Add circular-buffer

This commit is contained in:
Vurich
2017-11-10 12:27:11 +01:00
parent 8148b298b2
commit 097666b09e
5 changed files with 735 additions and 22 deletions

View File

@ -1,16 +1,21 @@
[workspace]
members = [
"multistream-select",
"datastore",
"multihash",
"example",
"libp2p-peerstore",
"libp2p-ping",
"libp2p-secio",
"libp2p-swarm",
"libp2p-transport",
"libp2p-host",
"libp2p-tcp-transport",
"libp2p-stream-muxer",
"multihash",
"multistream-select",
"datastore",
"rw-stream-sink",
"circular-buffer",
"varint-rs",
"multiplex-rs"
"multiplex-rs",
"example",
]
[replace]

View File

@ -0,0 +1,7 @@
[package]
name = "circular-buffer"
version = "0.1.0"
authors = ["Vurich <jackefransham@gmail.com>"]
[dependencies]
smallvec = "0.5.0"

693
circular-buffer/src/lib.rs Normal file
View File

@ -0,0 +1,693 @@
#![warn(missing_docs)]
//! # `circular-buffer`
//!
//! An optimized FIFO queue that allows safe access to the internal storage as a slice (i.e. not
//! just element-by-element). This is useful for circular buffers of bytes. Since it uses
//! `smallvec`'s `Array` trait it can only be backed by an array of static size, this may change in
//! the future.
extern crate smallvec;
use std::ops::{Deref, DerefMut, Drop};
use std::mem::ManuallyDrop;
use smallvec::Array;
/// A slice that owns its elements, but not their storage. This is useful for things like
/// `Vec::retain` and `CircularBuffer::pop_slice`, since these functions can return a slice but the
/// elements of these slices would be leaked after the slice goes out of scope. `OwnedSlice` simply
/// manually drops all its elements when it goes out of scope.
#[derive(Debug, Eq, PartialEq)]
pub struct OwnedSlice<'a, T: 'a>(&'a mut [T]);
impl<'a, T: 'a> OwnedSlice<'a, T> {
/// Construct an owned slice from a mutable slice pointer.
///
/// # Unsafety
/// You must ensure that the memory pointed to by `inner` will not be accessible after the
/// lifetime of the `OwnedSlice`.
pub unsafe fn new(inner: &'a mut [T]) -> Self {
OwnedSlice(inner)
}
}
impl<'a, T> AsRef<[T]> for OwnedSlice<'a, T> {
fn as_ref(&self) -> &[T] {
self.0
}
}
impl<'a, T> AsMut<[T]> for OwnedSlice<'a, T> {
fn as_mut(&mut self) -> &mut [T] {
self.0
}
}
impl<'a, T> Deref for OwnedSlice<'a, T> {
type Target = [T];
fn deref(&self) -> &Self::Target {
self.0
}
}
impl<'a, T> DerefMut for OwnedSlice<'a, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.0
}
}
impl<'a, T> Drop for OwnedSlice<'a, T> {
fn drop(&mut self) {
use std::ptr;
for element in self.iter_mut() {
unsafe {
ptr::drop_in_place(element);
}
}
}
}
/// A fixed-size FIFO queue with safe access to the backing storage.
///
/// This type allows access to slices of the backing storage, for efficient, safe circular buffers
/// of bytes or other `Copy` types.
#[derive(Debug)]
pub struct CircularBuffer<B: Array> {
// This must be manually dropped, as some or all of the elements may be uninitialized
buffer: ManuallyDrop<B>,
start: usize,
len: usize,
}
impl<B: Array> PartialEq for CircularBuffer<B>
where
B::Item: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
if self.len() != other.len() {
return false;
}
for (a, b) in self.iter().zip(other.iter()) {
if a != b {
return false;
}
}
return true;
}
}
impl<B: Array> CircularBuffer<B> {
/// Create an empty `CircularBuffer`.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::<[usize; 4]>::new();
///
/// assert!(buffer.is_empty());
/// ```
pub fn new() -> Self {
use std::mem;
CircularBuffer {
buffer: unsafe { mem::uninitialized() },
start: 0,
len: 0,
}
}
/// Pop a slice containing the maximum possible contiguous number of elements. Since this buffer
/// is circular it will take a maximum of two calls to this function to drain the buffer
/// entirely.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::from_array([1, 2, 3, 4]);
///
/// assert_eq!(buffer.pop(), Some(1));
/// assert!(buffer.push(1).is_none());
///
/// assert_eq!(
/// buffer.pop_slice().as_ref().map(|s| &s[..]),
/// Some(&[2, 3, 4][..])
/// );
/// assert_eq!(buffer.pop_slice().as_ref().map(|s| &s[..]), Some(&[1][..]));
/// assert!(buffer.pop_slice().is_none());
///
/// assert_eq!(buffer.len(), 0);
/// ```
///
/// This returns an `OwnedSlice`, which owns the items but not the storage (you cannot have two
/// slices returned from `pop_slice` alive at once, but the elements will be have `drop` called
/// when the slice goes out of scope), if you're using non-`Drop` types you can use
/// `pop_slice_leaky`.
pub fn pop_slice(&mut self) -> Option<OwnedSlice<B::Item>> {
self.pop_slice_leaky().map(OwnedSlice)
}
/// Pop a slice containing the maximum possible contiguous number of elements. Since this buffer
/// is circular it will take a maximum of two calls to this function to drain the buffer
/// entirely. This returns a slice and so any `Drop` types returned from this function will be
/// leaked.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::from_array([1, 2, 3, 4]);
///
/// assert_eq!(buffer.pop(), Some(1));
/// assert!(buffer.push(1).is_none());
///
/// assert_eq!(
/// buffer.pop_slice_leaky(),
/// Some(&mut [2, 3, 4][..])
/// );
/// assert_eq!(buffer.pop_slice_leaky(), Some(&mut [1][..]));
/// assert!(buffer.pop_slice_leaky().is_none());
///
/// assert_eq!(buffer.len(), 0);
/// ```
pub fn pop_slice_leaky(&mut self) -> Option<&mut [B::Item]> {
use std::slice;
if self.is_empty() {
None
} else {
let (start, out_length) = (self.start, self.len.min(B::size() - self.start));
self.advance(out_length);
unsafe {
Some(slice::from_raw_parts_mut(
self.buffer.ptr_mut().offset(start as isize),
out_length,
))
}
}
}
/// A borrowed iterator of this buffer's elements
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// assert_eq!(
/// CircularBuffer::from_array([1, 2, 3, 4]).iter().cloned().collect::<Vec<_>>(),
/// vec![1, 2, 3, 4]
/// );
/// ```
pub fn iter(&self) -> Iter<B> {
self.into_iter()
}
/// Iterate over slices of the buffer (of arbitrary size, but in order).
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::from_array([1, 2, 3, 4]);
///
/// assert_eq!(buffer.pop(), Some(1));
/// assert!(buffer.push(1).is_none());
///
/// let mut iter = buffer.slices();
///
/// assert_eq!(
/// iter.collect::<Vec<_>>(),
/// vec![&[2, 3, 4][..], &[1]]
/// );
/// ```
pub fn slices(&self) -> SlicesIter<B> {
SlicesIter {
buffer: self,
start: self.start,
len: self.len,
}
}
/// Whether the buffer is empty.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::<[usize; 4]>::new();
///
/// assert!(buffer.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Whether the buffer is full (i.e. it is no longer possible to push new elements without
/// popping old ones first).
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::from_array([1, 2, 3, 4]);
///
/// assert!(buffer.is_full());
/// ```
pub fn is_full(&self) -> bool {
self.len == B::size()
}
/// The number of elements in the buffer.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::from_slice(&[1, 2]).unwrap();
///
/// assert_eq!(buffer.len(), 2);
///
/// assert!(buffer.push(1).is_none());
/// assert!(buffer.push(2).is_none());
///
/// assert_eq!(buffer.len(), 4);
/// ```
pub fn len(&self) -> usize {
self.len
}
/// The maximum number of elements this buffer can take.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::new();
///
/// assert_eq!(buffer.capacity(), 4);
/// ```
pub fn capacity(&self) -> usize {
B::size()
}
/// Append a single element to the end of the buffer, returning it if it could not be added.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::new();
///
/// assert_eq!(buffer.len(), 0);
///
/// assert!(buffer.push(1).is_none());
/// assert!(buffer.push(2).is_none());
/// assert!(buffer.push(3).is_none());
/// assert!(buffer.push(4).is_none());
///
/// assert!(buffer.push(5).is_some());
///
/// assert_eq!(buffer.len(), 4);
/// ```
pub fn push(&mut self, element: B::Item) -> Option<B::Item> {
use std::ptr;
debug_assert!(self.len <= B::size());
if self.is_full() {
Some(element)
} else {
let dest = (self.start + self.len) % B::size();
unsafe {
ptr::write(self.buffer.ptr_mut().offset(dest as isize), element);
}
self.len += 1;
None
}
}
/// Remove a single element from the start of the buffer.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::from_array([1, 2, 3, 4]);
///
/// assert_eq!(buffer.pop(), Some(1));
/// ```
pub fn pop(&mut self) -> Option<B::Item> {
use std::ptr;
if self.is_empty() {
None
} else {
let offset = self.start;
self.advance(1);
unsafe { Some(ptr::read(self.buffer.ptr_mut().offset(offset as _))) }
}
}
/// Get a borrow to an element at an index safely (if the index is out of bounds, return
/// `None`).
pub fn get(&self, index: usize) -> Option<&B::Item> {
if index < self.len {
unsafe { Some(self.get_unchecked(index)) }
} else {
None
}
}
/// Get a borrow to an element at an index unsafely (causes undefined behaviour if the index is
/// out of bounds).
pub unsafe fn get_unchecked(&self, index: usize) -> &B::Item {
use std::mem;
mem::transmute(self.buffer.ptr().offset(
((index + self.start) % B::size()) as isize,
))
}
// This is not unsafe because it can only leak data, not cause uninit to be read.
fn advance(&mut self, by: usize) {
assert!(by <= self.len);
self.start = (self.start + by) % B::size();
self.len -= by;
}
}
impl<B: Array> Drop for CircularBuffer<B> {
fn drop(&mut self) {
while self.pop_slice().is_some() {}
}
}
impl<B: Array> IntoIterator for CircularBuffer<B> {
type Item = B::Item;
type IntoIter = IntoIter<B>;
fn into_iter(self) -> Self::IntoIter {
IntoIter { buffer: self }
}
}
impl<'a, B: Array + 'a> IntoIterator for &'a CircularBuffer<B> {
type Item = &'a B::Item;
type IntoIter = Iter<'a, B>;
fn into_iter(self) -> Self::IntoIter {
Iter {
buffer: self,
remaining: self.len(),
}
}
}
/// The iteration type returning owned elements of the buffer
pub struct IntoIter<B: Array> {
buffer: CircularBuffer<B>,
}
impl<B: Array> Iterator for IntoIter<B> {
type Item = B::Item;
fn next(&mut self) -> Option<Self::Item> {
self.buffer.pop()
}
}
/// The iteration type returning borrows to elements of the buffer
pub struct Iter<'a, B: Array + 'a> {
buffer: &'a CircularBuffer<B>,
remaining: usize,
}
impl<'a, B: Array + 'a> Iterator for Iter<'a, B> {
type Item = &'a B::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.remaining == 0 {
None
} else {
let remaining = self.remaining;
self.remaining -= 1;
self.buffer.get(self.buffer.len() - remaining)
}
}
}
/// The iteration type for immutable slices of the circular buffer. See `CircularBuffer::slices`.
pub struct SlicesIter<'a, B: Array + 'a> {
buffer: &'a CircularBuffer<B>,
start: usize,
len: usize,
}
impl<'a, B: Array + 'a> Iterator for SlicesIter<'a, B> {
type Item = &'a [B::Item];
fn next(&mut self) -> Option<Self::Item> {
use std::slice;
if self.len == 0 {
None
} else {
let (start, out_length) = (self.start, self.len.min(B::size() - self.start));
self.start = (self.start + out_length) % B::size();
self.len -= out_length;
unsafe {
Some(slice::from_raw_parts(
self.buffer.buffer.ptr().offset(start as isize),
out_length,
))
}
}
}
}
impl<B: Array> CircularBuffer<B>
where
B::Item: Copy,
{
/// Create a `CircularBuffer` from a slice of elements, returning `None` if not all the elements
/// can fit in the buffer.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// assert!(CircularBuffer::<[usize; 5]>::from_slice(&[1, 2, 3, 4, 5, 6]).is_none());
/// assert!(CircularBuffer::<[usize; 5]>::from_slice(&[1, 2, 3, 4]).is_some());
/// ```
pub fn from_slice(slice: &[B::Item]) -> Option<Self> {
let mut out = Self::new();
if out.extend_from_slice(slice) {
Some(out)
} else {
None
}
}
/// Create a `CircularBuffer` from a slice of elements, returning the number of elements copied.
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let result = CircularBuffer::<[usize; 5]>::from_slice_prefix(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 20]);
/// assert_eq!(result, (CircularBuffer::from_array([1, 2, 3, 4, 5]), 5));
/// ```
pub fn from_slice_prefix(slice: &[B::Item]) -> (Self, usize) {
let mut out = Self::new();
let num_copied = out.extend_from_slice_prefix(slice);
(out, num_copied)
}
/// Create a circular buffer from a fixed-size array
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let result = CircularBuffer::from_array([1, 2, 3, 4, 5]);
/// assert_eq!(result.into_iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5]);
/// ```
pub fn from_array(slice: B) -> Self {
CircularBuffer {
buffer: ManuallyDrop::new(slice),
start: 0,
len: B::size(),
}
}
fn write_slice(&mut self, index: usize, slice: &[B::Item]) -> bool {
use std::ptr;
let mut offset = 0;
assert!(index <= self.len);
if slice.len() > self.capacity() - index {
return false;
}
while offset < slice.len() {
unsafe {
let dest = (index + self.start + offset) % B::size();
let copy_len = if dest < self.start {
self.start - dest
} else {
B::size() - dest
}.min(slice.len() - offset);
let slice_ptr = slice.as_ptr().offset(offset as isize);
let ptr = self.buffer.ptr_mut().offset(dest as isize);
ptr::copy(slice_ptr, ptr, copy_len);
self.len = self.len.max(index + offset + copy_len);
offset += copy_len;
}
}
true
}
fn write_slice_prefix(&mut self, index: usize, slice: &[B::Item]) -> usize {
use std::ptr;
let mut offset = 0;
assert!(index <= self.len);
while !self.is_full() && offset < slice.len() {
unsafe {
let dest = (index + self.start + offset) % B::size();
let copy_len = if dest < self.start {
self.start - dest
} else {
B::size() - dest
}.min(slice.len() - offset);
let slice_ptr = slice.as_ptr().offset(offset as isize);
let ptr = self.buffer.ptr_mut().offset(dest as isize);
ptr::copy(slice_ptr, ptr, copy_len);
self.len = self.len.max(index + offset + copy_len);
offset += copy_len;
}
}
offset
}
/// Append the elements from a slice to the buffer, returning the number of elements copied
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::<[usize; 5]>::from_slice(&[1, 2]).unwrap();
///
/// assert_eq!(buffer.iter().cloned().collect::<Vec<_>>(), vec![1, 2]);
///
/// let consumed = buffer.extend_from_slice_prefix(&[1, 2, 3, 4, 5]);
///
/// assert_eq!(consumed, 3);
/// assert_eq!(buffer.iter().cloned().collect::<Vec<_>>(), vec![1, 2, 1, 2, 3]);
/// ```
#[inline]
pub fn extend_from_slice_prefix(&mut self, slice: &[B::Item]) -> usize {
let len = self.len();
self.write_slice_prefix(len, slice)
}
/// Append the elements from a slice to the buffer iff there is enough space for all the
/// elements
///
/// ```rust
/// use circular_buffer::CircularBuffer;
///
/// let mut buffer = CircularBuffer::<[usize; 5]>::from_slice(&[1, 2]).unwrap();
///
/// assert_eq!(buffer.iter().cloned().collect::<Vec<_>>(), vec![1, 2]);
///
/// assert!(!buffer.extend_from_slice(&[1, 2, 3, 4, 5]));
/// assert!(buffer.extend_from_slice(&[1, 2, 3]));
///
/// assert_eq!(buffer.iter().cloned().collect::<Vec<_>>(), vec![1, 2, 1, 2, 3]);
/// ```
#[inline]
pub fn extend_from_slice(&mut self, slice: &[B::Item]) -> bool {
let len = self.len();
self.write_slice(len, slice)
}
}
#[cfg(test)]
mod tests {
use super::CircularBuffer;
#[test]
fn push_pop() {
let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::new();
assert_eq!(buffer.len(), 0);
assert!(buffer.push(1).is_none());
assert!(buffer.push(2).is_none());
assert!(buffer.push(3).is_none());
assert!(buffer.push(4).is_none());
assert!(buffer.push(5).is_some());
assert_eq!(buffer.len(), 4);
assert_eq!(buffer.pop(), Some(1));
assert_eq!(buffer.pop(), Some(2));
assert_eq!(buffer.pop(), Some(3));
assert_eq!(buffer.pop(), Some(4));
assert_eq!(buffer.pop(), None);
assert_eq!(buffer.len(), 0);
}
#[test]
fn pop_slice() {
let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::new();
assert_eq!(buffer.len(), 0);
assert!(buffer.push(1).is_none());
assert!(buffer.push(2).is_none());
assert!(buffer.push(3).is_none());
assert!(buffer.push(4).is_none());
assert!(buffer.push(5).is_some());
assert_eq!(buffer.len(), 4);
assert_eq!(buffer.pop(), Some(1));
assert!(buffer.push(1).is_none());
assert_eq!(
buffer.pop_slice().as_ref().map(|s| &s[..]),
Some(&[2, 3, 4][..])
);
assert_eq!(buffer.pop_slice().as_ref().map(|s| &s[..]), Some(&[1][..]));
assert!(buffer.pop_slice().is_none());
assert_eq!(buffer.len(), 0);
}
#[test]
fn extend_from_slice() {
let mut buffer: CircularBuffer<[usize; 4]> = CircularBuffer::from_slice(&[1, 2]).unwrap();
assert_eq!(buffer.pop(), Some(1));
assert_eq!(buffer.pop(), Some(2));
assert!(buffer.extend_from_slice(&[1, 2, 3, 4]));
assert_eq!(buffer.iter().cloned().collect::<Vec<_>>(), vec![1, 2, 3, 4])
}
}

View File

@ -12,3 +12,4 @@ futures = "0.1"
parking_lot = "0.4.8"
libp2p-stream-muxer = { path = "../libp2p-stream-muxer" }
varint = { path = "../varint-rs" }
circular-buffer = { path = "../circular-buffer" }

View File

@ -6,12 +6,14 @@ extern crate varint;
extern crate num_bigint;
extern crate num_traits;
extern crate parking_lot;
extern crate circular_buffer;
use bytes::Bytes;
use circular_buffer::CircularBuffer;
use futures::prelude::*;
use libp2p_stream_muxer::StreamMuxer;
use parking_lot::Mutex;
use std::collections::{HashSet, HashMap};
use std::collections::HashMap;
use std::io::{self, Read, Write};
use std::sync::Arc;
use tokio_io::{AsyncRead, AsyncWrite};
@ -35,7 +37,7 @@ enum NextMultiplexState {
Ignore,
}
enum MultiplexState {
enum MultiplexReadState {
Header { state: varint::DecoderState },
BodyLength {
state: varint::DecoderState,
@ -53,12 +55,16 @@ enum MultiplexState {
Ignore { remaining_bytes: usize },
}
impl Default for MultiplexState {
impl Default for MultiplexReadState {
fn default() -> Self {
MultiplexState::Header { state: Default::default() }
MultiplexReadState::Header { state: Default::default() }
}
}
struct MultiplexWriteState {
buffer: CircularBuffer<[u8; 1024]>,
}
// TODO: Add writing. We should also add some form of "pending packet" so that we can always open at
// least one new substream. If this is stored on the substream itself then we can open
// infinite new substreams.
@ -72,9 +78,9 @@ impl Default for MultiplexState {
// Since if we receive a message to a closed stream we just drop it anyway.
struct MultiplexShared<T> {
// We use `Option` in order to take ownership of heap allocations within `DecoderState` and
// `BytesMut`. If this is ever observably `None` then something has panicked and the `Mutex`
// will be poisoned.
read_state: Option<MultiplexState>,
// `BytesMut`. If this is ever observably `None` then something has panicked or the underlying
// stream returned an error.
read_state: Option<MultiplexReadState>,
stream: T,
// true if the stream is open, false otherwise
open_streams: HashMap<usize, bool>,
@ -122,13 +128,14 @@ unsafe fn create_buffer_for<R: AsyncRead>(capacity: usize, inner: &R) -> bytes::
buffer
}
fn read_stream<T: AsyncRead>(
mut stream_data: Option<(usize, &mut [u8])>,
fn read_stream<'a, O: Into<Option<(usize, &'a mut [u8])>>, T: AsyncRead>(
lock: &mut MultiplexShared<T>,
stream_data: O,
) -> io::Result<usize> {
use num_traits::cast::ToPrimitive;
use MultiplexState::*;
use MultiplexReadState::*;
let mut stream_data = stream_data.into();
let stream_has_been_gracefully_closed = stream_data
.as_ref()
.and_then(|&(id, _)| lock.open_streams.get(&id))
@ -201,8 +208,8 @@ fn read_stream<T: AsyncRead>(
)?;
lock.read_state = Some(match next {
Ignore => MultiplexState::Ignore { remaining_bytes: length },
NewStream(substream_id) => MultiplexState::NewStream {
Ignore => MultiplexReadState::Ignore { remaining_bytes: length },
NewStream(substream_id) => MultiplexReadState::NewStream {
// This is safe as long as we only use `lock.stream` to write to
// this field
name: unsafe { create_buffer_for(length, &lock.stream) },
@ -215,12 +222,12 @@ fn read_stream<T: AsyncRead>(
.map(|is_open| *is_open)
.unwrap_or(false);
if is_open {
MultiplexState::ParsingMessageBody {
MultiplexReadState::ParsingMessageBody {
remaining_bytes: length,
substream_id,
}
} else {
MultiplexState::Ignore { remaining_bytes: length }
MultiplexReadState::Ignore { remaining_bytes: length }
}
}
});
@ -276,7 +283,7 @@ fn read_stream<T: AsyncRead>(
remaining_bytes,
} => {
if let Some((ref mut id, ref mut buf)) = stream_data {
use MultiplexState::*;
use MultiplexReadState::*;
if substream_id == *id {
if remaining_bytes == 0 {
@ -357,7 +364,7 @@ impl<T: AsyncRead> Read for Substream<T> {
None => return Err(io::Error::from(io::ErrorKind::WouldBlock)),
};
read_stream(Some((self.id, buf)), &mut lock)
read_stream(&mut lock, (self.id, buf))
}
}
@ -456,7 +463,7 @@ impl<T: AsyncRead> Stream for InboundStream<T> {
};
// Attempt to make progress, but don't block if we can't
match read_stream(None, &mut lock) {
match read_stream(&mut lock, None) {
Ok(_) => (),
Err(ref err) if err.kind() == io::ErrorKind::WouldBlock => (),
Err(err) => return Err(err),