to replace it with
//! // something that is more simple to use
//! .dial("127.0.0.1:12345".parse::<libp2p_swarm::Multiaddr>().unwrap()).unwrap_or_else(|_| panic!())
//! .and_then(|(mut pinger, service)| {
//! .and_then(|((mut pinger, service), _)| {
//! pinger.ping().map_err(|_| panic!()).select(service).map_err(|_| panic!())
//! });
//!

View File

@ -76,8 +76,8 @@ pub struct SwarmController<T, C>
{
transport: T,
upgraded: UpgradedNode<T, C>,
new_listeners: mpsc::UnboundedSender<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
new_dialers: mpsc::UnboundedSender<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
new_listeners: mpsc::UnboundedSender<Box<Stream<Item = Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>, Error = IoError>>>,
new_dialers: mpsc::UnboundedSender<Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>>,
new_toprocess: mpsc::UnboundedSender<Box<Future<Item = (), Error = IoError>>>,
}
@ -96,10 +96,10 @@ impl<T, C> SwarmController<T, C>
{
match self.transport.clone().with_upgrade(upgrade).dial(multiaddr.clone()) {
Ok(dial) => {
let dial = Box::new(dial.map(Into::into)) as Box<Future<Item = _, Error = _>>;
let dial = Box::new(dial.map(|(d, client_addr)| (d.into(), client_addr))) as Box<Future<Item = _, Error = _>>;
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_dialers.unbounded_send((dial, multiaddr));
let _ = self.new_dialers.unbounded_send(dial);
Ok(())
},
Err((_, multiaddr)) => {
@ -117,12 +117,12 @@ impl<T, C> SwarmController<T, C>
pub fn dial_custom_handler<Du, Df, Dfu>(&self, multiaddr: Multiaddr, upgrade: Du, and_then: Df)
-> Result<(), Multiaddr>
where Du: ConnectionUpgrade<T::RawConn> + 'static, // TODO: 'static :-/
Df: FnOnce(Du::Output) -> Dfu + 'static, // TODO: 'static :-/
Df: FnOnce(Du::Output, Multiaddr) -> Dfu + 'static, // TODO: 'static :-/
Dfu: IntoFuture<Item = (), Error = IoError> + 'static, // TODO: 'static :-/
{
match self.transport.clone().with_upgrade(upgrade).dial(multiaddr) {
Ok(dial) => {
let dial = Box::new(dial.and_then(and_then)) as Box<_>;
let dial = Box::new(dial.and_then(|(d, m)| and_then(d, m))) as Box<_>;
// Ignoring errors if the receiver has been closed, because in that situation
// nothing is going to be processed anyway.
let _ = self.new_toprocess.unbounded_send(dial);
@ -158,12 +158,12 @@ pub struct SwarmFuture<T, C, H, F>
{
upgraded: UpgradedNode<T, C>,
handler: H,
new_listeners: mpsc::UnboundedReceiver<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
new_listeners: mpsc::UnboundedReceiver<Box<Stream<Item = Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>, Error = IoError>>>,
next_incoming: Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>,
listeners: Vec<Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError>>, Multiaddr), Error = IoError>>>,
listeners_upgrade: Vec<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
dialers: Vec<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
new_dialers: mpsc::UnboundedReceiver<(Box<Future<Item = C::Output, Error = IoError>>, Multiaddr)>,
listeners: Vec<Box<Stream<Item = Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>, Error = IoError>>>,
listeners_upgrade: Vec<Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>>,
dialers: Vec<Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>>,
new_dialers: mpsc::UnboundedReceiver<Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>>,
to_process: Vec<future::Either<F, Box<Future<Item = (), Error = IoError>>>>,
new_toprocess: mpsc::UnboundedReceiver<Box<Future<Item = (), Error = IoError>>>,
}
@ -203,8 +203,8 @@ impl<T, C, H, If, F> Future for SwarmFuture<T, C, H, F>
};
match self.new_dialers.poll() {
Ok(Async::Ready(Some((new_dialer, multiaddr)))) => {
self.dialers.push((new_dialer, multiaddr));
Ok(Async::Ready(Some(new_dialer))) => {
self.dialers.push(new_dialer);
},
Ok(Async::Ready(None)) | Err(_) => {
// New dialers sender has been closed.
@ -225,9 +225,9 @@ impl<T, C, H, If, F> Future for SwarmFuture<T, C, H, F>
for n in (0 .. self.listeners.len()).rev() {
let mut listener = self.listeners.swap_remove(n);
match listener.poll() {
Ok(Async::Ready(Some((upgrade, client_addr)))) => {
Ok(Async::Ready(Some(upgrade))) => {
self.listeners.push(listener);
self.listeners_upgrade.push((upgrade, client_addr));
self.listeners_upgrade.push(upgrade);
},
Ok(Async::NotReady) => {
self.listeners.push(listener);
@ -238,26 +238,26 @@ impl<T, C, H, If, F> Future for SwarmFuture<T, C, H, F>
}
for n in (0 .. self.listeners_upgrade.len()).rev() {
let (mut upgrade, addr) = self.listeners_upgrade.swap_remove(n);
let mut upgrade = self.listeners_upgrade.swap_remove(n);
match upgrade.poll() {
Ok(Async::Ready(output)) => {
self.to_process.push(future::Either::A(handler(output, addr).into_future()));
Ok(Async::Ready((output, client_addr))) => {
self.to_process.push(future::Either::A(handler(output, client_addr).into_future()));
},
Ok(Async::NotReady) => {
self.listeners_upgrade.push((upgrade, addr));
self.listeners_upgrade.push(upgrade);
},
Err(err) => return Err(err),
}
}
for n in (0 .. self.dialers.len()).rev() {
let (mut dialer, addr) = self.dialers.swap_remove(n);
let mut dialer = self.dialers.swap_remove(n);
match dialer.poll() {
Ok(Async::Ready(output)) => {
Ok(Async::Ready((output, addr))) => {
self.to_process.push(future::Either::A(handler(output, addr).into_future()));
},
Ok(Async::NotReady) => {
self.dialers.push((dialer, addr));
self.dialers.push(dialer);
},
Err(err) => return Err(err),
}

View File

@ -60,15 +60,15 @@ pub trait Transport {
/// An item should be produced whenever a connection is received at the lowest level of the
/// transport stack. The item is a `Future` that is signalled once some pre-processing has
/// taken place, and that connection has been upgraded to the wanted protocols.
type Listener: Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>;
type Listener: Stream<Item = Self::ListenerUpgrade, Error = IoError>;
/// After a connection has been received, we may need to do some asynchronous pre-processing
/// on it (eg. an intermediary protocol negotiation). While this pre-processing takes place, we
/// want to be able to continue polling on the listener.
type ListenerUpgrade: Future<Item = Self::RawConn, Error = IoError>;
type ListenerUpgrade: Future<Item = (Self::RawConn, Multiaddr), Error = IoError>;
/// A future which indicates that we are currently dialing to a peer.
type Dial: IntoFuture<Item = Self::RawConn, Error = IoError>;
type Dial: IntoFuture<Item = (Self::RawConn, Multiaddr), Error = IoError>;
/// Listen on the given multiaddr. Returns a stream of incoming connections, plus a modified
/// version of the `Multiaddr`. This new `Multiaddr` is the one that that should be advertised
@ -174,9 +174,9 @@ pub struct DeniedTransport;
impl Transport for DeniedTransport {
// TODO: could use `!` for associated types once stable
type RawConn = Cursor<Vec<u8>>;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Dial = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
@ -214,9 +214,8 @@ where
{
type RawConn = EitherSocket<A::RawConn, B::RawConn>;
type Listener = EitherListenStream<A::Listener, B::Listener>;
type ListenerUpgrade = EitherTransportFuture<A::ListenerUpgrade, B::ListenerUpgrade>;
type Dial =
EitherTransportFuture<<A::Dial as IntoFuture>::Future, <B::Dial as IntoFuture>::Future>;
type ListenerUpgrade = EitherListenUpgrade<A::ListenerUpgrade, B::ListenerUpgrade>;
type Dial = EitherListenUpgrade<<A::Dial as IntoFuture>::Future, <B::Dial as IntoFuture>::Future>;
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
let (first, addr) = match self.0.listen_on(addr) {
@ -232,12 +231,12 @@ where
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
let (first, addr) = match self.0.dial(addr) {
Ok(connec) => return Ok(EitherTransportFuture::First(connec.into_future())),
Ok(connec) => return Ok(EitherListenUpgrade::First(connec.into_future())),
Err(err) => err,
};
match self.1.dial(addr) {
Ok(connec) => Ok(EitherTransportFuture::Second(connec.into_future())),
Ok(connec) => Ok(EitherListenUpgrade::Second(connec.into_future())),
Err((second, addr)) => Err((OrTransport(first, second), addr)),
}
}
@ -339,19 +338,19 @@ pub enum EitherListenStream<A, B> {
impl<AStream, BStream, AInner, BInner> Stream for EitherListenStream<AStream, BStream>
where
AStream: Stream<Item = (AInner, Multiaddr), Error = IoError>,
BStream: Stream<Item = (BInner, Multiaddr), Error = IoError>,
AStream: Stream<Item = AInner, Error = IoError>,
BStream: Stream<Item = BInner, Error = IoError>,
{
type Item = (EitherTransportFuture<AInner, BInner>, Multiaddr);
type Item = EitherListenUpgrade<AInner, BInner>;
type Error = IoError;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
match self {
&mut EitherListenStream::First(ref mut a) => a.poll()
.map(|i| i.map(|v| v.map(|(s, a)| (EitherTransportFuture::First(s), a)))),
.map(|i| i.map(|v| v.map(EitherListenUpgrade::First))),
&mut EitherListenStream::Second(ref mut a) => a.poll()
.map(|i| i.map(|v| v.map(|(s, a)| (EitherTransportFuture::Second(s), a)))),
.map(|i| i.map(|v| v.map(EitherListenUpgrade::Second))),
}
}
}
@ -384,12 +383,44 @@ where
}
}
// TODO: This type is needed because of the lack of `impl Trait` in stable Rust.
// If Rust had impl Trait we could use the Either enum from the futures crate and add some
// modifiers to it. This custom enum is a combination of Either and these modifiers.
#[derive(Debug, Copy, Clone)]
pub enum EitherListenUpgrade<A, B> {
First(A),
Second(B),
}
impl<A, B, Ao, Bo> Future for EitherListenUpgrade<A, B>
where
A: Future<Item = (Ao, Multiaddr), Error = IoError>,
B: Future<Item = (Bo, Multiaddr), Error = IoError>,
{
type Item = (EitherSocket<Ao, Bo>, Multiaddr);
type Error = IoError;
#[inline]
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
match self {
&mut EitherListenUpgrade::First(ref mut a) => {
let (item, addr) = try_ready!(a.poll());
Ok(Async::Ready((EitherSocket::First(item), addr)))
}
&mut EitherListenUpgrade::Second(ref mut b) => {
let (item, addr) = try_ready!(b.poll());
Ok(Async::Ready((EitherSocket::Second(item), addr)))
}
}
}
}
/// Implements `Future` and redirects calls to either `First` or `Second`.
///
/// Additionally, the output will be wrapped inside a `EitherSocket`.
///
/// > **Note**: This type is needed because of the lack of `-> impl Trait` in Rust. It can be
/// > removed eventually.
// TODO: This type is needed because of the lack of `impl Trait` in stable Rust.
// If Rust had impl Trait we could use the Either enum from the futures crate and add some
// modifiers to it. This custom enum is a combination of Either and these modifiers.
#[derive(Debug, Copy, Clone)]
pub enum EitherTransportFuture<A, B> {
First(A),
@ -650,8 +681,9 @@ pub enum EitherUpgradeIdentifier<A, B> {
///
/// Additionally, the output will be wrapped inside a `EitherSocket`.
///
/// > **Note**: This type is needed because of the lack of `-> impl Trait` in Rust. It can be
/// > removed eventually.
// TODO: This type is needed because of the lack of `impl Trait` in stable Rust.
// If Rust had impl Trait we could use the Either enum from the futures crate and add some
// modifiers to it. This custom enum is a combination of Either and these modifiers.
#[derive(Debug, Copy, Clone)]
pub enum EitherConnUpgrFuture<A, B> {
First(A),
@ -838,7 +870,7 @@ where
pub fn dial(
self,
addr: Multiaddr,
) -> Result<Box<Future<Item = C::Output, Error = IoError> + 'a>, (Self, Multiaddr)> {
) -> Result<Box<Future<Item = (C::Output, Multiaddr), Error = IoError> + 'a>, (Self, Multiaddr)> {
let upgrade = self.upgrade;
let dialed_fut = match self.transports.dial(addr.clone()) {
@ -855,15 +887,16 @@ where
let future = dialed_fut
// Try to negotiate the protocol.
.and_then(move |connection| {
.and_then(move |(connection, client_addr)| {
let iter = upgrade.protocol_names()
.map(|(name, id)| (name, <Bytes as PartialEq>::eq, id));
let negotiated = multistream_select::dialer_select_proto(connection, iter)
.map_err(|err| IoError::new(IoErrorKind::Other, err));
negotiated.map(|(upgrade_id, conn)| (upgrade_id, conn, upgrade))
negotiated.map(|(upgrade_id, conn)| (upgrade_id, conn, upgrade, client_addr))
})
.and_then(move |(upgrade_id, connection, upgrade)| {
upgrade.upgrade(connection, upgrade_id, Endpoint::Dialer, &addr)
.and_then(move |(upgrade_id, connection, upgrade, client_addr)| {
let f = upgrade.upgrade(connection, upgrade_id, Endpoint::Dialer, &client_addr);
f.map(|v| (v, client_addr))
});
Ok(Box::new(future))
@ -908,7 +941,7 @@ where
self,
addr: Multiaddr,
) -> Result<
(Box<Stream<Item = (Box<Future<Item = C::Output, Error = IoError> + 'a>, Multiaddr), Error = IoError> + 'a>, Multiaddr),
(Box<Stream<Item = Box<Future<Item = (C::Output, Multiaddr), Error = IoError> + 'a>, Error = IoError> + 'a>, Multiaddr),
(Self, Multiaddr),
>
where
@ -934,24 +967,24 @@ where
// Instead the `stream` will produce `Ok(Err(...))`.
// `stream` can only produce an `Err` if `listening_stream` produces an `Err`.
let stream = listening_stream
.map(move |(connection, client_addr)| {
.map(move |connection| {
let upgrade = upgrade.clone();
let remote_addr = client_addr.clone();
let connection = connection
// Try to negotiate the protocol
.and_then(move |connection| {
.and_then(move |(connection, remote_addr)| {
let iter = upgrade.protocol_names()
.map::<_, fn(_) -> _>(|(n, t)| (n, <Bytes as PartialEq>::eq, t));
multistream_select::listener_select_proto(connection, iter)
.map_err(|err| IoError::new(IoErrorKind::Other, err))
.and_then(move |(upgrade_id, connection)| {
upgrade.upgrade(connection, upgrade_id, Endpoint::Listener,
&remote_addr)
let fut = upgrade.upgrade(connection, upgrade_id, Endpoint::Listener,
&remote_addr);
fut.map(move |c| (c, remote_addr))
})
.into_future()
});
(Box::new(connection) as Box<_>, client_addr)
Box::new(connection) as Box<_>
});
Ok((Box::new(stream), new_addr))
@ -967,9 +1000,9 @@ where
C: Clone,
{
type RawConn = C::Output;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = C::Output, Error = IoError>>;
type Dial = Box<Future<Item = C::Output, Error = IoError>>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>;
type Dial = Box<Future<Item = (C::Output, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(self, addr: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {

View File

@ -59,7 +59,7 @@ use std::io::Error as IoError;
use std::iter;
use std::net::SocketAddr;
use tokio_core::reactor::Handle;
use tokio_core::net::{TcpStream, TcpListener, TcpStreamNew};
use tokio_core::net::{TcpStream, TcpListener};
use futures::future::{self, Future, FutureResult, IntoFuture};
use futures::stream::Stream;
use multiaddr::{Multiaddr, AddrComponent, ToMultiaddr};
@ -86,9 +86,9 @@ impl TcpConfig {
impl Transport for TcpConfig {
type RawConn = TcpStream;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>;
type ListenerUpgrade = FutureResult<Self::RawConn, IoError>;
type Dial = TcpStreamNew;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>;
type ListenerUpgrade = FutureResult<(Self::RawConn, Multiaddr), IoError>;
type Dial = Box<Future<Item = (TcpStream, Multiaddr), Error = IoError>>;
/// Listen on the given multi-addr.
/// Returns the address back if it isn't supported.
@ -112,7 +112,7 @@ impl Transport for TcpConfig {
listener.incoming().map(|(sock, addr)| {
let addr = addr.to_multiaddr()
.expect("generating a multiaddr from a socket addr never fails");
(Ok(sock).into_future(), addr)
Ok((sock, addr)).into_future()
})
})
.flatten_stream();
@ -127,7 +127,9 @@ impl Transport for TcpConfig {
/// or gives back the multiaddress.
fn dial(self, addr: Multiaddr) -> Result<Self::Dial, (Self, Multiaddr)> {
if let Ok(socket_addr) = multiaddr_to_socketaddr(&addr) {
Ok(TcpStream::connect(&socket_addr, &self.event_loop))
let fut = TcpStream::connect(&socket_addr, &self.event_loop)
.map(|t| (t, addr));
Ok(Box::new(fut) as Box<_>)
} else {
Err((self, addr))
}
@ -249,8 +251,8 @@ mod tests {
let addr = "/ip4/127.0.0.1/tcp/12345".parse::<Multiaddr>().unwrap();
let tcp = TcpConfig::new(core.handle());
let handle = core.handle();
let listener = tcp.listen_on(addr).unwrap().0.for_each(|(sock, _)| {
sock.and_then(|sock| {
let listener = tcp.listen_on(addr).unwrap().0.for_each(|sock| {
sock.and_then(|(sock, _)| {
// Define what to do with the socket that just connected to us
// Which in this case is read 3 bytes
let handle_conn = tokio_io::io::read_exact(sock, [0; 3])
@ -274,7 +276,7 @@ mod tests {
let socket = tcp.dial(addr.clone()).unwrap();
// Define what to do with the socket once it's obtained
let action = socket.then(|sock| match sock {
Ok(mut s) => {
Ok((mut s, _)) => {
let written = s.write(&[0x1, 0x2, 0x3]).unwrap();
Ok(written)
}

View File

@ -18,7 +18,7 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
use futures::{Async, Future, Poll, Stream, Then as FutureThen};
use futures::{Async, Future, Poll, Stream};
use futures::stream::Then as StreamThen;
use futures::sync::{mpsc, oneshot};
use multiaddr::{AddrComponent, Multiaddr};
@ -49,14 +49,9 @@ impl BrowserWsConfig {
impl Transport for BrowserWsConfig {
type RawConn = BrowserWsConn;
type Listener = Box<Stream<Item = (Self::ListenerUpgrade, Multiaddr), Error = IoError>>; // TODO: use `!`
type ListenerUpgrade = Box<Future<Item = Self::RawConn, Error = IoError>>; // TODO: use `!`
type Dial = FutureThen<
oneshot::Receiver<Result<BrowserWsConn, IoError>>,
Result<BrowserWsConn, IoError>,
fn(Result<Result<BrowserWsConn, IoError>, oneshot::Canceled>)
-> Result<BrowserWsConn, IoError>,
>;
type Listener = Box<Stream<Item = Self::ListenerUpgrade, Error = IoError>>; // TODO: use `!`
type ListenerUpgrade = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>; // TODO: use `!`
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
#[inline]
fn listen_on(self, a: Multiaddr) -> Result<(Self::Listener, Multiaddr), (Self, Multiaddr)> {
@ -191,9 +186,9 @@ impl Transport for BrowserWsConfig {
});
};
Ok(open_rx.then(|result| {
Ok(Box::new(open_rx.then(|result| {
match result {
Ok(Ok(r)) => Ok(r),
Ok(Ok(r)) => Ok((r, original_addr)),
Ok(Err(e)) => Err(e),
// `Err` would happen here if `open_tx` is destroyed. `open_tx` is captured by
// the `WebSocket`, and the `WebSocket` is captured by `open_cb`, which is itself
@ -202,7 +197,7 @@ impl Transport for BrowserWsConfig {
// TODO: how do we break this cyclic dependency? difficult question
Err(_) => unreachable!("the sending side will only close when we drop the future"),
}
}))
})) as Box<_>)
}
fn nat_traversal(&self, server: &Multiaddr, observed: &Multiaddr) -> Option<Multiaddr> {

View File

@ -58,10 +58,10 @@ where
type RawConn = Box<AsyncStream>;
type Listener = stream::Map<
T::Listener,
fn((<T as Transport>::ListenerUpgrade, Multiaddr)) -> (Self::ListenerUpgrade, Multiaddr),
fn(<T as Transport>::ListenerUpgrade) -> Self::ListenerUpgrade,
>;
type ListenerUpgrade = Box<Future<Item = Self::RawConn, Error = IoError>>;
type Dial = Box<Future<Item = Self::RawConn, Error = IoError>>;
type ListenerUpgrade = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
type Dial = Box<Future<Item = (Self::RawConn, Multiaddr), Error = IoError>>;
fn listen_on(
self,
@ -89,12 +89,12 @@ where
}
};
let listen = inner_listen.map::<_, fn(_) -> _>(|(stream, mut client_addr)| {
let listen = inner_listen.map::<_, fn(_) -> _>(|stream| {
// Upgrade the listener to websockets like the websockets library requires us to do.
let upgraded = stream.and_then(|(stream, mut client_addr)| {
// Need to suffix `/ws` to each client address.
client_addr.append(AddrComponent::WS);
// Upgrade the listener to websockets like the websockets library requires us to do.
let upgraded = stream.and_then(|stream| {
stream
.into_ws()
.map_err(|e| IoError::new(IoErrorKind::Other, e.3))
@ -130,12 +130,10 @@ where
.map(|s| Box::new(Ok(s).into_future()) as Box<Future<Item = _, Error = _>>)
.into_future()
.flatten()
.map(move |v| (v, client_addr))
});
(
Box::new(upgraded) as Box<Future<Item = _, Error = _>>,
client_addr,
)
Box::new(upgraded) as Box<Future<Item = _, Error = _>>
});
Ok((listen, new_addr))
@ -161,7 +159,7 @@ where
}
};
let dial = inner_dial.into_future().and_then(move |connec| {
let dial = inner_dial.into_future().and_then(move |(connec, client_addr)| {
// We pass a dummy address to `ClientBuilder` because it is never used anywhere
// in the negotiation anyway, and we use `async_connect_on` to pass a stream.
ClientBuilder::new(if is_wss { "wss://127.0.0.1" } else { "ws://127.0.0.1" })
@ -187,6 +185,7 @@ where
let read_write = RwStreamSink::new(framed_data);
Box::new(read_write) as Box<AsyncStream>
})
.map(|c| (c, client_addr))
});
Ok(Box::new(dial) as Box<_>)
@ -235,8 +234,8 @@ mod tests {
let listener = listener
.into_future()
.map_err(|(e, _)| e)
.and_then(|(c, _)| c.unwrap().0);
let dialer = ws_config.clone().dial(addr).unwrap();
.and_then(|(c, _)| c.unwrap().map(|v| v.0));
let dialer = ws_config.clone().dial(addr).unwrap().map(|v| v.0);
let future = listener
.select(dialer)
@ -259,8 +258,8 @@ mod tests {
let listener = listener
.into_future()
.map_err(|(e, _)| e)
.and_then(|(c, _)| c.unwrap().0);
let dialer = ws_config.clone().dial(addr).unwrap();
.and_then(|(c, _)| c.unwrap().map(|v| v.0));
let dialer = ws_config.clone().dial(addr).unwrap().map(|v| v.0);
let future = listener
.select(dialer)

View File

@ -53,7 +53,7 @@ fn client_to_server_outbound() {
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().0)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|client| client.outbound())
.map(|client| Framed::<_, bytes::BytesMut>::new(client))
.and_then(|client| {
@ -75,7 +75,7 @@ fn client_to_server_outbound() {
.with_upgrade(multiplex::MultiplexConfig);
let future = transport.dial(rx.recv().unwrap()).unwrap()
.and_then(|client| client.inbound())
.and_then(|client| client.0.inbound())
.map(|server| Framed::<_, bytes::BytesMut>::new(server))
.and_then(|server| server.send("hello world".into()))
.map(|_| ());
@ -102,7 +102,7 @@ fn client_to_server_inbound() {
let future = listener
.into_future()
.map_err(|(err, _)| err)
.and_then(|(client, _)| client.unwrap().0)
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
.and_then(|client| client.inbound())
.map(|client| Framed::<_, bytes::BytesMut>::new(client))
.and_then(|client| {
@ -124,7 +124,7 @@ fn client_to_server_inbound() {
.with_upgrade(multiplex::MultiplexConfig);
let future = transport.dial(rx.recv().unwrap()).unwrap()
.and_then(|client| client.outbound())
.and_then(|(client, _)| client.outbound())
.map(|server| Framed::<_, bytes::BytesMut>::new(server))
.and_then(|server| server.send("hello world".into()))
.map(|_| ());

View File

@ -52,11 +52,30 @@ impl fmt::Display for Multiaddr {
}
impl Multiaddr {
/// Returns the raw bytes representation of the multiaddr.
#[inline]
pub fn into_bytes(self) -> Vec<u8> {
self.bytes
}
/// Return a copy to disallow changing the bytes directly
pub fn to_bytes(&self) -> Vec<u8> {
self.bytes.to_owned()
}
/// Produces a `Multiaddr` from its bytes representation.
pub fn from_bytes(bytes: Vec<u8>) -> Result<Multiaddr> {
{
let mut ptr = &bytes[..];
while !ptr.is_empty() {
let (_, new_ptr) = AddrComponent::from_bytes(ptr)?;
ptr = new_ptr;
}
}
Ok(Multiaddr { bytes })
}
/// Extracts a slice containing the entire underlying vector.
pub fn as_slice(&self) -> &[u8] {
&self.bytes

View File

@ -339,6 +339,8 @@ impl AddrComponent {
}
}
/// Builds an `AddrComponent` from an array that starts with a bytes representation. On
/// success, also returns the rest of the slice.
pub fn from_bytes(input: &[u8]) -> Result<(AddrComponent, &[u8])> {
let (proto_num, proto_id_len) = u64::decode_var(input); // TODO: will panic if ID too large