mirror of
https://github.com/fluencelabs/rust-libp2p
synced 2025-06-24 07:11:38 +00:00
Clean up directory structure (#426)
* Remove unused circular-buffer crate * Move transports into subdirectory * Move misc into subdirectory * Move stores into subdirectory * Move multiplexers * Move protocols * Move libp2p top layer * Fix Test: skip doctest if secio isn't enabled
This commit is contained in:
committed by
GitHub
parent
f5ce93c730
commit
2ea49718f3
464
protocols/kad/src/high_level.rs
Normal file
464
protocols/kad/src/high_level.rs
Normal file
@ -0,0 +1,464 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
use fnv::FnvHashSet;
|
||||
use futures::{future, Future, IntoFuture, stream, Stream};
|
||||
use kad_server::KadConnecController;
|
||||
use kbucket::{KBucketsTable, KBucketsPeerId};
|
||||
use libp2p_core::PeerId;
|
||||
use multiaddr::Multiaddr;
|
||||
use protocol;
|
||||
use rand;
|
||||
use smallvec::SmallVec;
|
||||
use std::cmp::Ordering;
|
||||
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
|
||||
use std::mem;
|
||||
use std::time::Duration;
|
||||
use tokio_timer::Timeout;
|
||||
|
||||
/// Prototype for a future Kademlia protocol running on a socket.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct KadSystemConfig<I> {
|
||||
/// Degree of parallelism on the network. Often called `alpha` in technical papers.
|
||||
/// No more than this number of remotes will be used at a given time for any given operation.
|
||||
// TODO: ^ share this number between operations? or does each operation use `alpha` remotes?
|
||||
pub parallelism: u32,
|
||||
/// Id of the local peer.
|
||||
pub local_peer_id: PeerId,
|
||||
/// List of peers initially known.
|
||||
pub known_initial_peers: I,
|
||||
/// Duration after which a node in the k-buckets needs to be pinged again.
|
||||
pub kbuckets_timeout: Duration,
|
||||
/// When contacting a node, duration after which we consider it unresponsive.
|
||||
pub request_timeout: Duration,
|
||||
}
|
||||
|
||||
/// System that drives the whole Kademlia process.
|
||||
pub struct KadSystem {
|
||||
// The actual DHT.
|
||||
kbuckets: KBucketsTable<PeerId, ()>,
|
||||
// Same as in the config.
|
||||
parallelism: u32,
|
||||
// Same as in the config.
|
||||
request_timeout: Duration,
|
||||
}
|
||||
|
||||
/// Event that happens during a query.
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum KadQueryEvent<TOut> {
|
||||
/// Learned about new mutiaddresses for the given peers.
|
||||
NewKnownMultiaddrs(Vec<(PeerId, Vec<Multiaddr>)>),
|
||||
/// Finished the processing of the query. Contains the result.
|
||||
Finished(TOut),
|
||||
}
|
||||
|
||||
impl KadSystem {
|
||||
/// Starts a new Kademlia system.
|
||||
///
|
||||
/// Also produces a `Future` that drives a Kademlia initialization process.
|
||||
/// This future should be driven to completion by the caller.
|
||||
pub fn start<'a, F, Fut>(config: KadSystemConfig<impl Iterator<Item = PeerId>>, access: F)
|
||||
-> (KadSystem, impl Future<Item = (), Error = IoError> + 'a)
|
||||
where F: FnMut(&PeerId) -> Fut + Clone + 'a,
|
||||
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
|
||||
{
|
||||
let system = KadSystem::without_init(config);
|
||||
let init_future = system.perform_initialization(access);
|
||||
(system, init_future)
|
||||
}
|
||||
|
||||
/// Same as `start`, but doesn't perform the initialization process.
|
||||
pub fn without_init(config: KadSystemConfig<impl Iterator<Item = PeerId>>) -> KadSystem {
|
||||
let kbuckets = KBucketsTable::new(config.local_peer_id.clone(), config.kbuckets_timeout);
|
||||
for peer in config.known_initial_peers {
|
||||
let _ = kbuckets.update(peer, ());
|
||||
}
|
||||
|
||||
let system = KadSystem {
|
||||
kbuckets: kbuckets,
|
||||
parallelism: config.parallelism,
|
||||
request_timeout: config.request_timeout,
|
||||
};
|
||||
|
||||
system
|
||||
}
|
||||
|
||||
/// Starts an initialization process.
|
||||
pub fn perform_initialization<'a, F, Fut>(&self, access: F) -> impl Future<Item = (), Error = IoError> + 'a
|
||||
where F: FnMut(&PeerId) -> Fut + Clone + 'a,
|
||||
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
|
||||
{
|
||||
let futures: Vec<_> = (0..256) // TODO: 256 is arbitrary
|
||||
.map(|n| {
|
||||
refresh(n, access.clone(), &self.kbuckets,
|
||||
self.parallelism as usize, self.request_timeout)
|
||||
})
|
||||
.map(|stream| stream.for_each(|_| Ok(())))
|
||||
.collect();
|
||||
|
||||
future::loop_fn(futures, |futures| {
|
||||
if futures.is_empty() {
|
||||
let fut = future::ok(future::Loop::Break(()));
|
||||
return future::Either::A(fut);
|
||||
}
|
||||
|
||||
let fut = future::select_all(futures)
|
||||
.map_err(|(err, _, _)| err)
|
||||
.map(|(_, _, rest)| future::Loop::Continue(rest));
|
||||
future::Either::B(fut)
|
||||
})
|
||||
}
|
||||
|
||||
/// Updates the k-buckets with the specific peer.
|
||||
///
|
||||
/// Should be called whenever we receive a message from a peer.
|
||||
pub fn update_kbuckets(&self, peer: PeerId) {
|
||||
// TODO: ping system
|
||||
let _ = self.kbuckets.update(peer, ());
|
||||
}
|
||||
|
||||
/// Returns the local peer ID, as passed in the configuration.
|
||||
pub fn local_peer_id(&self) -> &PeerId {
|
||||
self.kbuckets.my_id()
|
||||
}
|
||||
|
||||
/// Finds the known nodes closest to `id`, ordered by distance.
|
||||
pub fn known_closest_peers(&self, id: &PeerId) -> impl Iterator<Item = PeerId> {
|
||||
self.kbuckets.find_closest_with_self(id)
|
||||
}
|
||||
|
||||
/// Starts a query for an iterative `FIND_NODE` request.
|
||||
pub fn find_node<'a, F, Fut>(&self, searched_key: PeerId, access: F)
|
||||
-> impl Stream<Item = KadQueryEvent<Vec<PeerId>>, Error = IoError> + 'a
|
||||
where F: FnMut(&PeerId) -> Fut + 'a,
|
||||
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
|
||||
{
|
||||
query(access, &self.kbuckets, searched_key, self.parallelism as usize,
|
||||
20, self.request_timeout) // TODO: arbitrary const
|
||||
}
|
||||
}
|
||||
|
||||
// Refreshes a specific bucket by performing an iterative `FIND_NODE` on a random ID of this
|
||||
// bucket.
|
||||
//
|
||||
// Returns a dummy no-op future if `bucket_num` is out of range.
|
||||
fn refresh<'a, F, Fut>(bucket_num: usize, access: F, kbuckets: &KBucketsTable<PeerId, ()>,
|
||||
parallelism: usize, request_timeout: Duration)
|
||||
-> impl Stream<Item = KadQueryEvent<()>, Error = IoError> + 'a
|
||||
where F: FnMut(&PeerId) -> Fut + 'a,
|
||||
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
|
||||
{
|
||||
let peer_id = match gen_random_id(kbuckets.my_id(), bucket_num) {
|
||||
Ok(p) => p,
|
||||
Err(()) => {
|
||||
let stream = stream::once(Ok(KadQueryEvent::Finished(())));
|
||||
return Box::new(stream) as Box<Stream<Item = _, Error = _>>;
|
||||
},
|
||||
};
|
||||
|
||||
let stream = query(access, kbuckets, peer_id, parallelism, 20, request_timeout) // TODO: 20 is arbitrary
|
||||
.map(|event| {
|
||||
match event {
|
||||
KadQueryEvent::NewKnownMultiaddrs(peers) => KadQueryEvent::NewKnownMultiaddrs(peers),
|
||||
KadQueryEvent::Finished(_) => KadQueryEvent::Finished(()),
|
||||
}
|
||||
});
|
||||
Box::new(stream) as Box<Stream<Item = _, Error = _>>
|
||||
}
|
||||
|
||||
// Generates a random `PeerId` that belongs to the given bucket.
|
||||
//
|
||||
// Returns an error if `bucket_num` is out of range.
|
||||
fn gen_random_id(my_id: &PeerId, bucket_num: usize) -> Result<PeerId, ()> {
|
||||
let my_id_len = my_id.as_bytes().len();
|
||||
|
||||
// TODO: this 2 is magic here ; it is the length of the hash of the multihash
|
||||
let bits_diff = bucket_num + 1;
|
||||
if bits_diff > 8 * (my_id_len - 2) {
|
||||
return Err(());
|
||||
}
|
||||
|
||||
let mut random_id = [0; 64];
|
||||
for byte in 0..my_id_len {
|
||||
match byte.cmp(&(my_id_len - bits_diff / 8 - 1)) {
|
||||
Ordering::Less => {
|
||||
random_id[byte] = my_id.as_bytes()[byte];
|
||||
}
|
||||
Ordering::Equal => {
|
||||
let mask: u8 = (1 << (bits_diff % 8)) - 1;
|
||||
random_id[byte] = (my_id.as_bytes()[byte] & !mask) | (rand::random::<u8>() & mask);
|
||||
}
|
||||
Ordering::Greater => {
|
||||
random_id[byte] = rand::random();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let peer_id = PeerId::from_bytes(random_id[..my_id_len].to_owned())
|
||||
.expect("randomly-generated peer ID should always be valid");
|
||||
Ok(peer_id)
|
||||
}
|
||||
|
||||
// Generic query-performing function.
|
||||
fn query<'a, F, Fut>(
|
||||
access: F,
|
||||
kbuckets: &KBucketsTable<PeerId, ()>,
|
||||
searched_key: PeerId,
|
||||
parallelism: usize,
|
||||
num_results: usize,
|
||||
request_timeout: Duration,
|
||||
) -> impl Stream<Item = KadQueryEvent<Vec<PeerId>>, Error = IoError> + 'a
|
||||
where F: FnMut(&PeerId) -> Fut + 'a,
|
||||
Fut: IntoFuture<Item = KadConnecController, Error = IoError> + 'a,
|
||||
{
|
||||
debug!("Start query for {:?} ; num results = {}", searched_key, num_results);
|
||||
|
||||
// State of the current iterative process.
|
||||
struct State<'a, F> {
|
||||
// At which stage we are.
|
||||
stage: Stage,
|
||||
// The `access` parameter.
|
||||
access: F,
|
||||
// Final output of the iteration.
|
||||
result: Vec<PeerId>,
|
||||
// For each open connection, a future with the response of the remote.
|
||||
// Note that don't use a `SmallVec` here because `select_all` produces a `Vec`.
|
||||
current_attempts_fut: Vec<Box<Future<Item = Vec<protocol::KadPeer>, Error = IoError> + 'a>>,
|
||||
// For each open connection, the peer ID that we are connected to.
|
||||
// Must always have the same length as `current_attempts_fut`.
|
||||
current_attempts_addrs: SmallVec<[PeerId; 32]>,
|
||||
// Nodes that need to be attempted.
|
||||
pending_nodes: Vec<PeerId>,
|
||||
// Peers that we tried to contact but failed.
|
||||
failed_to_contact: FnvHashSet<PeerId>,
|
||||
}
|
||||
|
||||
// General stage of the state.
|
||||
#[derive(Copy, Clone, PartialEq, Eq)]
|
||||
enum Stage {
|
||||
// We are still in the first step of the algorithm where we try to find the closest node.
|
||||
FirstStep,
|
||||
// We are contacting the k closest nodes in order to fill the list with enough results.
|
||||
SecondStep,
|
||||
// The results are complete, and the next stream iteration will produce the outcome.
|
||||
FinishingNextIter,
|
||||
// We are finished and the stream shouldn't return anything anymore.
|
||||
Finished,
|
||||
}
|
||||
|
||||
let initial_state = State {
|
||||
stage: Stage::FirstStep,
|
||||
access: access,
|
||||
result: Vec::with_capacity(num_results),
|
||||
current_attempts_fut: Vec::new(),
|
||||
current_attempts_addrs: SmallVec::new(),
|
||||
pending_nodes: kbuckets.find_closest(&searched_key).collect(),
|
||||
failed_to_contact: Default::default(),
|
||||
};
|
||||
|
||||
// Start of the iterative process.
|
||||
let stream = stream::unfold(initial_state, move |mut state| -> Option<_> {
|
||||
match state.stage {
|
||||
Stage::FinishingNextIter => {
|
||||
let result = mem::replace(&mut state.result, Vec::new());
|
||||
debug!("Query finished with {} results", result.len());
|
||||
state.stage = Stage::Finished;
|
||||
let future = future::ok((Some(KadQueryEvent::Finished(result)), state));
|
||||
return Some(future::Either::A(future));
|
||||
},
|
||||
Stage::Finished => {
|
||||
return None;
|
||||
},
|
||||
_ => ()
|
||||
};
|
||||
|
||||
let searched_key = searched_key.clone();
|
||||
|
||||
// Find out which nodes to contact at this iteration.
|
||||
let to_contact = {
|
||||
let wanted_len = if state.stage == Stage::FirstStep {
|
||||
parallelism.saturating_sub(state.current_attempts_fut.len())
|
||||
} else {
|
||||
num_results.saturating_sub(state.current_attempts_fut.len())
|
||||
};
|
||||
let mut to_contact = SmallVec::<[_; 16]>::new();
|
||||
while to_contact.len() < wanted_len && !state.pending_nodes.is_empty() {
|
||||
// Move the first element of `pending_nodes` to `to_contact`, but ignore nodes that
|
||||
// are already part of the results or of a current attempt or if we failed to
|
||||
// contact it before.
|
||||
let peer = state.pending_nodes.remove(0);
|
||||
if state.result.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
if state.current_attempts_addrs.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
if state.failed_to_contact.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
to_contact.push(peer);
|
||||
}
|
||||
to_contact
|
||||
};
|
||||
|
||||
debug!("New query round ; {} queries in progress ; contacting {} new peers",
|
||||
state.current_attempts_fut.len(),
|
||||
to_contact.len());
|
||||
|
||||
// For each node in `to_contact`, start an RPC query and a corresponding entry in the two
|
||||
// `state.current_attempts_*` fields.
|
||||
for peer in to_contact {
|
||||
let searched_key2 = searched_key.clone();
|
||||
let current_attempt = (state.access)(&peer)
|
||||
.into_future()
|
||||
.and_then(move |controller| {
|
||||
controller.find_node(&searched_key2)
|
||||
});
|
||||
let with_deadline = Timeout::new(current_attempt, request_timeout)
|
||||
.map_err(|err| {
|
||||
if let Some(err) = err.into_inner() {
|
||||
err
|
||||
} else {
|
||||
IoError::new(IoErrorKind::ConnectionAborted, "kademlia request timeout")
|
||||
}
|
||||
});
|
||||
state.current_attempts_addrs.push(peer.clone());
|
||||
state
|
||||
.current_attempts_fut
|
||||
.push(Box::new(with_deadline) as Box<_>);
|
||||
}
|
||||
debug_assert_eq!(
|
||||
state.current_attempts_addrs.len(),
|
||||
state.current_attempts_fut.len()
|
||||
);
|
||||
|
||||
// Extract `current_attempts_fut` so that we can pass it to `select_all`. We will push the
|
||||
// values back when inside the loop.
|
||||
let current_attempts_fut = mem::replace(&mut state.current_attempts_fut, Vec::new());
|
||||
if current_attempts_fut.is_empty() {
|
||||
// If `current_attempts_fut` is empty, then `select_all` would panic. It happens
|
||||
// when we have no additional node to query.
|
||||
debug!("Finishing query early because no additional node available");
|
||||
state.stage = Stage::FinishingNextIter;
|
||||
let future = future::ok((None, state));
|
||||
return Some(future::Either::A(future));
|
||||
}
|
||||
|
||||
// This is the future that continues or breaks the `loop_fn`.
|
||||
let future = future::select_all(current_attempts_fut.into_iter()).then(move |result| {
|
||||
let (message, trigger_idx, other_current_attempts) = match result {
|
||||
Err((err, trigger_idx, other_current_attempts)) => {
|
||||
(Err(err), trigger_idx, other_current_attempts)
|
||||
}
|
||||
Ok((message, trigger_idx, other_current_attempts)) => {
|
||||
(Ok(message), trigger_idx, other_current_attempts)
|
||||
}
|
||||
};
|
||||
|
||||
// Putting back the extracted elements in `state`.
|
||||
let remote_id = state.current_attempts_addrs.remove(trigger_idx);
|
||||
debug_assert!(state.current_attempts_fut.is_empty());
|
||||
state.current_attempts_fut = other_current_attempts;
|
||||
|
||||
// `message` contains the reason why the current future was woken up.
|
||||
let closer_peers = match message {
|
||||
Ok(msg) => msg,
|
||||
Err(err) => {
|
||||
trace!("RPC query failed for {:?}: {:?}", remote_id, err);
|
||||
state.failed_to_contact.insert(remote_id);
|
||||
return future::ok((None, state));
|
||||
}
|
||||
};
|
||||
|
||||
// Inserting the node we received a response from into `state.result`.
|
||||
// The code is non-trivial because `state.result` is ordered by distance and is limited
|
||||
// by `num_results` elements.
|
||||
if let Some(insert_pos) = state.result.iter().position(|e| {
|
||||
e.distance_with(&searched_key) >= remote_id.distance_with(&searched_key)
|
||||
}) {
|
||||
if state.result[insert_pos] != remote_id {
|
||||
if state.result.len() >= num_results {
|
||||
state.result.pop();
|
||||
}
|
||||
state.result.insert(insert_pos, remote_id);
|
||||
}
|
||||
} else if state.result.len() < num_results {
|
||||
state.result.push(remote_id);
|
||||
}
|
||||
|
||||
// The loop below will set this variable to `true` if we find a new element to put at
|
||||
// the top of the result. This would mean that we have to continue looping.
|
||||
let mut local_nearest_node_updated = false;
|
||||
|
||||
// Update `state` with the actual content of the message.
|
||||
let mut new_known_multiaddrs = Vec::with_capacity(closer_peers.len());
|
||||
for mut peer in closer_peers {
|
||||
// Update the peerstore with the information sent by
|
||||
// the remote.
|
||||
{
|
||||
let multiaddrs = mem::replace(&mut peer.multiaddrs, Vec::new());
|
||||
trace!("Reporting multiaddresses for {:?}: {:?}", peer.node_id, multiaddrs);
|
||||
new_known_multiaddrs.push((peer.node_id.clone(), multiaddrs));
|
||||
}
|
||||
|
||||
if peer.node_id.distance_with(&searched_key)
|
||||
<= state.result[0].distance_with(&searched_key)
|
||||
{
|
||||
local_nearest_node_updated = true;
|
||||
}
|
||||
|
||||
if state.result.iter().any(|ma| ma == &peer.node_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Insert the node into `pending_nodes` at the right position, or do not
|
||||
// insert it if it is already in there.
|
||||
if let Some(insert_pos) = state.pending_nodes.iter().position(|e| {
|
||||
e.distance_with(&searched_key) >= peer.node_id.distance_with(&searched_key)
|
||||
}) {
|
||||
if state.pending_nodes[insert_pos] != peer.node_id {
|
||||
state.pending_nodes.insert(insert_pos, peer.node_id.clone());
|
||||
}
|
||||
} else {
|
||||
state.pending_nodes.push(peer.node_id.clone());
|
||||
}
|
||||
}
|
||||
|
||||
if state.result.len() >= num_results
|
||||
|| (state.stage != Stage::FirstStep && state.current_attempts_fut.is_empty())
|
||||
{
|
||||
state.stage = Stage::FinishingNextIter;
|
||||
|
||||
} else {
|
||||
if !local_nearest_node_updated {
|
||||
trace!("Loop didn't update closer node ; jumping to step 2");
|
||||
state.stage = Stage::SecondStep;
|
||||
}
|
||||
}
|
||||
|
||||
future::ok((Some(KadQueryEvent::NewKnownMultiaddrs(new_known_multiaddrs)), state))
|
||||
});
|
||||
|
||||
Some(future::Either::B(future))
|
||||
}).filter_map(|val| val);
|
||||
|
||||
// Boxing the stream is not necessary, but we do it in order to improve compilation time.
|
||||
Box::new(stream) as Box<_>
|
||||
}
|
508
protocols/kad/src/kad_server.rs
Normal file
508
protocols/kad/src/kad_server.rs
Normal file
@ -0,0 +1,508 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
//! Contains a `ConnectionUpgrade` that makes it possible to send requests and receive responses
|
||||
//! from nodes after the upgrade.
|
||||
//!
|
||||
//! # Usage
|
||||
//!
|
||||
//! - Create a `KadConnecConfig` object. This struct implements `ConnectionUpgrade`.
|
||||
//!
|
||||
//! - Update a connection through that `KadConnecConfig`. The output yields you a
|
||||
//! `KadConnecController` and a stream that must be driven to completion. The controller
|
||||
//! allows you to perform queries and receive responses. The stream produces incoming requests
|
||||
//! from the remote.
|
||||
//!
|
||||
//! This `KadConnecController` is usually extracted and stored in some sort of hash map in an
|
||||
//! `Arc` in order to be available whenever we need to request something from a node.
|
||||
|
||||
use bytes::Bytes;
|
||||
use futures::sync::{mpsc, oneshot};
|
||||
use futures::{future, Future, Sink, stream, Stream};
|
||||
use libp2p_core::{ConnectionUpgrade, Endpoint, PeerId};
|
||||
use protocol::{self, KadMsg, KademliaProtocolConfig, KadPeer};
|
||||
use std::collections::VecDeque;
|
||||
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
|
||||
use std::iter;
|
||||
use tokio_io::{AsyncRead, AsyncWrite};
|
||||
|
||||
/// Configuration for a Kademlia server.
|
||||
///
|
||||
/// Implements `ConnectionUpgrade`. On a successful upgrade, produces a `KadConnecController`
|
||||
/// and a `Future`. The controller lets you send queries to the remote and receive answers, while
|
||||
/// the `Future` must be driven to completion in order for things to work.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct KadConnecConfig {
|
||||
raw_proto: KademliaProtocolConfig,
|
||||
}
|
||||
|
||||
impl KadConnecConfig {
|
||||
/// Builds a configuration object for an upcoming Kademlia server.
|
||||
#[inline]
|
||||
pub fn new() -> Self {
|
||||
KadConnecConfig {
|
||||
raw_proto: KademliaProtocolConfig,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<C, Maf> ConnectionUpgrade<C, Maf> for KadConnecConfig
|
||||
where
|
||||
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
|
||||
{
|
||||
type Output = (
|
||||
KadConnecController,
|
||||
Box<Stream<Item = KadIncomingRequest, Error = IoError>>,
|
||||
);
|
||||
type MultiaddrFuture = Maf;
|
||||
type Future = future::Map<<KademliaProtocolConfig as ConnectionUpgrade<C, Maf>>::Future, fn((<KademliaProtocolConfig as ConnectionUpgrade<C, Maf>>::Output, Maf)) -> (Self::Output, Maf)>;
|
||||
type NamesIter = iter::Once<(Bytes, ())>;
|
||||
type UpgradeIdentifier = ();
|
||||
|
||||
#[inline]
|
||||
fn protocol_names(&self) -> Self::NamesIter {
|
||||
ConnectionUpgrade::<C, Maf>::protocol_names(&self.raw_proto)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn upgrade(self, incoming: C, id: (), endpoint: Endpoint, addr: Maf) -> Self::Future {
|
||||
self.raw_proto
|
||||
.upgrade(incoming, id, endpoint, addr)
|
||||
.map::<fn(_) -> _, _>(move |(connec, addr)| {
|
||||
(build_from_sink_stream(connec), addr)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Allows sending Kademlia requests and receiving responses.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct KadConnecController {
|
||||
// In order to send a request, we use this sender to send a tuple. The first element of the
|
||||
// tuple is the message to send to the remote, and the second element is what is used to
|
||||
// receive the response. If the query doesn't expect a response (eg. `PUT_VALUE`), then the
|
||||
// one-shot sender will be dropped without being used.
|
||||
inner: mpsc::UnboundedSender<(KadMsg, oneshot::Sender<KadMsg>)>,
|
||||
}
|
||||
|
||||
impl KadConnecController {
|
||||
/// Sends a `FIND_NODE` query to the node and provides a future that will contain the response.
|
||||
// TODO: future item could be `impl Iterator` instead
|
||||
pub fn find_node(
|
||||
&self,
|
||||
searched_key: &PeerId,
|
||||
) -> impl Future<Item = Vec<KadPeer>, Error = IoError> {
|
||||
let message = protocol::KadMsg::FindNodeReq {
|
||||
key: searched_key.clone().into_bytes(),
|
||||
};
|
||||
|
||||
let (tx, rx) = oneshot::channel();
|
||||
|
||||
match self.inner.unbounded_send((message, tx)) {
|
||||
Ok(()) => (),
|
||||
Err(_) => {
|
||||
let fut = future::err(IoError::new(
|
||||
IoErrorKind::ConnectionAborted,
|
||||
"connection to remote has aborted",
|
||||
));
|
||||
|
||||
return future::Either::B(fut);
|
||||
}
|
||||
};
|
||||
|
||||
let future = rx.map_err(|_| {
|
||||
IoError::new(
|
||||
IoErrorKind::ConnectionAborted,
|
||||
"connection to remote has aborted",
|
||||
)
|
||||
}).and_then(|msg| match msg {
|
||||
KadMsg::FindNodeRes { closer_peers, .. } => Ok(closer_peers),
|
||||
_ => Err(IoError::new(
|
||||
IoErrorKind::InvalidData,
|
||||
"invalid response type received from the remote",
|
||||
)),
|
||||
});
|
||||
|
||||
future::Either::A(future)
|
||||
}
|
||||
|
||||
/// Sends a `PING` query to the node. Because of the way the protocol is designed, there is
|
||||
/// no way to differentiate between a ping and a pong. Therefore this function doesn't return a
|
||||
/// future, and the only way to be notified of the result is through the stream.
|
||||
pub fn ping(&self) -> Result<(), IoError> {
|
||||
// Dummy channel, as the `tx` is going to be dropped anyway.
|
||||
let (tx, _rx) = oneshot::channel();
|
||||
match self.inner.unbounded_send((protocol::KadMsg::Ping, tx)) {
|
||||
Ok(()) => Ok(()),
|
||||
Err(_) => Err(IoError::new(
|
||||
IoErrorKind::ConnectionAborted,
|
||||
"connection to remote has aborted",
|
||||
)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Request received from the remote.
|
||||
pub enum KadIncomingRequest {
|
||||
/// Find the nodes closest to `searched`.
|
||||
FindNode {
|
||||
/// The value being searched.
|
||||
searched: PeerId,
|
||||
/// Object to use to respond to the request.
|
||||
responder: KadFindNodeRespond,
|
||||
},
|
||||
|
||||
// TODO: PutValue and FindValue
|
||||
|
||||
/// Received either a ping or a pong.
|
||||
PingPong,
|
||||
}
|
||||
|
||||
/// Object used to respond to `FindNode` queries from remotes.
|
||||
pub struct KadFindNodeRespond {
|
||||
inner: oneshot::Sender<KadMsg>,
|
||||
}
|
||||
|
||||
impl KadFindNodeRespond {
|
||||
/// Respond to the `FindNode` request.
|
||||
pub fn respond<I>(self, peers: I)
|
||||
where I: IntoIterator<Item = protocol::KadPeer>
|
||||
{
|
||||
let _ = self.inner.send(KadMsg::FindNodeRes {
|
||||
closer_peers: peers.into_iter().collect()
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Builds a controller and stream from a stream/sink of raw messages.
|
||||
fn build_from_sink_stream<'a, S>(connec: S) -> (KadConnecController, Box<Stream<Item = KadIncomingRequest, Error = IoError> + 'a>)
|
||||
where S: Sink<SinkItem = KadMsg, SinkError = IoError> + Stream<Item = KadMsg, Error = IoError> + 'a
|
||||
{
|
||||
let (tx, rx) = mpsc::unbounded();
|
||||
let future = kademlia_handler(connec, rx);
|
||||
let controller = KadConnecController { inner: tx };
|
||||
(controller, future)
|
||||
}
|
||||
|
||||
// Handles a newly-opened Kademlia stream with a remote peer.
|
||||
//
|
||||
// Takes a `Stream` and `Sink` of Kademlia messages representing the connection to the client,
|
||||
// plus a `Receiver` that will receive messages to transmit to that connection.
|
||||
//
|
||||
// Returns a `Stream` that must be resolved in order for progress to work. The `Stream` will
|
||||
// produce objects that represent the requests sent by the remote. These requests must be answered
|
||||
// immediately before the stream continues to produce items.
|
||||
fn kademlia_handler<'a, S>(
|
||||
kad_bistream: S,
|
||||
rq_rx: mpsc::UnboundedReceiver<(KadMsg, oneshot::Sender<KadMsg>)>,
|
||||
) -> Box<Stream<Item = KadIncomingRequest, Error = IoError> + 'a>
|
||||
where
|
||||
S: Stream<Item = KadMsg, Error = IoError> + Sink<SinkItem = KadMsg, SinkError = IoError> + 'a,
|
||||
{
|
||||
let (kad_sink, kad_stream) = kad_bistream.split();
|
||||
|
||||
// This is a stream of futures containing local responses.
|
||||
// Every time we receive a request from the remote, we create a `oneshot::channel()` and send
|
||||
// the receiving end to `responders_tx`.
|
||||
// This way, if a future is available on `responders_rx`, we block until it produces the
|
||||
// response.
|
||||
let (responders_tx, responders_rx) = mpsc::unbounded();
|
||||
|
||||
// We combine all the streams into one so that the loop wakes up whenever any generates
|
||||
// something.
|
||||
enum EventSource {
|
||||
Remote(KadMsg),
|
||||
LocalRequest(KadMsg, oneshot::Sender<KadMsg>),
|
||||
LocalResponse(oneshot::Receiver<KadMsg>),
|
||||
Finished,
|
||||
}
|
||||
|
||||
let events = {
|
||||
let responders = responders_rx
|
||||
.map(|m| EventSource::LocalResponse(m))
|
||||
.map_err(|_| unreachable!());
|
||||
let rq_rx = rq_rx
|
||||
.map(|(m, o)| EventSource::LocalRequest(m, o))
|
||||
.map_err(|_| unreachable!());
|
||||
let kad_stream = kad_stream
|
||||
.map(|m| EventSource::Remote(m))
|
||||
.chain(future::ok(EventSource::Finished).into_stream());
|
||||
responders.select(rq_rx).select(kad_stream)
|
||||
};
|
||||
|
||||
let stream = stream::unfold((events, kad_sink, responders_tx, VecDeque::new(), 0u32, false),
|
||||
move |(events, kad_sink, responders_tx, mut send_back_queue, expected_pongs, finished)| {
|
||||
if finished {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(events
|
||||
.into_future()
|
||||
.map_err(|(err, _)| err)
|
||||
.and_then(move |(message, events)| -> Box<Future<Item = _, Error = _>> {
|
||||
match message {
|
||||
Some(EventSource::Finished) | None => {
|
||||
let future = future::ok({
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, true);
|
||||
(None, state)
|
||||
});
|
||||
Box::new(future)
|
||||
},
|
||||
Some(EventSource::LocalResponse(message)) => {
|
||||
let future = message
|
||||
.map_err(|_| {
|
||||
// The user destroyed the responder without responding.
|
||||
warn!("Kad responder object destroyed without responding");
|
||||
panic!() // TODO: what to do here? we have to close the connection
|
||||
})
|
||||
.and_then(move |message| {
|
||||
kad_sink
|
||||
.send(message)
|
||||
.map(move |kad_sink| {
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
(None, state)
|
||||
})
|
||||
});
|
||||
Box::new(future)
|
||||
},
|
||||
Some(EventSource::LocalRequest(message @ KadMsg::PutValue { .. }, _)) => {
|
||||
// A `PutValue` request. Contrary to other types of messages, this one
|
||||
// doesn't expect any answer and therefore we ignore the sender.
|
||||
let future = kad_sink
|
||||
.send(message)
|
||||
.map(move |kad_sink| {
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
(None, state)
|
||||
});
|
||||
Box::new(future) as Box<_>
|
||||
}
|
||||
Some(EventSource::LocalRequest(message @ KadMsg::Ping { .. }, _)) => {
|
||||
// A local `Ping` request.
|
||||
let expected_pongs = expected_pongs.checked_add(1)
|
||||
.expect("overflow in number of simultaneous pings");
|
||||
let future = kad_sink
|
||||
.send(message)
|
||||
.map(move |kad_sink| {
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
(None, state)
|
||||
});
|
||||
Box::new(future) as Box<_>
|
||||
}
|
||||
Some(EventSource::LocalRequest(message, send_back)) => {
|
||||
// Any local request other than `PutValue` or `Ping`.
|
||||
send_back_queue.push_back(send_back);
|
||||
let future = kad_sink
|
||||
.send(message)
|
||||
.map(move |kad_sink| {
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
(None, state)
|
||||
});
|
||||
Box::new(future) as Box<_>
|
||||
}
|
||||
Some(EventSource::Remote(KadMsg::Ping)) => {
|
||||
// The way the protocol was designed, there is no way to differentiate
|
||||
// between a ping and a pong.
|
||||
if let Some(expected_pongs) = expected_pongs.checked_sub(1) {
|
||||
// Maybe we received a PONG, or maybe we received a PONG, no way
|
||||
// to tell. If it was a PING and we expected a PONG, then the
|
||||
// remote will see its PING answered only when it PONGs us.
|
||||
let future = future::ok({
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
let rq = KadIncomingRequest::PingPong;
|
||||
(Some(rq), state)
|
||||
});
|
||||
Box::new(future) as Box<_>
|
||||
} else {
|
||||
let future = kad_sink
|
||||
.send(KadMsg::Ping)
|
||||
.map(move |kad_sink| {
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
let rq = KadIncomingRequest::PingPong;
|
||||
(Some(rq), state)
|
||||
});
|
||||
Box::new(future) as Box<_>
|
||||
}
|
||||
}
|
||||
Some(EventSource::Remote(message @ KadMsg::FindNodeRes { .. }))
|
||||
| Some(EventSource::Remote(message @ KadMsg::GetValueRes { .. })) => {
|
||||
// `FindNodeRes` or `GetValueRes` received on the socket.
|
||||
// Send it back through `send_back_queue`.
|
||||
if let Some(send_back) = send_back_queue.pop_front() {
|
||||
let _ = send_back.send(message);
|
||||
let future = future::ok({
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
(None, state)
|
||||
});
|
||||
Box::new(future)
|
||||
} else {
|
||||
debug!("Remote sent a Kad response but we didn't request anything");
|
||||
let future = future::err(IoErrorKind::InvalidData.into());
|
||||
Box::new(future)
|
||||
}
|
||||
}
|
||||
Some(EventSource::Remote(KadMsg::FindNodeReq { key, .. })) => {
|
||||
let peer_id = match PeerId::from_bytes(key) {
|
||||
Ok(id) => id,
|
||||
Err(key) => {
|
||||
debug!("Ignoring FIND_NODE request with invalid key: {:?}", key);
|
||||
let future = future::err(IoError::new(IoErrorKind::InvalidData, "invalid key in FIND_NODE"));
|
||||
return Box::new(future);
|
||||
}
|
||||
};
|
||||
|
||||
let (tx, rx) = oneshot::channel();
|
||||
let _ = responders_tx.unbounded_send(rx);
|
||||
let future = future::ok({
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
let rq = KadIncomingRequest::FindNode {
|
||||
searched: peer_id,
|
||||
responder: KadFindNodeRespond {
|
||||
inner: tx
|
||||
}
|
||||
};
|
||||
(Some(rq), state)
|
||||
});
|
||||
|
||||
Box::new(future)
|
||||
}
|
||||
Some(EventSource::Remote(KadMsg::GetValueReq { .. })) => {
|
||||
warn!("GET_VALUE requests are not implemented yet");
|
||||
let future = future::err(IoError::new(IoErrorKind::Other,
|
||||
"GET_VALUE requests are not implemented yet"));
|
||||
return Box::new(future);
|
||||
}
|
||||
Some(EventSource::Remote(KadMsg::PutValue { .. })) => {
|
||||
warn!("PUT_VALUE requests are not implemented yet");
|
||||
let state = (events, kad_sink, responders_tx, send_back_queue, expected_pongs, finished);
|
||||
let future = future::ok((None, state));
|
||||
return Box::new(future);
|
||||
}
|
||||
}
|
||||
}))
|
||||
}).filter_map(|val| val);
|
||||
|
||||
Box::new(stream) as Box<Stream<Item = _, Error = IoError>>
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::io::Error as IoError;
|
||||
use std::iter;
|
||||
use futures::{Future, Poll, Sink, StartSend, Stream};
|
||||
use futures::sync::mpsc;
|
||||
use kad_server::{self, KadIncomingRequest, KadConnecController};
|
||||
use libp2p_core::PublicKey;
|
||||
use protocol::{KadConnectionType, KadPeer};
|
||||
use rand;
|
||||
|
||||
// This struct merges a stream and a sink and is quite useful for tests.
|
||||
struct Wrapper<St, Si>(St, Si);
|
||||
impl<St, Si> Stream for Wrapper<St, Si>
|
||||
where
|
||||
St: Stream,
|
||||
{
|
||||
type Item = St::Item;
|
||||
type Error = St::Error;
|
||||
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
|
||||
self.0.poll()
|
||||
}
|
||||
}
|
||||
impl<St, Si> Sink for Wrapper<St, Si>
|
||||
where
|
||||
Si: Sink,
|
||||
{
|
||||
type SinkItem = Si::SinkItem;
|
||||
type SinkError = Si::SinkError;
|
||||
fn start_send(
|
||||
&mut self,
|
||||
item: Self::SinkItem,
|
||||
) -> StartSend<Self::SinkItem, Self::SinkError> {
|
||||
self.1.start_send(item)
|
||||
}
|
||||
fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
|
||||
self.1.poll_complete()
|
||||
}
|
||||
}
|
||||
|
||||
fn build_test() -> (KadConnecController, impl Stream<Item = KadIncomingRequest, Error = IoError>, KadConnecController, impl Stream<Item = KadIncomingRequest, Error = IoError>) {
|
||||
let (a_to_b, b_from_a) = mpsc::unbounded();
|
||||
let (b_to_a, a_from_b) = mpsc::unbounded();
|
||||
|
||||
let sink_stream_a = Wrapper(a_from_b, a_to_b)
|
||||
.map_err(|_| panic!()).sink_map_err(|_| panic!());
|
||||
let sink_stream_b = Wrapper(b_from_a, b_to_a)
|
||||
.map_err(|_| panic!()).sink_map_err(|_| panic!());
|
||||
|
||||
let (controller_a, stream_events_a) = kad_server::build_from_sink_stream(sink_stream_a);
|
||||
let (controller_b, stream_events_b) = kad_server::build_from_sink_stream(sink_stream_b);
|
||||
(controller_a, stream_events_a, controller_b, stream_events_b)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ping_response() {
|
||||
let (controller_a, stream_events_a, _controller_b, stream_events_b) = build_test();
|
||||
|
||||
controller_a.ping().unwrap();
|
||||
|
||||
let streams = stream_events_a.map(|ev| (ev, "a"))
|
||||
.select(stream_events_b.map(|ev| (ev, "b")));
|
||||
match streams.into_future().map_err(|(err, _)| err).wait().unwrap() {
|
||||
(Some((KadIncomingRequest::PingPong, "b")), _) => {},
|
||||
_ => panic!()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn find_node_response() {
|
||||
let (controller_a, stream_events_a, _controller_b, stream_events_b) = build_test();
|
||||
|
||||
let random_peer_id = {
|
||||
let buf = (0 .. 1024).map(|_| -> u8 { rand::random() }).collect::<Vec<_>>();
|
||||
PublicKey::Rsa(buf).into_peer_id()
|
||||
};
|
||||
|
||||
let find_node_fut = controller_a.find_node(&random_peer_id);
|
||||
|
||||
let example_response = KadPeer {
|
||||
node_id: {
|
||||
let buf = (0 .. 1024).map(|_| -> u8 { rand::random() }).collect::<Vec<_>>();
|
||||
PublicKey::Rsa(buf).into_peer_id()
|
||||
},
|
||||
multiaddrs: Vec::new(),
|
||||
connection_ty: KadConnectionType::Connected,
|
||||
};
|
||||
|
||||
let streams = stream_events_a.map(|ev| (ev, "a"))
|
||||
.select(stream_events_b.map(|ev| (ev, "b")));
|
||||
|
||||
let streams = match streams.into_future().map_err(|(err, _)| err).wait().unwrap() {
|
||||
(Some((KadIncomingRequest::FindNode { searched, responder }, "b")), streams) => {
|
||||
assert_eq!(searched, random_peer_id);
|
||||
responder.respond(iter::once(example_response.clone()));
|
||||
streams
|
||||
},
|
||||
_ => panic!()
|
||||
};
|
||||
|
||||
let resp = streams.into_future().map_err(|(err, _)| err).map(|_| unreachable!())
|
||||
.select(find_node_fut)
|
||||
.map_err(|_| -> IoError { panic!() });
|
||||
assert_eq!(resp.wait().unwrap().0, vec![example_response]);
|
||||
}
|
||||
}
|
498
protocols/kad/src/kbucket.rs
Normal file
498
protocols/kad/src/kbucket.rs
Normal file
@ -0,0 +1,498 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
//! Key-value storage, with a refresh and a time-to-live system.
|
||||
//!
|
||||
//! A k-buckets table allows one to store a value identified by keys, ordered by their distance
|
||||
//! to a reference key passed to the constructor.
|
||||
//!
|
||||
//! If the local ID has `N` bits, then the k-buckets table contains `N` *buckets* each containing
|
||||
//! a constant number of entries. Storing a key in the k-buckets table adds it to the bucket
|
||||
//! corresponding to its distance with the reference key.
|
||||
|
||||
use arrayvec::ArrayVec;
|
||||
use bigint::U512;
|
||||
use libp2p_core::PeerId;
|
||||
use parking_lot::{Mutex, MutexGuard};
|
||||
use std::mem;
|
||||
use std::slice::Iter as SliceIter;
|
||||
use std::time::{Duration, Instant};
|
||||
use std::vec::IntoIter as VecIntoIter;
|
||||
|
||||
/// Maximum number of nodes in a bucket.
|
||||
pub const MAX_NODES_PER_BUCKET: usize = 20;
|
||||
|
||||
/// Table of k-buckets with interior mutability.
|
||||
#[derive(Debug)]
|
||||
pub struct KBucketsTable<Id, Val> {
|
||||
my_id: Id,
|
||||
tables: Vec<Mutex<KBucket<Id, Val>>>,
|
||||
// The timeout when pinging the first node after which we consider that it no longer responds.
|
||||
ping_timeout: Duration,
|
||||
}
|
||||
|
||||
impl<Id, Val> Clone for KBucketsTable<Id, Val>
|
||||
where
|
||||
Id: Clone,
|
||||
Val: Clone,
|
||||
{
|
||||
#[inline]
|
||||
fn clone(&self) -> Self {
|
||||
KBucketsTable {
|
||||
my_id: self.my_id.clone(),
|
||||
tables: self.tables
|
||||
.iter()
|
||||
.map(|t| t.lock().clone())
|
||||
.map(Mutex::new)
|
||||
.collect(),
|
||||
ping_timeout: self.ping_timeout.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct KBucket<Id, Val> {
|
||||
// Nodes are always ordered from oldest to newest.
|
||||
// Note that we will very often move elements to the end of this. No benchmarking has been
|
||||
// performed, but it is very likely that a `ArrayVec` is the most performant data structure.
|
||||
nodes: ArrayVec<[Node<Id, Val>; MAX_NODES_PER_BUCKET]>,
|
||||
|
||||
// Node received when the bucket was full. Will be added to the list if the first node doesn't
|
||||
// respond in time to our ping. The second element is the time when the pending node was added.
|
||||
// If it is too much in the past, then we drop the first node and add the pending node to the
|
||||
// end of the list.
|
||||
pending_node: Option<(Node<Id, Val>, Instant)>,
|
||||
|
||||
// Last time this bucket was updated.
|
||||
last_update: Instant,
|
||||
}
|
||||
|
||||
impl<Id, Val> KBucket<Id, Val> {
|
||||
// Puts the kbucket into a coherent state.
|
||||
// If a node is pending and the timeout has expired, removes the first element of `nodes`
|
||||
// and pushes back the node in `pending_node`.
|
||||
fn flush(&mut self, timeout: Duration) {
|
||||
if let Some((pending_node, instant)) = self.pending_node.take() {
|
||||
if instant.elapsed() >= timeout {
|
||||
let _ = self.nodes.remove(0);
|
||||
self.nodes.push(pending_node);
|
||||
} else {
|
||||
self.pending_node = Some((pending_node, instant));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
struct Node<Id, Val> {
|
||||
id: Id,
|
||||
value: Val,
|
||||
}
|
||||
|
||||
/// Trait that must be implemented on types that can be used as an identifier in a k-bucket.
|
||||
pub trait KBucketsPeerId: Eq + Clone {
|
||||
/// Distance between two peer IDs.
|
||||
type Distance: Ord;
|
||||
|
||||
/// Computes the XOR of this value and another one.
|
||||
fn distance_with(&self, other: &Self) -> Self::Distance;
|
||||
|
||||
/// Returns then number of bits that are necessary to store the distance between peer IDs.
|
||||
/// Used for pre-allocations.
|
||||
///
|
||||
/// > **Note**: Returning 0 would lead to a panic.
|
||||
fn num_bits() -> usize;
|
||||
|
||||
/// Returns the number of leading zeroes of the distance between peer IDs.
|
||||
fn leading_zeros(Self::Distance) -> u32;
|
||||
}
|
||||
|
||||
impl KBucketsPeerId for PeerId {
|
||||
type Distance = U512;
|
||||
|
||||
#[inline]
|
||||
fn num_bits() -> usize {
|
||||
512
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn distance_with(&self, other: &Self) -> Self::Distance {
|
||||
// Note that we don't compare the hash functions because there's no chance of collision
|
||||
// of the same value hashed with two different hash functions.
|
||||
let my_hash = U512::from(self.digest());
|
||||
let other_hash = U512::from(other.digest());
|
||||
my_hash ^ other_hash
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn leading_zeros(distance: Self::Distance) -> u32 {
|
||||
distance.leading_zeros()
|
||||
}
|
||||
}
|
||||
|
||||
impl<Id, Val> KBucketsTable<Id, Val>
|
||||
where
|
||||
Id: KBucketsPeerId,
|
||||
{
|
||||
/// Builds a new routing table.
|
||||
pub fn new(my_id: Id, ping_timeout: Duration) -> Self {
|
||||
KBucketsTable {
|
||||
my_id: my_id,
|
||||
tables: (0..Id::num_bits())
|
||||
.map(|_| KBucket {
|
||||
nodes: ArrayVec::new(),
|
||||
pending_node: None,
|
||||
last_update: Instant::now(),
|
||||
})
|
||||
.map(Mutex::new)
|
||||
.collect(),
|
||||
ping_timeout: ping_timeout,
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the id of the bucket that should contain the peer with the given ID.
|
||||
//
|
||||
// Returns `None` if out of range, which happens if `id` is the same as the local peer id.
|
||||
#[inline]
|
||||
fn bucket_num(&self, id: &Id) -> Option<usize> {
|
||||
(Id::num_bits() - 1).checked_sub(Id::leading_zeros(self.my_id.distance_with(id)) as usize)
|
||||
}
|
||||
|
||||
/// Returns an iterator to all the buckets of this table.
|
||||
///
|
||||
/// Ordered by proximity to the local node. Closest bucket (with max. one node in it) comes
|
||||
/// first.
|
||||
#[inline]
|
||||
pub fn buckets(&self) -> BucketsIter<Id, Val> {
|
||||
BucketsIter(self.tables.iter(), self.ping_timeout)
|
||||
}
|
||||
|
||||
/// Returns the ID of the local node.
|
||||
#[inline]
|
||||
pub fn my_id(&self) -> &Id {
|
||||
&self.my_id
|
||||
}
|
||||
|
||||
/// Finds the `num` nodes closest to `id`, ordered by distance.
|
||||
pub fn find_closest(&self, id: &Id) -> VecIntoIter<Id>
|
||||
where
|
||||
Id: Clone,
|
||||
{
|
||||
// TODO: optimize
|
||||
let mut out = Vec::new();
|
||||
for table in self.tables.iter() {
|
||||
let mut table = table.lock();
|
||||
table.flush(self.ping_timeout);
|
||||
if table.last_update.elapsed() > self.ping_timeout {
|
||||
continue // ignore bucket with expired nodes
|
||||
}
|
||||
for node in table.nodes.iter() {
|
||||
out.push(node.id.clone());
|
||||
}
|
||||
}
|
||||
out.sort_by(|a, b| b.distance_with(id).cmp(&a.distance_with(id)));
|
||||
out.into_iter()
|
||||
}
|
||||
|
||||
/// Same as `find_closest`, but includes the local peer as well.
|
||||
pub fn find_closest_with_self(&self, id: &Id) -> VecIntoIter<Id>
|
||||
where
|
||||
Id: Clone,
|
||||
{
|
||||
// TODO: optimize
|
||||
let mut intermediate: Vec<_> = self.find_closest(&id).collect();
|
||||
if let Some(pos) = intermediate
|
||||
.iter()
|
||||
.position(|e| e.distance_with(&id) >= self.my_id.distance_with(&id))
|
||||
{
|
||||
if intermediate[pos] != self.my_id {
|
||||
intermediate.insert(pos, self.my_id.clone());
|
||||
}
|
||||
} else {
|
||||
intermediate.push(self.my_id.clone());
|
||||
}
|
||||
intermediate.into_iter()
|
||||
}
|
||||
|
||||
/// Marks the node as "most recent" in its bucket and modifies the value associated to it.
|
||||
/// This function should be called whenever we receive a communication from a node.
|
||||
pub fn update(&self, id: Id, value: Val) -> UpdateOutcome<Id, Val> {
|
||||
let table = match self.bucket_num(&id) {
|
||||
Some(n) => &self.tables[n],
|
||||
None => return UpdateOutcome::FailSelfUpdate,
|
||||
};
|
||||
|
||||
let mut table = table.lock();
|
||||
table.flush(self.ping_timeout);
|
||||
|
||||
if let Some(pos) = table.nodes.iter().position(|n| n.id == id) {
|
||||
// Node is already in the bucket.
|
||||
let mut existing = table.nodes.remove(pos);
|
||||
let old_val = mem::replace(&mut existing.value, value);
|
||||
if pos == 0 {
|
||||
// If it's the first node of the bucket that we update, then we drop the node that
|
||||
// was waiting for a ping.
|
||||
table.nodes.truncate(MAX_NODES_PER_BUCKET - 1);
|
||||
table.pending_node = None;
|
||||
}
|
||||
table.nodes.push(existing);
|
||||
table.last_update = Instant::now();
|
||||
UpdateOutcome::Refreshed(old_val)
|
||||
} else if table.nodes.len() < MAX_NODES_PER_BUCKET {
|
||||
// Node not yet in the bucket, but there's plenty of space.
|
||||
table.nodes.push(Node {
|
||||
id: id,
|
||||
value: value,
|
||||
});
|
||||
table.last_update = Instant::now();
|
||||
UpdateOutcome::Added
|
||||
} else {
|
||||
// Not enough space to put the node, but we can add it to the end as "pending". We
|
||||
// then need to tell the caller that we want it to ping the node at the top of the
|
||||
// list.
|
||||
if table.pending_node.is_none() {
|
||||
table.pending_node = Some((
|
||||
Node {
|
||||
id: id,
|
||||
value: value,
|
||||
},
|
||||
Instant::now(),
|
||||
));
|
||||
UpdateOutcome::NeedPing(table.nodes[0].id.clone())
|
||||
} else {
|
||||
UpdateOutcome::Discarded
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Return value of the `update()` method.
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
#[must_use]
|
||||
pub enum UpdateOutcome<Id, Val> {
|
||||
/// The node has been added to the bucket.
|
||||
Added,
|
||||
/// The node was already in the bucket and has been refreshed.
|
||||
Refreshed(Val),
|
||||
/// The node wasn't added. Instead we need to ping the node passed as parameter, and call
|
||||
/// `update` if it responds.
|
||||
NeedPing(Id),
|
||||
/// The node wasn't added at all because a node was already pending.
|
||||
Discarded,
|
||||
/// Tried to update the local peer ID. This is an invalid operation.
|
||||
FailSelfUpdate,
|
||||
}
|
||||
|
||||
/// Iterator giving access to a bucket.
|
||||
pub struct BucketsIter<'a, Id: 'a, Val: 'a>(SliceIter<'a, Mutex<KBucket<Id, Val>>>, Duration);
|
||||
|
||||
impl<'a, Id: 'a, Val: 'a> Iterator for BucketsIter<'a, Id, Val> {
|
||||
type Item = Bucket<'a, Id, Val>;
|
||||
|
||||
#[inline]
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.0.next().map(|bucket| {
|
||||
let mut bucket = bucket.lock();
|
||||
bucket.flush(self.1);
|
||||
Bucket(bucket)
|
||||
})
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
self.0.size_hint()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, Id: 'a, Val: 'a> ExactSizeIterator for BucketsIter<'a, Id, Val> {}
|
||||
|
||||
/// Access to a bucket.
|
||||
pub struct Bucket<'a, Id: 'a, Val: 'a>(MutexGuard<'a, KBucket<Id, Val>>);
|
||||
|
||||
impl<'a, Id: 'a, Val: 'a> Bucket<'a, Id, Val> {
|
||||
/// Returns the number of entries in that bucket.
|
||||
///
|
||||
/// > **Note**: Keep in mind that this operation can be racy. If `update()` is called on the
|
||||
/// > table while this function is running, the `update()` may or may not be taken
|
||||
/// > into account.
|
||||
#[inline]
|
||||
pub fn num_entries(&self) -> usize {
|
||||
self.0.nodes.len()
|
||||
}
|
||||
|
||||
/// Returns true if this bucket has a pending node.
|
||||
#[inline]
|
||||
pub fn has_pending(&self) -> bool {
|
||||
self.0.pending_node.is_some()
|
||||
}
|
||||
|
||||
/// Returns the time when any of the values in this bucket was last updated.
|
||||
///
|
||||
/// If the bucket is empty, this returns the time when the whole table was created.
|
||||
#[inline]
|
||||
pub fn last_update(&self) -> Instant {
|
||||
self.0.last_update.clone()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
extern crate rand;
|
||||
use self::rand::random;
|
||||
use kbucket::{KBucketsTable, UpdateOutcome, MAX_NODES_PER_BUCKET};
|
||||
use libp2p_core::PeerId;
|
||||
use std::thread;
|
||||
use std::time::Duration;
|
||||
|
||||
#[test]
|
||||
fn basic_closest() {
|
||||
let my_id = {
|
||||
let mut bytes = vec![random(); 34];
|
||||
bytes[0] = 18;
|
||||
bytes[1] = 32;
|
||||
PeerId::from_bytes(bytes).unwrap()
|
||||
};
|
||||
|
||||
let other_id = {
|
||||
let mut bytes = vec![random(); 34];
|
||||
bytes[0] = 18;
|
||||
bytes[1] = 32;
|
||||
PeerId::from_bytes(bytes).unwrap()
|
||||
};
|
||||
|
||||
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
|
||||
let _ = table.update(other_id.clone(), ());
|
||||
|
||||
let res = table.find_closest(&other_id).collect::<Vec<_>>();
|
||||
assert_eq!(res.len(), 1);
|
||||
assert_eq!(res[0], other_id);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn update_local_id_fails() {
|
||||
let my_id = {
|
||||
let mut bytes = vec![random(); 34];
|
||||
bytes[0] = 18;
|
||||
bytes[1] = 32;
|
||||
PeerId::from_bytes(bytes).unwrap()
|
||||
};
|
||||
|
||||
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(5));
|
||||
match table.update(my_id, ()) {
|
||||
UpdateOutcome::FailSelfUpdate => (),
|
||||
_ => panic!()
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn update_time_last_refresh() {
|
||||
let my_id = {
|
||||
let mut bytes = vec![random(); 34];
|
||||
bytes[0] = 18;
|
||||
bytes[1] = 32;
|
||||
PeerId::from_bytes(bytes).unwrap()
|
||||
};
|
||||
|
||||
// Generate some other IDs varying by just one bit.
|
||||
let other_ids = (0..random::<usize>() % 20)
|
||||
.map(|_| {
|
||||
let bit_num = random::<usize>() % 256;
|
||||
let mut id = my_id.as_bytes().to_vec().clone();
|
||||
id[33 - (bit_num / 8)] ^= 1 << (bit_num % 8);
|
||||
(PeerId::from_bytes(id).unwrap(), bit_num)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let table = KBucketsTable::new(my_id, Duration::from_secs(5));
|
||||
let before_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
|
||||
|
||||
thread::sleep(Duration::from_secs(2));
|
||||
for &(ref id, _) in &other_ids {
|
||||
let _ = table.update(id.clone(), ());
|
||||
}
|
||||
|
||||
let after_update = table.buckets().map(|b| b.last_update()).collect::<Vec<_>>();
|
||||
|
||||
for (offset, (bef, aft)) in before_update.iter().zip(after_update.iter()).enumerate() {
|
||||
if other_ids.iter().any(|&(_, bucket)| bucket == offset) {
|
||||
assert_ne!(bef, aft);
|
||||
} else {
|
||||
assert_eq!(bef, aft);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn full_kbucket() {
|
||||
let my_id = {
|
||||
let mut bytes = vec![random(); 34];
|
||||
bytes[0] = 18;
|
||||
bytes[1] = 32;
|
||||
PeerId::from_bytes(bytes).unwrap()
|
||||
};
|
||||
|
||||
assert!(MAX_NODES_PER_BUCKET <= 251); // Test doesn't work otherwise.
|
||||
let mut fill_ids = (0..MAX_NODES_PER_BUCKET + 3)
|
||||
.map(|n| {
|
||||
let mut id = my_id.clone().into_bytes();
|
||||
id[2] ^= 0x80; // Flip the first bit so that we get in the most distant bucket.
|
||||
id[33] = id[33].wrapping_add(n as u8);
|
||||
PeerId::from_bytes(id).unwrap()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let first_node = fill_ids[0].clone();
|
||||
let second_node = fill_ids[1].clone();
|
||||
|
||||
let table = KBucketsTable::new(my_id.clone(), Duration::from_secs(1));
|
||||
|
||||
for (num, id) in fill_ids.drain(..MAX_NODES_PER_BUCKET).enumerate() {
|
||||
assert_eq!(table.update(id, ()), UpdateOutcome::Added);
|
||||
assert_eq!(table.buckets().nth(255).unwrap().num_entries(), num + 1);
|
||||
}
|
||||
|
||||
assert_eq!(
|
||||
table.buckets().nth(255).unwrap().num_entries(),
|
||||
MAX_NODES_PER_BUCKET
|
||||
);
|
||||
assert!(!table.buckets().nth(255).unwrap().has_pending());
|
||||
assert_eq!(
|
||||
table.update(fill_ids.remove(0), ()),
|
||||
UpdateOutcome::NeedPing(first_node)
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
table.buckets().nth(255).unwrap().num_entries(),
|
||||
MAX_NODES_PER_BUCKET
|
||||
);
|
||||
assert!(table.buckets().nth(255).unwrap().has_pending());
|
||||
assert_eq!(
|
||||
table.update(fill_ids.remove(0), ()),
|
||||
UpdateOutcome::Discarded
|
||||
);
|
||||
|
||||
thread::sleep(Duration::from_secs(2));
|
||||
assert!(!table.buckets().nth(255).unwrap().has_pending());
|
||||
assert_eq!(
|
||||
table.update(fill_ids.remove(0), ()),
|
||||
UpdateOutcome::NeedPing(second_node)
|
||||
);
|
||||
}
|
||||
}
|
89
protocols/kad/src/lib.rs
Normal file
89
protocols/kad/src/lib.rs
Normal file
@ -0,0 +1,89 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
//! Kademlia protocol. Allows peer discovery, records store and records fetch.
|
||||
//!
|
||||
//! # Usage
|
||||
//!
|
||||
//! Usage is done in the following steps:
|
||||
//!
|
||||
//! - Build a `KadSystemConfig` and a `KadConnecConfig` object that contain the way you want the
|
||||
//! Kademlia protocol to behave.
|
||||
//!
|
||||
//! - Create a swarm that upgrades incoming connections with the `KadConnecConfig`.
|
||||
//!
|
||||
//! - Build a `KadSystem` from the `KadSystemConfig`. This requires passing a closure that provides
|
||||
//! the Kademlia controller of a peer.
|
||||
//!
|
||||
//! - You can perform queries using the `KadSystem`.
|
||||
//!
|
||||
|
||||
// TODO: we allow dead_code for now because this library contains a lot of unused code that will
|
||||
// be useful later for record store
|
||||
#![allow(dead_code)]
|
||||
|
||||
// # Crate organization
|
||||
//
|
||||
// The crate contains three levels of abstractions over the Kademlia protocol.
|
||||
//
|
||||
// - The first level of abstraction is in `protocol`. The API of this module lets you turn a raw
|
||||
// bytes stream (`AsyncRead + AsyncWrite`) into a `Sink + Stream` of raw but strongly-typed
|
||||
// Kademlia messages.
|
||||
//
|
||||
// - The second level of abstraction is in `kad_server`. Its API lets you upgrade a connection and
|
||||
// obtain a future (that must be driven to completion), plus a controller. Processing the future
|
||||
// will automatically respond to Kad requests received by the remote. The controller lets you
|
||||
// send your own requests to this remote and obtain strongly-typed responses.
|
||||
//
|
||||
// - The third level of abstraction is in `high_level`. This module only provides the
|
||||
// `KademliaSystem`.
|
||||
//
|
||||
|
||||
extern crate arrayvec;
|
||||
extern crate bigint;
|
||||
extern crate bs58;
|
||||
extern crate bytes;
|
||||
extern crate datastore;
|
||||
extern crate fnv;
|
||||
extern crate futures;
|
||||
extern crate libp2p_identify;
|
||||
extern crate libp2p_ping;
|
||||
extern crate libp2p_core;
|
||||
#[macro_use]
|
||||
extern crate log;
|
||||
extern crate multiaddr;
|
||||
extern crate parking_lot;
|
||||
extern crate protobuf;
|
||||
extern crate rand;
|
||||
extern crate smallvec;
|
||||
extern crate tokio_codec;
|
||||
extern crate tokio_io;
|
||||
extern crate tokio_timer;
|
||||
extern crate unsigned_varint;
|
||||
|
||||
pub use self::high_level::{KadSystemConfig, KadSystem, KadQueryEvent};
|
||||
pub use self::kad_server::{KadConnecController, KadConnecConfig, KadIncomingRequest, KadFindNodeRespond};
|
||||
pub use self::protocol::{KadConnectionType, KadPeer};
|
||||
|
||||
mod high_level;
|
||||
mod kad_server;
|
||||
mod kbucket;
|
||||
mod protobuf_structs;
|
||||
mod protocol;
|
900
protocols/kad/src/protobuf_structs/dht.rs
Normal file
900
protocols/kad/src/protobuf_structs/dht.rs
Normal file
@ -0,0 +1,900 @@
|
||||
// This file is generated by rust-protobuf 2.0.2. Do not edit
|
||||
// @generated
|
||||
|
||||
// https://github.com/Manishearth/rust-clippy/issues/702
|
||||
#![allow(unknown_lints)]
|
||||
#![allow(clippy)]
|
||||
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
#![allow(box_pointers)]
|
||||
#![allow(dead_code)]
|
||||
#![allow(missing_docs)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(trivial_casts)]
|
||||
#![allow(unsafe_code)]
|
||||
#![allow(unused_imports)]
|
||||
#![allow(unused_results)]
|
||||
|
||||
use protobuf::Message as Message_imported_for_functions;
|
||||
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
|
||||
|
||||
#[derive(PartialEq,Clone,Default)]
|
||||
pub struct Message {
|
||||
// message fields
|
||||
field_type: ::std::option::Option<Message_MessageType>,
|
||||
clusterLevelRaw: ::std::option::Option<i32>,
|
||||
key: ::protobuf::SingularField<::std::vec::Vec<u8>>,
|
||||
record: ::protobuf::SingularPtrField<super::record::Record>,
|
||||
closerPeers: ::protobuf::RepeatedField<Message_Peer>,
|
||||
providerPeers: ::protobuf::RepeatedField<Message_Peer>,
|
||||
// special fields
|
||||
unknown_fields: ::protobuf::UnknownFields,
|
||||
cached_size: ::protobuf::CachedSize,
|
||||
}
|
||||
|
||||
impl Message {
|
||||
pub fn new() -> Message {
|
||||
::std::default::Default::default()
|
||||
}
|
||||
|
||||
// optional .dht.pb.Message.MessageType type = 1;
|
||||
|
||||
pub fn clear_field_type(&mut self) {
|
||||
self.field_type = ::std::option::Option::None;
|
||||
}
|
||||
|
||||
pub fn has_field_type(&self) -> bool {
|
||||
self.field_type.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_field_type(&mut self, v: Message_MessageType) {
|
||||
self.field_type = ::std::option::Option::Some(v);
|
||||
}
|
||||
|
||||
pub fn get_field_type(&self) -> Message_MessageType {
|
||||
self.field_type.unwrap_or(Message_MessageType::PUT_VALUE)
|
||||
}
|
||||
|
||||
// optional int32 clusterLevelRaw = 10;
|
||||
|
||||
pub fn clear_clusterLevelRaw(&mut self) {
|
||||
self.clusterLevelRaw = ::std::option::Option::None;
|
||||
}
|
||||
|
||||
pub fn has_clusterLevelRaw(&self) -> bool {
|
||||
self.clusterLevelRaw.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_clusterLevelRaw(&mut self, v: i32) {
|
||||
self.clusterLevelRaw = ::std::option::Option::Some(v);
|
||||
}
|
||||
|
||||
pub fn get_clusterLevelRaw(&self) -> i32 {
|
||||
self.clusterLevelRaw.unwrap_or(0)
|
||||
}
|
||||
|
||||
// optional bytes key = 2;
|
||||
|
||||
pub fn clear_key(&mut self) {
|
||||
self.key.clear();
|
||||
}
|
||||
|
||||
pub fn has_key(&self) -> bool {
|
||||
self.key.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_key(&mut self, v: ::std::vec::Vec<u8>) {
|
||||
self.key = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_key(&mut self) -> &mut ::std::vec::Vec<u8> {
|
||||
if self.key.is_none() {
|
||||
self.key.set_default();
|
||||
}
|
||||
self.key.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_key(&mut self) -> ::std::vec::Vec<u8> {
|
||||
self.key.take().unwrap_or_else(|| ::std::vec::Vec::new())
|
||||
}
|
||||
|
||||
pub fn get_key(&self) -> &[u8] {
|
||||
match self.key.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => &[],
|
||||
}
|
||||
}
|
||||
|
||||
// optional .record.pb.Record record = 3;
|
||||
|
||||
pub fn clear_record(&mut self) {
|
||||
self.record.clear();
|
||||
}
|
||||
|
||||
pub fn has_record(&self) -> bool {
|
||||
self.record.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_record(&mut self, v: super::record::Record) {
|
||||
self.record = ::protobuf::SingularPtrField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_record(&mut self) -> &mut super::record::Record {
|
||||
if self.record.is_none() {
|
||||
self.record.set_default();
|
||||
}
|
||||
self.record.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_record(&mut self) -> super::record::Record {
|
||||
self.record.take().unwrap_or_else(|| super::record::Record::new())
|
||||
}
|
||||
|
||||
pub fn get_record(&self) -> &super::record::Record {
|
||||
self.record.as_ref().unwrap_or_else(|| super::record::Record::default_instance())
|
||||
}
|
||||
|
||||
// repeated .dht.pb.Message.Peer closerPeers = 8;
|
||||
|
||||
pub fn clear_closerPeers(&mut self) {
|
||||
self.closerPeers.clear();
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_closerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
|
||||
self.closerPeers = v;
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
pub fn mut_closerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
|
||||
&mut self.closerPeers
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_closerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
|
||||
::std::mem::replace(&mut self.closerPeers, ::protobuf::RepeatedField::new())
|
||||
}
|
||||
|
||||
pub fn get_closerPeers(&self) -> &[Message_Peer] {
|
||||
&self.closerPeers
|
||||
}
|
||||
|
||||
// repeated .dht.pb.Message.Peer providerPeers = 9;
|
||||
|
||||
pub fn clear_providerPeers(&mut self) {
|
||||
self.providerPeers.clear();
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_providerPeers(&mut self, v: ::protobuf::RepeatedField<Message_Peer>) {
|
||||
self.providerPeers = v;
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
pub fn mut_providerPeers(&mut self) -> &mut ::protobuf::RepeatedField<Message_Peer> {
|
||||
&mut self.providerPeers
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_providerPeers(&mut self) -> ::protobuf::RepeatedField<Message_Peer> {
|
||||
::std::mem::replace(&mut self.providerPeers, ::protobuf::RepeatedField::new())
|
||||
}
|
||||
|
||||
pub fn get_providerPeers(&self) -> &[Message_Peer] {
|
||||
&self.providerPeers
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Message for Message {
|
||||
fn is_initialized(&self) -> bool {
|
||||
for v in &self.record {
|
||||
if !v.is_initialized() {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
for v in &self.closerPeers {
|
||||
if !v.is_initialized() {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
for v in &self.providerPeers {
|
||||
if !v.is_initialized() {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
true
|
||||
}
|
||||
|
||||
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
while !is.eof()? {
|
||||
let (field_number, wire_type) = is.read_tag_unpack()?;
|
||||
match field_number {
|
||||
1 => {
|
||||
::protobuf::rt::read_proto2_enum_with_unknown_fields_into(wire_type, is, &mut self.field_type, 1, &mut self.unknown_fields)?
|
||||
},
|
||||
10 => {
|
||||
if wire_type != ::protobuf::wire_format::WireTypeVarint {
|
||||
return ::std::result::Result::Err(::protobuf::rt::unexpected_wire_type(wire_type));
|
||||
}
|
||||
let tmp = is.read_int32()?;
|
||||
self.clusterLevelRaw = ::std::option::Option::Some(tmp);
|
||||
},
|
||||
2 => {
|
||||
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.key)?;
|
||||
},
|
||||
3 => {
|
||||
::protobuf::rt::read_singular_message_into(wire_type, is, &mut self.record)?;
|
||||
},
|
||||
8 => {
|
||||
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.closerPeers)?;
|
||||
},
|
||||
9 => {
|
||||
::protobuf::rt::read_repeated_message_into(wire_type, is, &mut self.providerPeers)?;
|
||||
},
|
||||
_ => {
|
||||
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
|
||||
},
|
||||
};
|
||||
}
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
// Compute sizes of nested messages
|
||||
#[allow(unused_variables)]
|
||||
fn compute_size(&self) -> u32 {
|
||||
let mut my_size = 0;
|
||||
if let Some(v) = self.field_type {
|
||||
my_size += ::protobuf::rt::enum_size(1, v);
|
||||
}
|
||||
if let Some(v) = self.clusterLevelRaw {
|
||||
my_size += ::protobuf::rt::value_size(10, v, ::protobuf::wire_format::WireTypeVarint);
|
||||
}
|
||||
if let Some(ref v) = self.key.as_ref() {
|
||||
my_size += ::protobuf::rt::bytes_size(2, &v);
|
||||
}
|
||||
if let Some(ref v) = self.record.as_ref() {
|
||||
let len = v.compute_size();
|
||||
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
|
||||
}
|
||||
for value in &self.closerPeers {
|
||||
let len = value.compute_size();
|
||||
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
|
||||
};
|
||||
for value in &self.providerPeers {
|
||||
let len = value.compute_size();
|
||||
my_size += 1 + ::protobuf::rt::compute_raw_varint32_size(len) + len;
|
||||
};
|
||||
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
|
||||
self.cached_size.set(my_size);
|
||||
my_size
|
||||
}
|
||||
|
||||
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
if let Some(v) = self.field_type {
|
||||
os.write_enum(1, v.value())?;
|
||||
}
|
||||
if let Some(v) = self.clusterLevelRaw {
|
||||
os.write_int32(10, v)?;
|
||||
}
|
||||
if let Some(ref v) = self.key.as_ref() {
|
||||
os.write_bytes(2, &v)?;
|
||||
}
|
||||
if let Some(ref v) = self.record.as_ref() {
|
||||
os.write_tag(3, ::protobuf::wire_format::WireTypeLengthDelimited)?;
|
||||
os.write_raw_varint32(v.get_cached_size())?;
|
||||
v.write_to_with_cached_sizes(os)?;
|
||||
}
|
||||
for v in &self.closerPeers {
|
||||
os.write_tag(8, ::protobuf::wire_format::WireTypeLengthDelimited)?;
|
||||
os.write_raw_varint32(v.get_cached_size())?;
|
||||
v.write_to_with_cached_sizes(os)?;
|
||||
};
|
||||
for v in &self.providerPeers {
|
||||
os.write_tag(9, ::protobuf::wire_format::WireTypeLengthDelimited)?;
|
||||
os.write_raw_varint32(v.get_cached_size())?;
|
||||
v.write_to_with_cached_sizes(os)?;
|
||||
};
|
||||
os.write_unknown_fields(self.get_unknown_fields())?;
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
fn get_cached_size(&self) -> u32 {
|
||||
self.cached_size.get()
|
||||
}
|
||||
|
||||
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
|
||||
&self.unknown_fields
|
||||
}
|
||||
|
||||
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
|
||||
&mut self.unknown_fields
|
||||
}
|
||||
|
||||
fn as_any(&self) -> &::std::any::Any {
|
||||
self as &::std::any::Any
|
||||
}
|
||||
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
|
||||
self as &mut ::std::any::Any
|
||||
}
|
||||
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
|
||||
self
|
||||
}
|
||||
|
||||
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
Self::descriptor_static()
|
||||
}
|
||||
|
||||
fn new() -> Message {
|
||||
Message::new()
|
||||
}
|
||||
|
||||
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
|
||||
};
|
||||
unsafe {
|
||||
descriptor.get(|| {
|
||||
let mut fields = ::std::vec::Vec::new();
|
||||
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_MessageType>>(
|
||||
"type",
|
||||
|m: &Message| { &m.field_type },
|
||||
|m: &mut Message| { &mut m.field_type },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeInt32>(
|
||||
"clusterLevelRaw",
|
||||
|m: &Message| { &m.clusterLevelRaw },
|
||||
|m: &mut Message| { &mut m.clusterLevelRaw },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
|
||||
"key",
|
||||
|m: &Message| { &m.key },
|
||||
|m: &mut Message| { &mut m.key },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_ptr_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<super::record::Record>>(
|
||||
"record",
|
||||
|m: &Message| { &m.record },
|
||||
|m: &mut Message| { &mut m.record },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
|
||||
"closerPeers",
|
||||
|m: &Message| { &m.closerPeers },
|
||||
|m: &mut Message| { &mut m.closerPeers },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeMessage<Message_Peer>>(
|
||||
"providerPeers",
|
||||
|m: &Message| { &m.providerPeers },
|
||||
|m: &mut Message| { &mut m.providerPeers },
|
||||
));
|
||||
::protobuf::reflect::MessageDescriptor::new::<Message>(
|
||||
"Message",
|
||||
fields,
|
||||
file_descriptor_proto()
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn default_instance() -> &'static Message {
|
||||
static mut instance: ::protobuf::lazy::Lazy<Message> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const Message,
|
||||
};
|
||||
unsafe {
|
||||
instance.get(Message::new)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Clear for Message {
|
||||
fn clear(&mut self) {
|
||||
self.clear_field_type();
|
||||
self.clear_clusterLevelRaw();
|
||||
self.clear_key();
|
||||
self.clear_record();
|
||||
self.clear_closerPeers();
|
||||
self.clear_providerPeers();
|
||||
self.unknown_fields.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Debug for Message {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
::protobuf::text_format::fmt(self, f)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::reflect::ProtobufValue for Message {
|
||||
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
|
||||
::protobuf::reflect::ProtobufValueRef::Message(self)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(PartialEq,Clone,Default)]
|
||||
pub struct Message_Peer {
|
||||
// message fields
|
||||
id: ::protobuf::SingularField<::std::vec::Vec<u8>>,
|
||||
addrs: ::protobuf::RepeatedField<::std::vec::Vec<u8>>,
|
||||
connection: ::std::option::Option<Message_ConnectionType>,
|
||||
// special fields
|
||||
unknown_fields: ::protobuf::UnknownFields,
|
||||
cached_size: ::protobuf::CachedSize,
|
||||
}
|
||||
|
||||
impl Message_Peer {
|
||||
pub fn new() -> Message_Peer {
|
||||
::std::default::Default::default()
|
||||
}
|
||||
|
||||
// optional bytes id = 1;
|
||||
|
||||
pub fn clear_id(&mut self) {
|
||||
self.id.clear();
|
||||
}
|
||||
|
||||
pub fn has_id(&self) -> bool {
|
||||
self.id.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_id(&mut self, v: ::std::vec::Vec<u8>) {
|
||||
self.id = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_id(&mut self) -> &mut ::std::vec::Vec<u8> {
|
||||
if self.id.is_none() {
|
||||
self.id.set_default();
|
||||
}
|
||||
self.id.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_id(&mut self) -> ::std::vec::Vec<u8> {
|
||||
self.id.take().unwrap_or_else(|| ::std::vec::Vec::new())
|
||||
}
|
||||
|
||||
pub fn get_id(&self) -> &[u8] {
|
||||
match self.id.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => &[],
|
||||
}
|
||||
}
|
||||
|
||||
// repeated bytes addrs = 2;
|
||||
|
||||
pub fn clear_addrs(&mut self) {
|
||||
self.addrs.clear();
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_addrs(&mut self, v: ::protobuf::RepeatedField<::std::vec::Vec<u8>>) {
|
||||
self.addrs = v;
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
pub fn mut_addrs(&mut self) -> &mut ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
|
||||
&mut self.addrs
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_addrs(&mut self) -> ::protobuf::RepeatedField<::std::vec::Vec<u8>> {
|
||||
::std::mem::replace(&mut self.addrs, ::protobuf::RepeatedField::new())
|
||||
}
|
||||
|
||||
pub fn get_addrs(&self) -> &[::std::vec::Vec<u8>] {
|
||||
&self.addrs
|
||||
}
|
||||
|
||||
// optional .dht.pb.Message.ConnectionType connection = 3;
|
||||
|
||||
pub fn clear_connection(&mut self) {
|
||||
self.connection = ::std::option::Option::None;
|
||||
}
|
||||
|
||||
pub fn has_connection(&self) -> bool {
|
||||
self.connection.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_connection(&mut self, v: Message_ConnectionType) {
|
||||
self.connection = ::std::option::Option::Some(v);
|
||||
}
|
||||
|
||||
pub fn get_connection(&self) -> Message_ConnectionType {
|
||||
self.connection.unwrap_or(Message_ConnectionType::NOT_CONNECTED)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Message for Message_Peer {
|
||||
fn is_initialized(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
while !is.eof()? {
|
||||
let (field_number, wire_type) = is.read_tag_unpack()?;
|
||||
match field_number {
|
||||
1 => {
|
||||
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.id)?;
|
||||
},
|
||||
2 => {
|
||||
::protobuf::rt::read_repeated_bytes_into(wire_type, is, &mut self.addrs)?;
|
||||
},
|
||||
3 => {
|
||||
::protobuf::rt::read_proto2_enum_with_unknown_fields_into(wire_type, is, &mut self.connection, 3, &mut self.unknown_fields)?
|
||||
},
|
||||
_ => {
|
||||
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
|
||||
},
|
||||
};
|
||||
}
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
// Compute sizes of nested messages
|
||||
#[allow(unused_variables)]
|
||||
fn compute_size(&self) -> u32 {
|
||||
let mut my_size = 0;
|
||||
if let Some(ref v) = self.id.as_ref() {
|
||||
my_size += ::protobuf::rt::bytes_size(1, &v);
|
||||
}
|
||||
for value in &self.addrs {
|
||||
my_size += ::protobuf::rt::bytes_size(2, &value);
|
||||
};
|
||||
if let Some(v) = self.connection {
|
||||
my_size += ::protobuf::rt::enum_size(3, v);
|
||||
}
|
||||
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
|
||||
self.cached_size.set(my_size);
|
||||
my_size
|
||||
}
|
||||
|
||||
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
if let Some(ref v) = self.id.as_ref() {
|
||||
os.write_bytes(1, &v)?;
|
||||
}
|
||||
for v in &self.addrs {
|
||||
os.write_bytes(2, &v)?;
|
||||
};
|
||||
if let Some(v) = self.connection {
|
||||
os.write_enum(3, v.value())?;
|
||||
}
|
||||
os.write_unknown_fields(self.get_unknown_fields())?;
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
fn get_cached_size(&self) -> u32 {
|
||||
self.cached_size.get()
|
||||
}
|
||||
|
||||
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
|
||||
&self.unknown_fields
|
||||
}
|
||||
|
||||
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
|
||||
&mut self.unknown_fields
|
||||
}
|
||||
|
||||
fn as_any(&self) -> &::std::any::Any {
|
||||
self as &::std::any::Any
|
||||
}
|
||||
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
|
||||
self as &mut ::std::any::Any
|
||||
}
|
||||
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
|
||||
self
|
||||
}
|
||||
|
||||
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
Self::descriptor_static()
|
||||
}
|
||||
|
||||
fn new() -> Message_Peer {
|
||||
Message_Peer::new()
|
||||
}
|
||||
|
||||
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
|
||||
};
|
||||
unsafe {
|
||||
descriptor.get(|| {
|
||||
let mut fields = ::std::vec::Vec::new();
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
|
||||
"id",
|
||||
|m: &Message_Peer| { &m.id },
|
||||
|m: &mut Message_Peer| { &mut m.id },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_repeated_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
|
||||
"addrs",
|
||||
|m: &Message_Peer| { &m.addrs },
|
||||
|m: &mut Message_Peer| { &mut m.addrs },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_option_accessor::<_, ::protobuf::types::ProtobufTypeEnum<Message_ConnectionType>>(
|
||||
"connection",
|
||||
|m: &Message_Peer| { &m.connection },
|
||||
|m: &mut Message_Peer| { &mut m.connection },
|
||||
));
|
||||
::protobuf::reflect::MessageDescriptor::new::<Message_Peer>(
|
||||
"Message_Peer",
|
||||
fields,
|
||||
file_descriptor_proto()
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn default_instance() -> &'static Message_Peer {
|
||||
static mut instance: ::protobuf::lazy::Lazy<Message_Peer> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const Message_Peer,
|
||||
};
|
||||
unsafe {
|
||||
instance.get(Message_Peer::new)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Clear for Message_Peer {
|
||||
fn clear(&mut self) {
|
||||
self.clear_id();
|
||||
self.clear_addrs();
|
||||
self.clear_connection();
|
||||
self.unknown_fields.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Debug for Message_Peer {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
::protobuf::text_format::fmt(self, f)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::reflect::ProtobufValue for Message_Peer {
|
||||
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
|
||||
::protobuf::reflect::ProtobufValueRef::Message(self)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
|
||||
pub enum Message_MessageType {
|
||||
PUT_VALUE = 0,
|
||||
GET_VALUE = 1,
|
||||
ADD_PROVIDER = 2,
|
||||
GET_PROVIDERS = 3,
|
||||
FIND_NODE = 4,
|
||||
PING = 5,
|
||||
}
|
||||
|
||||
impl ::protobuf::ProtobufEnum for Message_MessageType {
|
||||
fn value(&self) -> i32 {
|
||||
*self as i32
|
||||
}
|
||||
|
||||
fn from_i32(value: i32) -> ::std::option::Option<Message_MessageType> {
|
||||
match value {
|
||||
0 => ::std::option::Option::Some(Message_MessageType::PUT_VALUE),
|
||||
1 => ::std::option::Option::Some(Message_MessageType::GET_VALUE),
|
||||
2 => ::std::option::Option::Some(Message_MessageType::ADD_PROVIDER),
|
||||
3 => ::std::option::Option::Some(Message_MessageType::GET_PROVIDERS),
|
||||
4 => ::std::option::Option::Some(Message_MessageType::FIND_NODE),
|
||||
5 => ::std::option::Option::Some(Message_MessageType::PING),
|
||||
_ => ::std::option::Option::None
|
||||
}
|
||||
}
|
||||
|
||||
fn values() -> &'static [Self] {
|
||||
static values: &'static [Message_MessageType] = &[
|
||||
Message_MessageType::PUT_VALUE,
|
||||
Message_MessageType::GET_VALUE,
|
||||
Message_MessageType::ADD_PROVIDER,
|
||||
Message_MessageType::GET_PROVIDERS,
|
||||
Message_MessageType::FIND_NODE,
|
||||
Message_MessageType::PING,
|
||||
];
|
||||
values
|
||||
}
|
||||
|
||||
fn enum_descriptor_static() -> &'static ::protobuf::reflect::EnumDescriptor {
|
||||
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
|
||||
};
|
||||
unsafe {
|
||||
descriptor.get(|| {
|
||||
::protobuf::reflect::EnumDescriptor::new("Message_MessageType", file_descriptor_proto())
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::marker::Copy for Message_MessageType {
|
||||
}
|
||||
|
||||
impl ::protobuf::reflect::ProtobufValue for Message_MessageType {
|
||||
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
|
||||
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone,PartialEq,Eq,Debug,Hash)]
|
||||
pub enum Message_ConnectionType {
|
||||
NOT_CONNECTED = 0,
|
||||
CONNECTED = 1,
|
||||
CAN_CONNECT = 2,
|
||||
CANNOT_CONNECT = 3,
|
||||
}
|
||||
|
||||
impl ::protobuf::ProtobufEnum for Message_ConnectionType {
|
||||
fn value(&self) -> i32 {
|
||||
*self as i32
|
||||
}
|
||||
|
||||
fn from_i32(value: i32) -> ::std::option::Option<Message_ConnectionType> {
|
||||
match value {
|
||||
0 => ::std::option::Option::Some(Message_ConnectionType::NOT_CONNECTED),
|
||||
1 => ::std::option::Option::Some(Message_ConnectionType::CONNECTED),
|
||||
2 => ::std::option::Option::Some(Message_ConnectionType::CAN_CONNECT),
|
||||
3 => ::std::option::Option::Some(Message_ConnectionType::CANNOT_CONNECT),
|
||||
_ => ::std::option::Option::None
|
||||
}
|
||||
}
|
||||
|
||||
fn values() -> &'static [Self] {
|
||||
static values: &'static [Message_ConnectionType] = &[
|
||||
Message_ConnectionType::NOT_CONNECTED,
|
||||
Message_ConnectionType::CONNECTED,
|
||||
Message_ConnectionType::CAN_CONNECT,
|
||||
Message_ConnectionType::CANNOT_CONNECT,
|
||||
];
|
||||
values
|
||||
}
|
||||
|
||||
fn enum_descriptor_static() -> &'static ::protobuf::reflect::EnumDescriptor {
|
||||
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::EnumDescriptor> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::reflect::EnumDescriptor,
|
||||
};
|
||||
unsafe {
|
||||
descriptor.get(|| {
|
||||
::protobuf::reflect::EnumDescriptor::new("Message_ConnectionType", file_descriptor_proto())
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::marker::Copy for Message_ConnectionType {
|
||||
}
|
||||
|
||||
impl ::protobuf::reflect::ProtobufValue for Message_ConnectionType {
|
||||
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
|
||||
::protobuf::reflect::ProtobufValueRef::Enum(self.descriptor())
|
||||
}
|
||||
}
|
||||
|
||||
static file_descriptor_proto_data: &'static [u8] = b"\
|
||||
\n\tdht.proto\x12\x06dht.pb\x1a\x0crecord.proto\"\xc7\x04\n\x07Message\
|
||||
\x12/\n\x04type\x18\x01\x20\x01(\x0e2\x1b.dht.pb.Message.MessageTypeR\
|
||||
\x04type\x12(\n\x0fclusterLevelRaw\x18\n\x20\x01(\x05R\x0fclusterLevelRa\
|
||||
w\x12\x10\n\x03key\x18\x02\x20\x01(\x0cR\x03key\x12)\n\x06record\x18\x03\
|
||||
\x20\x01(\x0b2\x11.record.pb.RecordR\x06record\x126\n\x0bcloserPeers\x18\
|
||||
\x08\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\x0bcloserPeers\x12:\n\rprovi\
|
||||
derPeers\x18\t\x20\x03(\x0b2\x14.dht.pb.Message.PeerR\rproviderPeers\x1a\
|
||||
l\n\x04Peer\x12\x0e\n\x02id\x18\x01\x20\x01(\x0cR\x02id\x12\x14\n\x05add\
|
||||
rs\x18\x02\x20\x03(\x0cR\x05addrs\x12>\n\nconnection\x18\x03\x20\x01(\
|
||||
\x0e2\x1e.dht.pb.Message.ConnectionTypeR\nconnection\"i\n\x0bMessageType\
|
||||
\x12\r\n\tPUT_VALUE\x10\0\x12\r\n\tGET_VALUE\x10\x01\x12\x10\n\x0cADD_PR\
|
||||
OVIDER\x10\x02\x12\x11\n\rGET_PROVIDERS\x10\x03\x12\r\n\tFIND_NODE\x10\
|
||||
\x04\x12\x08\n\x04PING\x10\x05\"W\n\x0eConnectionType\x12\x11\n\rNOT_CON\
|
||||
NECTED\x10\0\x12\r\n\tCONNECTED\x10\x01\x12\x0f\n\x0bCAN_CONNECT\x10\x02\
|
||||
\x12\x12\n\x0eCANNOT_CONNECT\x10\x03J\xc9\x10\n\x06\x12\x04\0\0>\x01\n\
|
||||
\x08\n\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x0e\n\t\n\
|
||||
\x02\x03\0\x12\x03\x03\x07\x15\n\n\n\x02\x04\0\x12\x04\x05\0>\x01\n\n\n\
|
||||
\x03\x04\0\x01\x12\x03\x05\x08\x0f\n\x0c\n\x04\x04\0\x04\0\x12\x04\x06\
|
||||
\x08\r\t\n\x0c\n\x05\x04\0\x04\0\x01\x12\x03\x06\r\x18\n\r\n\x06\x04\0\
|
||||
\x04\0\x02\0\x12\x03\x07\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\0\x01\x12\
|
||||
\x03\x07\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\0\x02\x12\x03\x07\x1c\x1d\n\
|
||||
\r\n\x06\x04\0\x04\0\x02\x01\x12\x03\x08\x10\x1e\n\x0e\n\x07\x04\0\x04\0\
|
||||
\x02\x01\x01\x12\x03\x08\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x01\x02\x12\
|
||||
\x03\x08\x1c\x1d\n\r\n\x06\x04\0\x04\0\x02\x02\x12\x03\t\x10!\n\x0e\n\
|
||||
\x07\x04\0\x04\0\x02\x02\x01\x12\x03\t\x10\x1c\n\x0e\n\x07\x04\0\x04\0\
|
||||
\x02\x02\x02\x12\x03\t\x1f\x20\n\r\n\x06\x04\0\x04\0\x02\x03\x12\x03\n\
|
||||
\x10\"\n\x0e\n\x07\x04\0\x04\0\x02\x03\x01\x12\x03\n\x10\x1d\n\x0e\n\x07\
|
||||
\x04\0\x04\0\x02\x03\x02\x12\x03\n\x20!\n\r\n\x06\x04\0\x04\0\x02\x04\
|
||||
\x12\x03\x0b\x10\x1e\n\x0e\n\x07\x04\0\x04\0\x02\x04\x01\x12\x03\x0b\x10\
|
||||
\x19\n\x0e\n\x07\x04\0\x04\0\x02\x04\x02\x12\x03\x0b\x1c\x1d\n\r\n\x06\
|
||||
\x04\0\x04\0\x02\x05\x12\x03\x0c\x10\x19\n\x0e\n\x07\x04\0\x04\0\x02\x05\
|
||||
\x01\x12\x03\x0c\x10\x14\n\x0e\n\x07\x04\0\x04\0\x02\x05\x02\x12\x03\x0c\
|
||||
\x17\x18\n\x0c\n\x04\x04\0\x04\x01\x12\x04\x0f\x08\x1c\t\n\x0c\n\x05\x04\
|
||||
\0\x04\x01\x01\x12\x03\x0f\r\x1b\n^\n\x06\x04\0\x04\x01\x02\0\x12\x03\
|
||||
\x11\x10\"\x1aO\x20sender\x20does\x20not\x20have\x20a\x20connection\x20t\
|
||||
o\x20peer,\x20and\x20no\x20extra\x20information\x20(default)\n\n\x0e\n\
|
||||
\x07\x04\0\x04\x01\x02\0\x01\x12\x03\x11\x10\x1d\n\x0e\n\x07\x04\0\x04\
|
||||
\x01\x02\0\x02\x12\x03\x11\x20!\n5\n\x06\x04\0\x04\x01\x02\x01\x12\x03\
|
||||
\x14\x10\x1e\x1a&\x20sender\x20has\x20a\x20live\x20connection\x20to\x20p\
|
||||
eer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x01\x01\x12\x03\x14\x10\x19\n\x0e\n\
|
||||
\x07\x04\0\x04\x01\x02\x01\x02\x12\x03\x14\x1c\x1d\n2\n\x06\x04\0\x04\
|
||||
\x01\x02\x02\x12\x03\x17\x10\x20\x1a#\x20sender\x20recently\x20connected\
|
||||
\x20to\x20peer\n\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x01\x12\x03\x17\x10\
|
||||
\x1b\n\x0e\n\x07\x04\0\x04\x01\x02\x02\x02\x12\x03\x17\x1e\x1f\n\xa7\x01\
|
||||
\n\x06\x04\0\x04\x01\x02\x03\x12\x03\x1b\x10#\x1a\x97\x01\x20sender\x20r\
|
||||
ecently\x20tried\x20to\x20connect\x20to\x20peer\x20repeatedly\x20but\x20\
|
||||
failed\x20to\x20connect\n\x20(\"try\"\x20here\x20is\x20loose,\x20but\x20\
|
||||
this\x20should\x20signal\x20\"made\x20strong\x20effort,\x20failed\")\n\n\
|
||||
\x0e\n\x07\x04\0\x04\x01\x02\x03\x01\x12\x03\x1b\x10\x1e\n\x0e\n\x07\x04\
|
||||
\0\x04\x01\x02\x03\x02\x12\x03\x1b!\"\n\x0c\n\x04\x04\0\x03\0\x12\x04\
|
||||
\x1e\x08'\t\n\x0c\n\x05\x04\0\x03\0\x01\x12\x03\x1e\x10\x14\n$\n\x06\x04\
|
||||
\0\x03\0\x02\0\x12\x03\x20\x10&\x1a\x15\x20ID\x20of\x20a\x20given\x20pee\
|
||||
r.\n\n\x0e\n\x07\x04\0\x03\0\x02\0\x04\x12\x03\x20\x10\x18\n\x0e\n\x07\
|
||||
\x04\0\x03\0\x02\0\x05\x12\x03\x20\x19\x1e\n\x0e\n\x07\x04\0\x03\0\x02\0\
|
||||
\x01\x12\x03\x20\x1f!\n\x0e\n\x07\x04\0\x03\0\x02\0\x03\x12\x03\x20$%\n,\
|
||||
\n\x06\x04\0\x03\0\x02\x01\x12\x03#\x10)\x1a\x1d\x20multiaddrs\x20for\
|
||||
\x20a\x20given\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x01\x04\x12\x03#\
|
||||
\x10\x18\n\x0e\n\x07\x04\0\x03\0\x02\x01\x05\x12\x03#\x19\x1e\n\x0e\n\
|
||||
\x07\x04\0\x03\0\x02\x01\x01\x12\x03#\x1f$\n\x0e\n\x07\x04\0\x03\0\x02\
|
||||
\x01\x03\x12\x03#'(\nP\n\x06\x04\0\x03\0\x02\x02\x12\x03&\x107\x1aA\x20u\
|
||||
sed\x20to\x20signal\x20the\x20sender's\x20connection\x20capabilities\x20\
|
||||
to\x20the\x20peer\n\n\x0e\n\x07\x04\0\x03\0\x02\x02\x04\x12\x03&\x10\x18\
|
||||
\n\x0e\n\x07\x04\0\x03\0\x02\x02\x06\x12\x03&\x19'\n\x0e\n\x07\x04\0\x03\
|
||||
\0\x02\x02\x01\x12\x03&(2\n\x0e\n\x07\x04\0\x03\0\x02\x02\x03\x12\x03&56\
|
||||
\n2\n\x04\x04\0\x02\0\x12\x03*\x08&\x1a%\x20defines\x20what\x20type\x20o\
|
||||
f\x20message\x20it\x20is.\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03*\x08\x10\
|
||||
\n\x0c\n\x05\x04\0\x02\0\x06\x12\x03*\x11\x1c\n\x0c\n\x05\x04\0\x02\0\
|
||||
\x01\x12\x03*\x1d!\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03*$%\nO\n\x04\x04\0\
|
||||
\x02\x01\x12\x03-\x08,\x1aB\x20defines\x20what\x20coral\x20cluster\x20le\
|
||||
vel\x20this\x20query/response\x20belongs\x20to.\n\n\x0c\n\x05\x04\0\x02\
|
||||
\x01\x04\x12\x03-\x08\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03-\x11\x16\
|
||||
\n\x0c\n\x05\x04\0\x02\x01\x01\x12\x03-\x17&\n\x0c\n\x05\x04\0\x02\x01\
|
||||
\x03\x12\x03-)+\nw\n\x04\x04\0\x02\x02\x12\x031\x08\x1f\x1aj\x20Used\x20\
|
||||
to\x20specify\x20the\x20key\x20associated\x20with\x20this\x20message.\n\
|
||||
\x20PUT_VALUE,\x20GET_VALUE,\x20ADD_PROVIDER,\x20GET_PROVIDERS\n\n\x0c\n\
|
||||
\x05\x04\0\x02\x02\x04\x12\x031\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\
|
||||
\x12\x031\x11\x16\n\x0c\n\x05\x04\0\x02\x02\x01\x12\x031\x17\x1a\n\x0c\n\
|
||||
\x05\x04\0\x02\x02\x03\x12\x031\x1d\x1e\n;\n\x04\x04\0\x02\x03\x12\x035\
|
||||
\x08-\x1a.\x20Used\x20to\x20return\x20a\x20value\n\x20PUT_VALUE,\x20GET_\
|
||||
VALUE\n\n\x0c\n\x05\x04\0\x02\x03\x04\x12\x035\x08\x10\n\x0c\n\x05\x04\0\
|
||||
\x02\x03\x06\x12\x035\x11!\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x035\"(\n\
|
||||
\x0c\n\x05\x04\0\x02\x03\x03\x12\x035+,\nc\n\x04\x04\0\x02\x04\x12\x039\
|
||||
\x08&\x1aV\x20Used\x20to\x20return\x20peers\x20closer\x20to\x20a\x20key\
|
||||
\x20in\x20a\x20query\n\x20GET_VALUE,\x20GET_PROVIDERS,\x20FIND_NODE\n\n\
|
||||
\x0c\n\x05\x04\0\x02\x04\x04\x12\x039\x08\x10\n\x0c\n\x05\x04\0\x02\x04\
|
||||
\x06\x12\x039\x11\x15\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x039\x16!\n\x0c\
|
||||
\n\x05\x04\0\x02\x04\x03\x12\x039$%\nO\n\x04\x04\0\x02\x05\x12\x03=\x08(\
|
||||
\x1aB\x20Used\x20to\x20return\x20Providers\n\x20GET_VALUE,\x20ADD_PROVID\
|
||||
ER,\x20GET_PROVIDERS\n\n\x0c\n\x05\x04\0\x02\x05\x04\x12\x03=\x08\x10\n\
|
||||
\x0c\n\x05\x04\0\x02\x05\x06\x12\x03=\x11\x15\n\x0c\n\x05\x04\0\x02\x05\
|
||||
\x01\x12\x03=\x16#\n\x0c\n\x05\x04\0\x02\x05\x03\x12\x03=&'\
|
||||
";
|
||||
|
||||
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
|
||||
};
|
||||
|
||||
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
|
||||
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
|
||||
}
|
||||
|
||||
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
|
||||
unsafe {
|
||||
file_descriptor_proto_lazy.get(|| {
|
||||
parse_descriptor_proto()
|
||||
})
|
||||
}
|
||||
}
|
22
protocols/kad/src/protobuf_structs/mod.rs
Normal file
22
protocols/kad/src/protobuf_structs/mod.rs
Normal file
@ -0,0 +1,22 @@
|
||||
// Copyright 2017 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
pub mod dht;
|
||||
pub mod record;
|
453
protocols/kad/src/protobuf_structs/record.rs
Normal file
453
protocols/kad/src/protobuf_structs/record.rs
Normal file
@ -0,0 +1,453 @@
|
||||
// This file is generated by rust-protobuf 2.0.2. Do not edit
|
||||
// @generated
|
||||
|
||||
// https://github.com/Manishearth/rust-clippy/issues/702
|
||||
#![allow(unknown_lints)]
|
||||
#![allow(clippy)]
|
||||
|
||||
#![cfg_attr(rustfmt, rustfmt_skip)]
|
||||
|
||||
#![allow(box_pointers)]
|
||||
#![allow(dead_code)]
|
||||
#![allow(missing_docs)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(trivial_casts)]
|
||||
#![allow(unsafe_code)]
|
||||
#![allow(unused_imports)]
|
||||
#![allow(unused_results)]
|
||||
|
||||
use protobuf::Message as Message_imported_for_functions;
|
||||
use protobuf::ProtobufEnum as ProtobufEnum_imported_for_functions;
|
||||
|
||||
#[derive(PartialEq,Clone,Default)]
|
||||
pub struct Record {
|
||||
// message fields
|
||||
key: ::protobuf::SingularField<::std::string::String>,
|
||||
value: ::protobuf::SingularField<::std::vec::Vec<u8>>,
|
||||
author: ::protobuf::SingularField<::std::string::String>,
|
||||
signature: ::protobuf::SingularField<::std::vec::Vec<u8>>,
|
||||
timeReceived: ::protobuf::SingularField<::std::string::String>,
|
||||
// special fields
|
||||
unknown_fields: ::protobuf::UnknownFields,
|
||||
cached_size: ::protobuf::CachedSize,
|
||||
}
|
||||
|
||||
impl Record {
|
||||
pub fn new() -> Record {
|
||||
::std::default::Default::default()
|
||||
}
|
||||
|
||||
// optional string key = 1;
|
||||
|
||||
pub fn clear_key(&mut self) {
|
||||
self.key.clear();
|
||||
}
|
||||
|
||||
pub fn has_key(&self) -> bool {
|
||||
self.key.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_key(&mut self, v: ::std::string::String) {
|
||||
self.key = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_key(&mut self) -> &mut ::std::string::String {
|
||||
if self.key.is_none() {
|
||||
self.key.set_default();
|
||||
}
|
||||
self.key.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_key(&mut self) -> ::std::string::String {
|
||||
self.key.take().unwrap_or_else(|| ::std::string::String::new())
|
||||
}
|
||||
|
||||
pub fn get_key(&self) -> &str {
|
||||
match self.key.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => "",
|
||||
}
|
||||
}
|
||||
|
||||
// optional bytes value = 2;
|
||||
|
||||
pub fn clear_value(&mut self) {
|
||||
self.value.clear();
|
||||
}
|
||||
|
||||
pub fn has_value(&self) -> bool {
|
||||
self.value.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_value(&mut self, v: ::std::vec::Vec<u8>) {
|
||||
self.value = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_value(&mut self) -> &mut ::std::vec::Vec<u8> {
|
||||
if self.value.is_none() {
|
||||
self.value.set_default();
|
||||
}
|
||||
self.value.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_value(&mut self) -> ::std::vec::Vec<u8> {
|
||||
self.value.take().unwrap_or_else(|| ::std::vec::Vec::new())
|
||||
}
|
||||
|
||||
pub fn get_value(&self) -> &[u8] {
|
||||
match self.value.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => &[],
|
||||
}
|
||||
}
|
||||
|
||||
// optional string author = 3;
|
||||
|
||||
pub fn clear_author(&mut self) {
|
||||
self.author.clear();
|
||||
}
|
||||
|
||||
pub fn has_author(&self) -> bool {
|
||||
self.author.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_author(&mut self, v: ::std::string::String) {
|
||||
self.author = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_author(&mut self) -> &mut ::std::string::String {
|
||||
if self.author.is_none() {
|
||||
self.author.set_default();
|
||||
}
|
||||
self.author.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_author(&mut self) -> ::std::string::String {
|
||||
self.author.take().unwrap_or_else(|| ::std::string::String::new())
|
||||
}
|
||||
|
||||
pub fn get_author(&self) -> &str {
|
||||
match self.author.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => "",
|
||||
}
|
||||
}
|
||||
|
||||
// optional bytes signature = 4;
|
||||
|
||||
pub fn clear_signature(&mut self) {
|
||||
self.signature.clear();
|
||||
}
|
||||
|
||||
pub fn has_signature(&self) -> bool {
|
||||
self.signature.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_signature(&mut self, v: ::std::vec::Vec<u8>) {
|
||||
self.signature = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_signature(&mut self) -> &mut ::std::vec::Vec<u8> {
|
||||
if self.signature.is_none() {
|
||||
self.signature.set_default();
|
||||
}
|
||||
self.signature.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_signature(&mut self) -> ::std::vec::Vec<u8> {
|
||||
self.signature.take().unwrap_or_else(|| ::std::vec::Vec::new())
|
||||
}
|
||||
|
||||
pub fn get_signature(&self) -> &[u8] {
|
||||
match self.signature.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => &[],
|
||||
}
|
||||
}
|
||||
|
||||
// optional string timeReceived = 5;
|
||||
|
||||
pub fn clear_timeReceived(&mut self) {
|
||||
self.timeReceived.clear();
|
||||
}
|
||||
|
||||
pub fn has_timeReceived(&self) -> bool {
|
||||
self.timeReceived.is_some()
|
||||
}
|
||||
|
||||
// Param is passed by value, moved
|
||||
pub fn set_timeReceived(&mut self, v: ::std::string::String) {
|
||||
self.timeReceived = ::protobuf::SingularField::some(v);
|
||||
}
|
||||
|
||||
// Mutable pointer to the field.
|
||||
// If field is not initialized, it is initialized with default value first.
|
||||
pub fn mut_timeReceived(&mut self) -> &mut ::std::string::String {
|
||||
if self.timeReceived.is_none() {
|
||||
self.timeReceived.set_default();
|
||||
}
|
||||
self.timeReceived.as_mut().unwrap()
|
||||
}
|
||||
|
||||
// Take field
|
||||
pub fn take_timeReceived(&mut self) -> ::std::string::String {
|
||||
self.timeReceived.take().unwrap_or_else(|| ::std::string::String::new())
|
||||
}
|
||||
|
||||
pub fn get_timeReceived(&self) -> &str {
|
||||
match self.timeReceived.as_ref() {
|
||||
Some(v) => &v,
|
||||
None => "",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Message for Record {
|
||||
fn is_initialized(&self) -> bool {
|
||||
true
|
||||
}
|
||||
|
||||
fn merge_from(&mut self, is: &mut ::protobuf::CodedInputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
while !is.eof()? {
|
||||
let (field_number, wire_type) = is.read_tag_unpack()?;
|
||||
match field_number {
|
||||
1 => {
|
||||
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.key)?;
|
||||
},
|
||||
2 => {
|
||||
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.value)?;
|
||||
},
|
||||
3 => {
|
||||
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.author)?;
|
||||
},
|
||||
4 => {
|
||||
::protobuf::rt::read_singular_bytes_into(wire_type, is, &mut self.signature)?;
|
||||
},
|
||||
5 => {
|
||||
::protobuf::rt::read_singular_string_into(wire_type, is, &mut self.timeReceived)?;
|
||||
},
|
||||
_ => {
|
||||
::protobuf::rt::read_unknown_or_skip_group(field_number, wire_type, is, self.mut_unknown_fields())?;
|
||||
},
|
||||
};
|
||||
}
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
// Compute sizes of nested messages
|
||||
#[allow(unused_variables)]
|
||||
fn compute_size(&self) -> u32 {
|
||||
let mut my_size = 0;
|
||||
if let Some(ref v) = self.key.as_ref() {
|
||||
my_size += ::protobuf::rt::string_size(1, &v);
|
||||
}
|
||||
if let Some(ref v) = self.value.as_ref() {
|
||||
my_size += ::protobuf::rt::bytes_size(2, &v);
|
||||
}
|
||||
if let Some(ref v) = self.author.as_ref() {
|
||||
my_size += ::protobuf::rt::string_size(3, &v);
|
||||
}
|
||||
if let Some(ref v) = self.signature.as_ref() {
|
||||
my_size += ::protobuf::rt::bytes_size(4, &v);
|
||||
}
|
||||
if let Some(ref v) = self.timeReceived.as_ref() {
|
||||
my_size += ::protobuf::rt::string_size(5, &v);
|
||||
}
|
||||
my_size += ::protobuf::rt::unknown_fields_size(self.get_unknown_fields());
|
||||
self.cached_size.set(my_size);
|
||||
my_size
|
||||
}
|
||||
|
||||
fn write_to_with_cached_sizes(&self, os: &mut ::protobuf::CodedOutputStream) -> ::protobuf::ProtobufResult<()> {
|
||||
if let Some(ref v) = self.key.as_ref() {
|
||||
os.write_string(1, &v)?;
|
||||
}
|
||||
if let Some(ref v) = self.value.as_ref() {
|
||||
os.write_bytes(2, &v)?;
|
||||
}
|
||||
if let Some(ref v) = self.author.as_ref() {
|
||||
os.write_string(3, &v)?;
|
||||
}
|
||||
if let Some(ref v) = self.signature.as_ref() {
|
||||
os.write_bytes(4, &v)?;
|
||||
}
|
||||
if let Some(ref v) = self.timeReceived.as_ref() {
|
||||
os.write_string(5, &v)?;
|
||||
}
|
||||
os.write_unknown_fields(self.get_unknown_fields())?;
|
||||
::std::result::Result::Ok(())
|
||||
}
|
||||
|
||||
fn get_cached_size(&self) -> u32 {
|
||||
self.cached_size.get()
|
||||
}
|
||||
|
||||
fn get_unknown_fields(&self) -> &::protobuf::UnknownFields {
|
||||
&self.unknown_fields
|
||||
}
|
||||
|
||||
fn mut_unknown_fields(&mut self) -> &mut ::protobuf::UnknownFields {
|
||||
&mut self.unknown_fields
|
||||
}
|
||||
|
||||
fn as_any(&self) -> &::std::any::Any {
|
||||
self as &::std::any::Any
|
||||
}
|
||||
fn as_any_mut(&mut self) -> &mut ::std::any::Any {
|
||||
self as &mut ::std::any::Any
|
||||
}
|
||||
fn into_any(self: Box<Self>) -> ::std::boxed::Box<::std::any::Any> {
|
||||
self
|
||||
}
|
||||
|
||||
fn descriptor(&self) -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
Self::descriptor_static()
|
||||
}
|
||||
|
||||
fn new() -> Record {
|
||||
Record::new()
|
||||
}
|
||||
|
||||
fn descriptor_static() -> &'static ::protobuf::reflect::MessageDescriptor {
|
||||
static mut descriptor: ::protobuf::lazy::Lazy<::protobuf::reflect::MessageDescriptor> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::reflect::MessageDescriptor,
|
||||
};
|
||||
unsafe {
|
||||
descriptor.get(|| {
|
||||
let mut fields = ::std::vec::Vec::new();
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
|
||||
"key",
|
||||
|m: &Record| { &m.key },
|
||||
|m: &mut Record| { &mut m.key },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
|
||||
"value",
|
||||
|m: &Record| { &m.value },
|
||||
|m: &mut Record| { &mut m.value },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
|
||||
"author",
|
||||
|m: &Record| { &m.author },
|
||||
|m: &mut Record| { &mut m.author },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeBytes>(
|
||||
"signature",
|
||||
|m: &Record| { &m.signature },
|
||||
|m: &mut Record| { &mut m.signature },
|
||||
));
|
||||
fields.push(::protobuf::reflect::accessor::make_singular_field_accessor::<_, ::protobuf::types::ProtobufTypeString>(
|
||||
"timeReceived",
|
||||
|m: &Record| { &m.timeReceived },
|
||||
|m: &mut Record| { &mut m.timeReceived },
|
||||
));
|
||||
::protobuf::reflect::MessageDescriptor::new::<Record>(
|
||||
"Record",
|
||||
fields,
|
||||
file_descriptor_proto()
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn default_instance() -> &'static Record {
|
||||
static mut instance: ::protobuf::lazy::Lazy<Record> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const Record,
|
||||
};
|
||||
unsafe {
|
||||
instance.get(Record::new)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::Clear for Record {
|
||||
fn clear(&mut self) {
|
||||
self.clear_key();
|
||||
self.clear_value();
|
||||
self.clear_author();
|
||||
self.clear_signature();
|
||||
self.clear_timeReceived();
|
||||
self.unknown_fields.clear();
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Debug for Record {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
::protobuf::text_format::fmt(self, f)
|
||||
}
|
||||
}
|
||||
|
||||
impl ::protobuf::reflect::ProtobufValue for Record {
|
||||
fn as_ref(&self) -> ::protobuf::reflect::ProtobufValueRef {
|
||||
::protobuf::reflect::ProtobufValueRef::Message(self)
|
||||
}
|
||||
}
|
||||
|
||||
static file_descriptor_proto_data: &'static [u8] = b"\
|
||||
\n\x0crecord.proto\x12\trecord.pb\"\x8a\x01\n\x06Record\x12\x10\n\x03key\
|
||||
\x18\x01\x20\x01(\tR\x03key\x12\x14\n\x05value\x18\x02\x20\x01(\x0cR\x05\
|
||||
value\x12\x16\n\x06author\x18\x03\x20\x01(\tR\x06author\x12\x1c\n\tsigna\
|
||||
ture\x18\x04\x20\x01(\x0cR\tsignature\x12\"\n\x0ctimeReceived\x18\x05\
|
||||
\x20\x01(\tR\x0ctimeReceivedJ\xac\x05\n\x06\x12\x04\0\0\x14\x01\n\x08\n\
|
||||
\x01\x0c\x12\x03\0\0\x12\n\x08\n\x01\x02\x12\x03\x01\x08\x11\nX\n\x02\
|
||||
\x04\0\x12\x04\x05\0\x14\x01\x1aL\x20Record\x20represents\x20a\x20dht\
|
||||
\x20record\x20that\x20contains\x20a\x20value\n\x20for\x20a\x20key\x20val\
|
||||
ue\x20pair\n\n\n\n\x03\x04\0\x01\x12\x03\x05\x08\x0e\n2\n\x04\x04\0\x02\
|
||||
\0\x12\x03\x07\x08\x20\x1a%\x20The\x20key\x20that\x20references\x20this\
|
||||
\x20record\n\n\x0c\n\x05\x04\0\x02\0\x04\x12\x03\x07\x08\x10\n\x0c\n\x05\
|
||||
\x04\0\x02\0\x05\x12\x03\x07\x11\x17\n\x0c\n\x05\x04\0\x02\0\x01\x12\x03\
|
||||
\x07\x18\x1b\n\x0c\n\x05\x04\0\x02\0\x03\x12\x03\x07\x1e\x1f\n6\n\x04\
|
||||
\x04\0\x02\x01\x12\x03\n\x08!\x1a)\x20The\x20actual\x20value\x20this\x20\
|
||||
record\x20is\x20storing\n\n\x0c\n\x05\x04\0\x02\x01\x04\x12\x03\n\x08\
|
||||
\x10\n\x0c\n\x05\x04\0\x02\x01\x05\x12\x03\n\x11\x16\n\x0c\n\x05\x04\0\
|
||||
\x02\x01\x01\x12\x03\n\x17\x1c\n\x0c\n\x05\x04\0\x02\x01\x03\x12\x03\n\
|
||||
\x1f\x20\n-\n\x04\x04\0\x02\x02\x12\x03\r\x08#\x1a\x20\x20hash\x20of\x20\
|
||||
the\x20authors\x20public\x20key\n\n\x0c\n\x05\x04\0\x02\x02\x04\x12\x03\
|
||||
\r\x08\x10\n\x0c\n\x05\x04\0\x02\x02\x05\x12\x03\r\x11\x17\n\x0c\n\x05\
|
||||
\x04\0\x02\x02\x01\x12\x03\r\x18\x1e\n\x0c\n\x05\x04\0\x02\x02\x03\x12\
|
||||
\x03\r!\"\n7\n\x04\x04\0\x02\x03\x12\x03\x10\x08%\x1a*\x20A\x20PKI\x20si\
|
||||
gnature\x20for\x20the\x20key+value+author\n\n\x0c\n\x05\x04\0\x02\x03\
|
||||
\x04\x12\x03\x10\x08\x10\n\x0c\n\x05\x04\0\x02\x03\x05\x12\x03\x10\x11\
|
||||
\x16\n\x0c\n\x05\x04\0\x02\x03\x01\x12\x03\x10\x17\x20\n\x0c\n\x05\x04\0\
|
||||
\x02\x03\x03\x12\x03\x10#$\n<\n\x04\x04\0\x02\x04\x12\x03\x13\x08)\x1a/\
|
||||
\x20Time\x20the\x20record\x20was\x20received,\x20set\x20by\x20receiver\n\
|
||||
\n\x0c\n\x05\x04\0\x02\x04\x04\x12\x03\x13\x08\x10\n\x0c\n\x05\x04\0\x02\
|
||||
\x04\x05\x12\x03\x13\x11\x17\n\x0c\n\x05\x04\0\x02\x04\x01\x12\x03\x13\
|
||||
\x18$\n\x0c\n\x05\x04\0\x02\x04\x03\x12\x03\x13'(\
|
||||
";
|
||||
|
||||
static mut file_descriptor_proto_lazy: ::protobuf::lazy::Lazy<::protobuf::descriptor::FileDescriptorProto> = ::protobuf::lazy::Lazy {
|
||||
lock: ::protobuf::lazy::ONCE_INIT,
|
||||
ptr: 0 as *const ::protobuf::descriptor::FileDescriptorProto,
|
||||
};
|
||||
|
||||
fn parse_descriptor_proto() -> ::protobuf::descriptor::FileDescriptorProto {
|
||||
::protobuf::parse_from_bytes(file_descriptor_proto_data).unwrap()
|
||||
}
|
||||
|
||||
pub fn file_descriptor_proto() -> &'static ::protobuf::descriptor::FileDescriptorProto {
|
||||
unsafe {
|
||||
file_descriptor_proto_lazy.get(|| {
|
||||
parse_descriptor_proto()
|
||||
})
|
||||
}
|
||||
}
|
381
protocols/kad/src/protocol.rs
Normal file
381
protocols/kad/src/protocol.rs
Normal file
@ -0,0 +1,381 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
//! Provides the `KadMsg` enum of all the possible messages transmitted with the Kademlia protocol,
|
||||
//! and the `KademliaProtocolConfig` connection upgrade whose output is a
|
||||
//! `Stream<Item = KadMsg> + Sink<SinkItem = KadMsg>`.
|
||||
//!
|
||||
//! The `Stream` component is used to poll the underlying transport, and the `Sink` component is
|
||||
//! used to send messages.
|
||||
|
||||
use bytes::{Bytes, BytesMut};
|
||||
use futures::{future, sink, Sink, stream, Stream};
|
||||
use libp2p_core::{ConnectionUpgrade, Endpoint, Multiaddr, PeerId};
|
||||
use protobuf::{self, Message};
|
||||
use protobuf_structs;
|
||||
use std::io::{Error as IoError, ErrorKind as IoErrorKind};
|
||||
use std::iter;
|
||||
use tokio_codec::Framed;
|
||||
use tokio_io::{AsyncRead, AsyncWrite};
|
||||
use unsigned_varint::codec;
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
|
||||
pub enum KadConnectionType {
|
||||
/// Sender hasn't tried to connect to peer.
|
||||
NotConnected = 0,
|
||||
/// Sender is currently connected to peer.
|
||||
Connected = 1,
|
||||
/// Sender was recently connected to peer.
|
||||
CanConnect = 2,
|
||||
/// Sender tried to connect to peer but failed.
|
||||
CannotConnect = 3,
|
||||
}
|
||||
|
||||
impl From<protobuf_structs::dht::Message_ConnectionType> for KadConnectionType {
|
||||
#[inline]
|
||||
fn from(raw: protobuf_structs::dht::Message_ConnectionType) -> KadConnectionType {
|
||||
use protobuf_structs::dht::Message_ConnectionType::*;
|
||||
match raw {
|
||||
NOT_CONNECTED => KadConnectionType::NotConnected,
|
||||
CONNECTED => KadConnectionType::Connected,
|
||||
CAN_CONNECT => KadConnectionType::CanConnect,
|
||||
CANNOT_CONNECT => KadConnectionType::CannotConnect,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Into<protobuf_structs::dht::Message_ConnectionType> for KadConnectionType {
|
||||
#[inline]
|
||||
fn into(self) -> protobuf_structs::dht::Message_ConnectionType {
|
||||
use protobuf_structs::dht::Message_ConnectionType::*;
|
||||
match self {
|
||||
KadConnectionType::NotConnected => NOT_CONNECTED,
|
||||
KadConnectionType::Connected => CONNECTED,
|
||||
KadConnectionType::CanConnect => CAN_CONNECT,
|
||||
KadConnectionType::CannotConnect => CANNOT_CONNECT,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Information about a peer, as known by the sender.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct KadPeer {
|
||||
pub node_id: PeerId,
|
||||
/// The multiaddresses that are known for that peer.
|
||||
pub multiaddrs: Vec<Multiaddr>,
|
||||
pub connection_ty: KadConnectionType,
|
||||
}
|
||||
|
||||
impl KadPeer {
|
||||
// Builds a `KadPeer` from its raw protobuf equivalent.
|
||||
// TODO: use TryFrom once stable
|
||||
fn from_peer(peer: &mut protobuf_structs::dht::Message_Peer) -> Result<KadPeer, IoError> {
|
||||
// TODO: this is in fact a CID ; not sure if this should be handled in `from_bytes` or
|
||||
// as a special case here
|
||||
let node_id = PeerId::from_bytes(peer.get_id().to_vec())
|
||||
.map_err(|_| IoError::new(IoErrorKind::InvalidData, "invalid peer id"))?;
|
||||
|
||||
let mut addrs = Vec::with_capacity(peer.get_addrs().len());
|
||||
for addr in peer.take_addrs().into_iter() {
|
||||
let as_ma = Multiaddr::from_bytes(addr)
|
||||
.map_err(|err| IoError::new(IoErrorKind::InvalidData, err))?;
|
||||
addrs.push(as_ma);
|
||||
}
|
||||
debug_assert_eq!(addrs.len(), addrs.capacity());
|
||||
|
||||
let connection_ty = peer.get_connection().into();
|
||||
|
||||
Ok(KadPeer {
|
||||
node_id: node_id,
|
||||
multiaddrs: addrs,
|
||||
connection_ty: connection_ty,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Into<protobuf_structs::dht::Message_Peer> for KadPeer {
|
||||
fn into(self) -> protobuf_structs::dht::Message_Peer {
|
||||
let mut out = protobuf_structs::dht::Message_Peer::new();
|
||||
out.set_id(self.node_id.into_bytes());
|
||||
for addr in self.multiaddrs {
|
||||
out.mut_addrs().push(addr.into_bytes());
|
||||
}
|
||||
out.set_connection(self.connection_ty.into());
|
||||
out
|
||||
}
|
||||
}
|
||||
|
||||
/// Configuration for a Kademlia connection upgrade. When applied to a connection, turns this
|
||||
/// connection into a `Stream + Sink` whose items are of type `KadMsg`.
|
||||
#[derive(Debug, Default, Copy, Clone)]
|
||||
pub struct KademliaProtocolConfig;
|
||||
|
||||
impl<C, Maf> ConnectionUpgrade<C, Maf> for KademliaProtocolConfig
|
||||
where
|
||||
C: AsyncRead + AsyncWrite + 'static, // TODO: 'static :-/
|
||||
{
|
||||
type Output = KadStreamSink<C>;
|
||||
type MultiaddrFuture = Maf;
|
||||
type Future = future::FutureResult<(Self::Output, Self::MultiaddrFuture), IoError>;
|
||||
type NamesIter = iter::Once<(Bytes, ())>;
|
||||
type UpgradeIdentifier = ();
|
||||
|
||||
#[inline]
|
||||
fn protocol_names(&self) -> Self::NamesIter {
|
||||
iter::once(("/ipfs/kad/1.0.0".into(), ()))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn upgrade(self, incoming: C, _: (), _: Endpoint, addr: Maf) -> Self::Future {
|
||||
future::ok((kademlia_protocol(incoming), addr))
|
||||
}
|
||||
}
|
||||
|
||||
type KadStreamSink<S> = stream::AndThen<sink::With<stream::FromErr<Framed<S, codec::UviBytes<Vec<u8>>>, IoError>, KadMsg, fn(KadMsg) -> Result<Vec<u8>, IoError>, Result<Vec<u8>, IoError>>, fn(BytesMut) -> Result<KadMsg, IoError>, Result<KadMsg, IoError>>;
|
||||
|
||||
// Upgrades a socket to use the Kademlia protocol.
|
||||
fn kademlia_protocol<S>(
|
||||
socket: S,
|
||||
) -> KadStreamSink<S>
|
||||
where
|
||||
S: AsyncRead + AsyncWrite,
|
||||
{
|
||||
Framed::new(socket, codec::UviBytes::default())
|
||||
.from_err::<IoError>()
|
||||
.with::<_, fn(_) -> _, _>(|request| -> Result<_, IoError> {
|
||||
let proto_struct = msg_to_proto(request);
|
||||
Ok(proto_struct.write_to_bytes().unwrap()) // TODO: error?
|
||||
})
|
||||
.and_then::<fn(_) -> _, _>(|bytes| {
|
||||
let response = protobuf::parse_from_bytes(&bytes)?;
|
||||
proto_to_msg(response)
|
||||
})
|
||||
}
|
||||
|
||||
/// Message that we can send to a peer or received from a peer.
|
||||
// TODO: document the rest
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub enum KadMsg {
|
||||
/// Ping request or response.
|
||||
Ping,
|
||||
/// Target must save the given record, can be queried later with `GetValueReq`.
|
||||
PutValue {
|
||||
/// Identifier of the record.
|
||||
key: Vec<u8>,
|
||||
/// The record itself.
|
||||
record: (), //record: protobuf_structs::record::Record, // TODO: no
|
||||
},
|
||||
GetValueReq {
|
||||
/// Identifier of the record.
|
||||
key: Vec<u8>,
|
||||
},
|
||||
GetValueRes {
|
||||
/// Identifier of the returned record.
|
||||
key: Vec<u8>,
|
||||
record: (), //record: Option<protobuf_structs::record::Record>, // TODO: no
|
||||
closer_peers: Vec<KadPeer>,
|
||||
},
|
||||
/// Request for the list of nodes whose IDs are the closest to `key`. The number of nodes
|
||||
/// returned is not specified, but should be around 20.
|
||||
FindNodeReq {
|
||||
/// Identifier of the node.
|
||||
key: Vec<u8>,
|
||||
},
|
||||
/// Response to a `FindNodeReq`.
|
||||
FindNodeRes {
|
||||
/// Results of the request.
|
||||
closer_peers: Vec<KadPeer>,
|
||||
},
|
||||
}
|
||||
|
||||
// Turns a type-safe kadmelia message into the corresponding row protobuf message.
|
||||
fn msg_to_proto(kad_msg: KadMsg) -> protobuf_structs::dht::Message {
|
||||
match kad_msg {
|
||||
KadMsg::Ping => {
|
||||
let mut msg = protobuf_structs::dht::Message::new();
|
||||
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PING);
|
||||
msg
|
||||
}
|
||||
KadMsg::PutValue { key, .. } => {
|
||||
let mut msg = protobuf_structs::dht::Message::new();
|
||||
msg.set_field_type(protobuf_structs::dht::Message_MessageType::PUT_VALUE);
|
||||
msg.set_key(key);
|
||||
//msg.set_record(record); // TODO:
|
||||
msg
|
||||
}
|
||||
KadMsg::GetValueReq { key } => {
|
||||
let mut msg = protobuf_structs::dht::Message::new();
|
||||
msg.set_field_type(protobuf_structs::dht::Message_MessageType::GET_VALUE);
|
||||
msg.set_key(key);
|
||||
msg.set_clusterLevelRaw(10);
|
||||
msg
|
||||
}
|
||||
KadMsg::GetValueRes { .. } => unimplemented!(), // TODO:
|
||||
KadMsg::FindNodeReq { key } => {
|
||||
let mut msg = protobuf_structs::dht::Message::new();
|
||||
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
|
||||
msg.set_key(key);
|
||||
msg.set_clusterLevelRaw(10);
|
||||
msg
|
||||
}
|
||||
KadMsg::FindNodeRes { closer_peers } => {
|
||||
// TODO: if empty, the remote will think it's a request
|
||||
// TODO: not good, possibly exposed in the API
|
||||
assert!(!closer_peers.is_empty());
|
||||
let mut msg = protobuf_structs::dht::Message::new();
|
||||
msg.set_field_type(protobuf_structs::dht::Message_MessageType::FIND_NODE);
|
||||
msg.set_clusterLevelRaw(9);
|
||||
for peer in closer_peers {
|
||||
msg.mut_closerPeers().push(peer.into());
|
||||
}
|
||||
msg
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Turns a raw Kademlia message into a type-safe message.
|
||||
fn proto_to_msg(mut message: protobuf_structs::dht::Message) -> Result<KadMsg, IoError> {
|
||||
match message.get_field_type() {
|
||||
protobuf_structs::dht::Message_MessageType::PING => Ok(KadMsg::Ping),
|
||||
|
||||
protobuf_structs::dht::Message_MessageType::PUT_VALUE => {
|
||||
let key = message.take_key();
|
||||
let _record = message.take_record();
|
||||
Ok(KadMsg::PutValue {
|
||||
key: key,
|
||||
record: (),
|
||||
})
|
||||
}
|
||||
|
||||
protobuf_structs::dht::Message_MessageType::GET_VALUE => {
|
||||
let key = message.take_key();
|
||||
Ok(KadMsg::GetValueReq { key: key })
|
||||
}
|
||||
|
||||
protobuf_structs::dht::Message_MessageType::FIND_NODE => {
|
||||
if message.get_closerPeers().is_empty() {
|
||||
Ok(KadMsg::FindNodeReq {
|
||||
key: message.take_key(),
|
||||
})
|
||||
|
||||
} else {
|
||||
// TODO: for now we don't parse the peer properly, so it is possible that we get
|
||||
// parsing errors for peers even when they are valid ; we ignore these
|
||||
// errors for now, but ultimately we should just error altogether
|
||||
let closer_peers = message.mut_closerPeers()
|
||||
.iter_mut()
|
||||
.filter_map(|peer| KadPeer::from_peer(peer).ok())
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
Ok(KadMsg::FindNodeRes {
|
||||
closer_peers,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
protobuf_structs::dht::Message_MessageType::GET_PROVIDERS
|
||||
| protobuf_structs::dht::Message_MessageType::ADD_PROVIDER => {
|
||||
// These messages don't seem to be used in the protocol in practice, so if we receive
|
||||
// them we suppose that it's a mistake in the protocol usage.
|
||||
Err(IoError::new(
|
||||
IoErrorKind::InvalidData,
|
||||
"received an unsupported kad message type",
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
extern crate libp2p_tcp_transport;
|
||||
extern crate tokio_current_thread;
|
||||
|
||||
use self::libp2p_tcp_transport::TcpConfig;
|
||||
use futures::{Future, Sink, Stream};
|
||||
use libp2p_core::{Transport, PeerId, PublicKey};
|
||||
use protocol::{KadConnectionType, KadMsg, KademliaProtocolConfig, KadPeer};
|
||||
use std::sync::mpsc;
|
||||
use std::thread;
|
||||
|
||||
#[test]
|
||||
fn correct_transfer() {
|
||||
// We open a server and a client, send a message between the two, and check that they were
|
||||
// successfully received.
|
||||
|
||||
test_one(KadMsg::Ping);
|
||||
test_one(KadMsg::PutValue {
|
||||
key: vec![1, 2, 3, 4],
|
||||
record: (),
|
||||
});
|
||||
test_one(KadMsg::GetValueReq {
|
||||
key: vec![10, 11, 12],
|
||||
});
|
||||
test_one(KadMsg::FindNodeReq {
|
||||
key: vec![9, 12, 0, 245, 245, 201, 28, 95],
|
||||
});
|
||||
test_one(KadMsg::FindNodeRes {
|
||||
closer_peers: vec![
|
||||
KadPeer {
|
||||
node_id: PeerId::from_public_key(PublicKey::Rsa(vec![93, 80, 12, 250])),
|
||||
multiaddrs: vec!["/ip4/100.101.102.103/tcp/20105".parse().unwrap()],
|
||||
connection_ty: KadConnectionType::Connected,
|
||||
},
|
||||
],
|
||||
});
|
||||
// TODO: all messages
|
||||
|
||||
fn test_one(msg_server: KadMsg) {
|
||||
let msg_client = msg_server.clone();
|
||||
let (tx, rx) = mpsc::channel();
|
||||
|
||||
let bg_thread = thread::spawn(move || {
|
||||
let transport = TcpConfig::new().with_upgrade(KademliaProtocolConfig);
|
||||
|
||||
let (listener, addr) = transport
|
||||
.listen_on("/ip4/127.0.0.1/tcp/0".parse().unwrap())
|
||||
.unwrap();
|
||||
tx.send(addr).unwrap();
|
||||
|
||||
let future = listener
|
||||
.into_future()
|
||||
.map_err(|(err, _)| err)
|
||||
.and_then(|(client, _)| client.unwrap().map(|v| v.0))
|
||||
.and_then(|proto| proto.into_future().map_err(|(err, _)| err).map(|(v, _)| v))
|
||||
.map(|recv_msg| {
|
||||
assert_eq!(recv_msg.unwrap(), msg_server);
|
||||
()
|
||||
});
|
||||
|
||||
let _ = tokio_current_thread::block_on_all(future).unwrap();
|
||||
});
|
||||
|
||||
let transport = TcpConfig::new().with_upgrade(KademliaProtocolConfig);
|
||||
|
||||
let future = transport
|
||||
.dial(rx.recv().unwrap())
|
||||
.unwrap_or_else(|_| panic!())
|
||||
.and_then(|proto| proto.0.send(msg_client))
|
||||
.map(|_| ());
|
||||
|
||||
let _ = tokio_current_thread::block_on_all(future).unwrap();
|
||||
bg_thread.join().unwrap();
|
||||
}
|
||||
}
|
||||
}
|
365
protocols/kad/src/query.rs
Normal file
365
protocols/kad/src/query.rs
Normal file
@ -0,0 +1,365 @@
|
||||
// Copyright 2018 Parity Technologies (UK) Ltd.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
// DEALINGS IN THE SOFTWARE.
|
||||
|
||||
//! This module handles performing iterative queries about the network.
|
||||
|
||||
use fnv::FnvHashSet;
|
||||
use futures::{future, Future, stream, Stream};
|
||||
use kbucket::KBucketsPeerId;
|
||||
use libp2p_core::PeerId;
|
||||
use multiaddr::{AddrComponent, Multiaddr};
|
||||
use protocol;
|
||||
use rand;
|
||||
use smallvec::SmallVec;
|
||||
use std::cmp::Ordering;
|
||||
use std::io::Error as IoError;
|
||||
use std::mem;
|
||||
|
||||
/// Parameters of a query. Allows plugging the query-related code with the rest of the
|
||||
/// infrastructure.
|
||||
pub struct QueryParams<FBuckets, FFindNode> {
|
||||
/// Identifier of the local peer.
|
||||
pub local_id: PeerId,
|
||||
/// Called whenever we need to obtain the peers closest to a certain peer.
|
||||
pub kbuckets_find_closest: FBuckets,
|
||||
/// Level of parallelism for networking. If this is `N`, then we can dial `N` nodes at a time.
|
||||
pub parallelism: usize,
|
||||
/// Called whenever we want to send a `FIND_NODE` RPC query.
|
||||
pub find_node: FFindNode,
|
||||
}
|
||||
|
||||
/// Event that happens during a query.
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum QueryEvent<TOut> {
|
||||
/// Learned about new mutiaddresses for the given peers.
|
||||
NewKnownMultiaddrs(Vec<(PeerId, Vec<Multiaddr>)>),
|
||||
/// Finished the processing of the query. Contains the result.
|
||||
Finished(TOut),
|
||||
}
|
||||
|
||||
/// Starts a query for an iterative `FIND_NODE` request.
|
||||
#[inline]
|
||||
pub fn find_node<'a, FBuckets, FFindNode>(
|
||||
query_params: QueryParams<FBuckets, FFindNode>,
|
||||
searched_key: PeerId,
|
||||
) -> Box<Stream<Item = QueryEvent<Vec<PeerId>>, Error = IoError> + 'a>
|
||||
where
|
||||
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
|
||||
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
|
||||
{
|
||||
query(query_params, searched_key, 20) // TODO: constant
|
||||
}
|
||||
|
||||
/// Refreshes a specific bucket by performing an iterative `FIND_NODE` on a random ID of this
|
||||
/// bucket.
|
||||
///
|
||||
/// Returns a dummy no-op future if `bucket_num` is out of range.
|
||||
pub fn refresh<'a, FBuckets, FFindNode>(
|
||||
query_params: QueryParams<FBuckets, FFindNode>,
|
||||
bucket_num: usize,
|
||||
) -> Box<Stream<Item = QueryEvent<()>, Error = IoError> + 'a>
|
||||
where
|
||||
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
|
||||
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
|
||||
{
|
||||
let peer_id = match gen_random_id(&query_params.local_id, bucket_num) {
|
||||
Ok(p) => p,
|
||||
Err(()) => return Box::new(stream::once(Ok(QueryEvent::Finished(())))),
|
||||
};
|
||||
|
||||
let stream = find_node(query_params, peer_id).map(|event| {
|
||||
match event {
|
||||
QueryEvent::NewKnownMultiaddrs(peers) => QueryEvent::NewKnownMultiaddrs(peers),
|
||||
QueryEvent::Finished(_) => QueryEvent::Finished(()),
|
||||
}
|
||||
});
|
||||
|
||||
Box::new(stream) as Box<_>
|
||||
}
|
||||
|
||||
// Generates a random `PeerId` that belongs to the given bucket.
|
||||
//
|
||||
// Returns an error if `bucket_num` is out of range.
|
||||
fn gen_random_id(my_id: &PeerId, bucket_num: usize) -> Result<PeerId, ()> {
|
||||
let my_id_len = my_id.as_bytes().len();
|
||||
|
||||
// TODO: this 2 is magic here ; it is the length of the hash of the multihash
|
||||
let bits_diff = bucket_num + 1;
|
||||
if bits_diff > 8 * (my_id_len - 2) {
|
||||
return Err(());
|
||||
}
|
||||
|
||||
let mut random_id = [0; 64];
|
||||
for byte in 0..my_id_len {
|
||||
match byte.cmp(&(my_id_len - bits_diff / 8 - 1)) {
|
||||
Ordering::Less => {
|
||||
random_id[byte] = my_id.as_bytes()[byte];
|
||||
}
|
||||
Ordering::Equal => {
|
||||
let mask: u8 = (1 << (bits_diff % 8)) - 1;
|
||||
random_id[byte] = (my_id.as_bytes()[byte] & !mask) | (rand::random::<u8>() & mask);
|
||||
}
|
||||
Ordering::Greater => {
|
||||
random_id[byte] = rand::random();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let peer_id = PeerId::from_bytes(random_id[..my_id_len].to_owned())
|
||||
.expect("randomly-generated peer ID should always be valid");
|
||||
Ok(peer_id)
|
||||
}
|
||||
|
||||
// Generic query-performing function.
|
||||
fn query<'a, FBuckets, FFindNode>(
|
||||
query_params: QueryParams<FBuckets, FFindNode>,
|
||||
searched_key: PeerId,
|
||||
num_results: usize,
|
||||
) -> Box<Stream<Item = QueryEvent<Vec<PeerId>>, Error = IoError> + 'a>
|
||||
where
|
||||
FBuckets: Fn(PeerId) -> Vec<PeerId> + 'a + Clone,
|
||||
FFindNode: Fn(Multiaddr, PeerId) -> Box<Future<Item = Vec<protocol::Peer>, Error = IoError>> + 'a + Clone,
|
||||
{
|
||||
debug!("Start query for {:?} ; num results = {}", searched_key, num_results);
|
||||
|
||||
// State of the current iterative process.
|
||||
struct State<'a> {
|
||||
// At which stage we are.
|
||||
stage: Stage,
|
||||
// Final output of the iteration.
|
||||
result: Vec<PeerId>,
|
||||
// For each open connection, a future with the response of the remote.
|
||||
// Note that don't use a `SmallVec` here because `select_all` produces a `Vec`.
|
||||
current_attempts_fut: Vec<Box<Future<Item = Vec<protocol::Peer>, Error = IoError> + 'a>>,
|
||||
// For each open connection, the peer ID that we are connected to.
|
||||
// Must always have the same length as `current_attempts_fut`.
|
||||
current_attempts_addrs: SmallVec<[PeerId; 32]>,
|
||||
// Nodes that need to be attempted.
|
||||
pending_nodes: Vec<PeerId>,
|
||||
// Peers that we tried to contact but failed.
|
||||
failed_to_contact: FnvHashSet<PeerId>,
|
||||
}
|
||||
|
||||
// General stage of the state.
|
||||
#[derive(Copy, Clone, PartialEq, Eq)]
|
||||
enum Stage {
|
||||
// We are still in the first step of the algorithm where we try to find the closest node.
|
||||
FirstStep,
|
||||
// We are contacting the k closest nodes in order to fill the list with enough results.
|
||||
SecondStep,
|
||||
// The results are complete, and the next stream iteration will produce the outcome.
|
||||
FinishingNextIter,
|
||||
// We are finished and the stream shouldn't return anything anymore.
|
||||
Finished,
|
||||
}
|
||||
|
||||
let initial_state = State {
|
||||
stage: Stage::FirstStep,
|
||||
result: Vec::with_capacity(num_results),
|
||||
current_attempts_fut: Vec::new(),
|
||||
current_attempts_addrs: SmallVec::new(),
|
||||
pending_nodes: {
|
||||
let kbuckets_find_closest = query_params.kbuckets_find_closest.clone();
|
||||
kbuckets_find_closest(searched_key.clone()) // TODO: suboptimal
|
||||
},
|
||||
failed_to_contact: Default::default(),
|
||||
};
|
||||
|
||||
let parallelism = query_params.parallelism;
|
||||
|
||||
// Start of the iterative process.
|
||||
let stream = stream::unfold(initial_state, move |mut state| -> Option<_> {
|
||||
match state.stage {
|
||||
Stage::FinishingNextIter => {
|
||||
let result = mem::replace(&mut state.result, Vec::new());
|
||||
debug!("Query finished with {} results", result.len());
|
||||
state.stage = Stage::Finished;
|
||||
let future = future::ok((Some(QueryEvent::Finished(result)), state));
|
||||
return Some(future::Either::A(future));
|
||||
},
|
||||
Stage::Finished => {
|
||||
return None;
|
||||
},
|
||||
_ => ()
|
||||
};
|
||||
|
||||
let searched_key = searched_key.clone();
|
||||
let find_node_rpc = query_params.find_node.clone();
|
||||
|
||||
// Find out which nodes to contact at this iteration.
|
||||
let to_contact = {
|
||||
let wanted_len = if state.stage == Stage::FirstStep {
|
||||
parallelism.saturating_sub(state.current_attempts_fut.len())
|
||||
} else {
|
||||
num_results.saturating_sub(state.current_attempts_fut.len())
|
||||
};
|
||||
let mut to_contact = SmallVec::<[_; 16]>::new();
|
||||
while to_contact.len() < wanted_len && !state.pending_nodes.is_empty() {
|
||||
// Move the first element of `pending_nodes` to `to_contact`, but ignore nodes that
|
||||
// are already part of the results or of a current attempt or if we failed to
|
||||
// contact it before.
|
||||
let peer = state.pending_nodes.remove(0);
|
||||
if state.result.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
if state.current_attempts_addrs.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
if state.failed_to_contact.iter().any(|p| p == &peer) {
|
||||
continue;
|
||||
}
|
||||
to_contact.push(peer);
|
||||
}
|
||||
to_contact
|
||||
};
|
||||
|
||||
debug!("New query round ; {} queries in progress ; contacting {} new peers",
|
||||
state.current_attempts_fut.len(),
|
||||
to_contact.len());
|
||||
|
||||
// For each node in `to_contact`, start an RPC query and a corresponding entry in the two
|
||||
// `state.current_attempts_*` fields.
|
||||
for peer in to_contact {
|
||||
let multiaddr: Multiaddr = AddrComponent::P2P(peer.clone().into_bytes()).into();
|
||||
|
||||
let searched_key2 = searched_key.clone();
|
||||
let current_attempt = find_node_rpc(multiaddr.clone(), searched_key2); // TODO: suboptimal
|
||||
state.current_attempts_addrs.push(peer.clone());
|
||||
state
|
||||
.current_attempts_fut
|
||||
.push(Box::new(current_attempt) as Box<_>);
|
||||
}
|
||||
debug_assert_eq!(
|
||||
state.current_attempts_addrs.len(),
|
||||
state.current_attempts_fut.len()
|
||||
);
|
||||
|
||||
// Extract `current_attempts_fut` so that we can pass it to `select_all`. We will push the
|
||||
// values back when inside the loop.
|
||||
let current_attempts_fut = mem::replace(&mut state.current_attempts_fut, Vec::new());
|
||||
if current_attempts_fut.is_empty() {
|
||||
// If `current_attempts_fut` is empty, then `select_all` would panic. It happens
|
||||
// when we have no additional node to query.
|
||||
debug!("Finishing query early because no additional node available");
|
||||
state.stage = Stage::FinishingNextIter;
|
||||
let future = future::ok((None, state));
|
||||
return Some(future::Either::A(future));
|
||||
}
|
||||
|
||||
// This is the future that continues or breaks the `loop_fn`.
|
||||
let future = future::select_all(current_attempts_fut.into_iter()).then(move |result| {
|
||||
let (message, trigger_idx, other_current_attempts) = match result {
|
||||
Err((err, trigger_idx, other_current_attempts)) => {
|
||||
(Err(err), trigger_idx, other_current_attempts)
|
||||
}
|
||||
Ok((message, trigger_idx, other_current_attempts)) => {
|
||||
(Ok(message), trigger_idx, other_current_attempts)
|
||||
}
|
||||
};
|
||||
|
||||
// Putting back the extracted elements in `state`.
|
||||
let remote_id = state.current_attempts_addrs.remove(trigger_idx);
|
||||
debug_assert!(state.current_attempts_fut.is_empty());
|
||||
state.current_attempts_fut = other_current_attempts;
|
||||
|
||||
// `message` contains the reason why the current future was woken up.
|
||||
let closer_peers = match message {
|
||||
Ok(msg) => msg,
|
||||
Err(err) => {
|
||||
trace!("RPC query failed for {:?}: {:?}", remote_id, err);
|
||||
state.failed_to_contact.insert(remote_id);
|
||||
return future::ok((None, state));
|
||||
}
|
||||
};
|
||||
|
||||
// Inserting the node we received a response from into `state.result`.
|
||||
// The code is non-trivial because `state.result` is ordered by distance and is limited
|
||||
// by `num_results` elements.
|
||||
if let Some(insert_pos) = state.result.iter().position(|e| {
|
||||
e.distance_with(&searched_key) >= remote_id.distance_with(&searched_key)
|
||||
}) {
|
||||
if state.result[insert_pos] != remote_id {
|
||||
if state.result.len() >= num_results {
|
||||
state.result.pop();
|
||||
}
|
||||
state.result.insert(insert_pos, remote_id);
|
||||
}
|
||||
} else if state.result.len() < num_results {
|
||||
state.result.push(remote_id);
|
||||
}
|
||||
|
||||
// The loop below will set this variable to `true` if we find a new element to put at
|
||||
// the top of the result. This would mean that we have to continue looping.
|
||||
let mut local_nearest_node_updated = false;
|
||||
|
||||
// Update `state` with the actual content of the message.
|
||||
let mut new_known_multiaddrs = Vec::with_capacity(closer_peers.len());
|
||||
for mut peer in closer_peers {
|
||||
// Update the peerstore with the information sent by
|
||||
// the remote.
|
||||
{
|
||||
let multiaddrs = mem::replace(&mut peer.multiaddrs, Vec::new());
|
||||
trace!("Reporting multiaddresses for {:?}: {:?}", peer.node_id, multiaddrs);
|
||||
new_known_multiaddrs.push((peer.node_id.clone(), multiaddrs));
|
||||
}
|
||||
|
||||
if peer.node_id.distance_with(&searched_key)
|
||||
<= state.result[0].distance_with(&searched_key)
|
||||
{
|
||||
local_nearest_node_updated = true;
|
||||
}
|
||||
|
||||
if state.result.iter().any(|ma| ma == &peer.node_id) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Insert the node into `pending_nodes` at the right position, or do not
|
||||
// insert it if it is already in there.
|
||||
if let Some(insert_pos) = state.pending_nodes.iter().position(|e| {
|
||||
e.distance_with(&searched_key) >= peer.node_id.distance_with(&searched_key)
|
||||
}) {
|
||||
if state.pending_nodes[insert_pos] != peer.node_id {
|
||||
state.pending_nodes.insert(insert_pos, peer.node_id.clone());
|
||||
}
|
||||
} else {
|
||||
state.pending_nodes.push(peer.node_id.clone());
|
||||
}
|
||||
}
|
||||
|
||||
if state.result.len() >= num_results
|
||||
|| (state.stage != Stage::FirstStep && state.current_attempts_fut.is_empty())
|
||||
{
|
||||
state.stage = Stage::FinishingNextIter;
|
||||
|
||||
} else {
|
||||
if !local_nearest_node_updated {
|
||||
trace!("Loop didn't update closer node ; jumping to step 2");
|
||||
state.stage = Stage::SecondStep;
|
||||
}
|
||||
}
|
||||
|
||||
future::ok((Some(QueryEvent::NewKnownMultiaddrs(new_known_multiaddrs)), state))
|
||||
});
|
||||
|
||||
Some(future::Either::B(future))
|
||||
}).filter_map(|val| val);
|
||||
|
||||
Box::new(stream) as Box<_>
|
||||
}
|
Reference in New Issue
Block a user