Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

284 lines
9.2 KiB
Rust
Raw Normal View History

// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! ECDSA keys with secp256r1 curve support.
use super::error::DecodingError;
use core::cmp;
use core::fmt;
use core::hash;
use p256::{
ecdsa::{
signature::{Signer, Verifier},
Signature, SigningKey, VerifyingKey,
},
EncodedPoint,
};
use sec1::{DecodeEcPrivateKey, EncodeEcPrivateKey};
use void::Void;
use zeroize::Zeroize;
/// An ECDSA keypair generated using `secp256r1` curve.
#[derive(Clone)]
pub struct Keypair {
secret: SecretKey,
public: PublicKey,
}
impl Keypair {
/// Generate a new random ECDSA keypair.
pub fn generate() -> Keypair {
Keypair::from(SecretKey::generate())
}
/// Sign a message using the private key of this keypair.
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
self.secret.sign(msg)
}
/// Get the public key of this keypair.
pub fn public(&self) -> &PublicKey {
&self.public
}
/// Get the secret key of this keypair.
pub fn secret(&self) -> &SecretKey {
&self.secret
}
}
impl fmt::Debug for Keypair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Keypair")
.field("public", &self.public())
.finish()
}
}
/// Promote an ECDSA secret key into a keypair.
impl From<SecretKey> for Keypair {
fn from(secret: SecretKey) -> Keypair {
let public = PublicKey(VerifyingKey::from(&secret.0));
Keypair { secret, public }
}
}
/// Demote an ECDSA keypair to a secret key.
impl From<Keypair> for SecretKey {
fn from(kp: Keypair) -> SecretKey {
kp.secret
}
}
/// An ECDSA secret key generated using `secp256r1` curve.
#[derive(Clone)]
pub struct SecretKey(SigningKey);
impl SecretKey {
/// Generate a new random ECDSA secret key.
pub fn generate() -> SecretKey {
SecretKey(SigningKey::random(&mut rand::thread_rng()))
}
/// Sign a message with this secret key, producing a DER-encoded ECDSA signature.
pub fn sign(&self, msg: &[u8]) -> Vec<u8> {
let signature: p256::ecdsa::DerSignature = self.0.sign(msg);
signature.as_bytes().to_owned()
}
/// Convert a secret key into a byte buffer containing raw scalar of the key.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes().to_vec()
}
/// Try to parse a secret key from a byte buffer containing raw scalar of the key.
pub fn try_from_bytes(buf: impl AsRef<[u8]>) -> Result<SecretKey, DecodingError> {
SigningKey::from_bytes(buf.as_ref().into())
.map_err(|err| DecodingError::failed_to_parse("ecdsa p256 secret key", err))
.map(SecretKey)
}
/// Encode the secret key into DER-encoded byte buffer.
pub(crate) fn encode_der(&self) -> Vec<u8> {
self.0
.to_sec1_der()
.expect("Encoding to pkcs#8 format to succeed")
.to_bytes()
.to_vec()
}
/// Try to decode a secret key from a DER-encoded byte buffer, zeroize the buffer on success.
pub(crate) fn try_decode_der(buf: &mut [u8]) -> Result<Self, DecodingError> {
match SigningKey::from_sec1_der(buf) {
Ok(key) => {
buf.zeroize();
Ok(SecretKey(key))
}
Err(e) => Err(DecodingError::failed_to_parse("ECDSA", e)),
}
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SecretKey")
}
}
/// An ECDSA public key.
#[derive(Clone, Eq, PartialOrd, Ord)]
pub struct PublicKey(VerifyingKey);
impl PublicKey {
/// Verify an ECDSA signature on a message using the public key.
pub fn verify(&self, msg: &[u8], sig: &[u8]) -> bool {
let sig = match Signature::from_der(sig) {
Ok(sig) => sig,
Err(_) => return false,
};
self.0.verify(msg, &sig).is_ok()
}
/// Try to parse a public key from a byte buffer containing raw components of a key with or without compression.
pub fn try_from_bytes(k: &[u8]) -> Result<PublicKey, DecodingError> {
let enc_pt = EncodedPoint::from_bytes(k)
.map_err(|e| DecodingError::failed_to_parse("ecdsa p256 encoded point", e))?;
VerifyingKey::from_encoded_point(&enc_pt)
.map_err(|err| DecodingError::failed_to_parse("ecdsa p256 public key", err))
.map(PublicKey)
}
/// Convert a public key into a byte buffer containing raw components of the key without compression.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_encoded_point(false).as_bytes().to_owned()
}
/// Encode a public key into a DER encoded byte buffer as defined by SEC1 standard.
pub fn encode_der(&self) -> Vec<u8> {
let buf = self.to_bytes();
Self::add_asn1_header(&buf)
}
/// Try to decode a public key from a DER encoded byte buffer as defined by SEC1 standard.
pub fn try_decode_der(k: &[u8]) -> Result<PublicKey, DecodingError> {
let buf = Self::del_asn1_header(k).ok_or_else(|| {
DecodingError::failed_to_parse::<Void, _>("ASN.1-encoded ecdsa p256 public key", None)
})?;
Self::try_from_bytes(buf)
}
// ecPublicKey (ANSI X9.62 public key type) OID: 1.2.840.10045.2.1
const EC_PUBLIC_KEY_OID: [u8; 9] = [0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01];
// secp256r1 OID: 1.2.840.10045.3.1.7
const SECP_256_R1_OID: [u8; 10] = [0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07];
// Add ASN1 header.
fn add_asn1_header(key_buf: &[u8]) -> Vec<u8> {
// ASN.1 struct type and length.
let mut asn1_buf = vec![
0x30,
0x00,
0x30,
(Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len()) as u8,
];
// Append OIDs.
asn1_buf.extend_from_slice(&Self::EC_PUBLIC_KEY_OID);
asn1_buf.extend_from_slice(&Self::SECP_256_R1_OID);
// Append key bitstring type and length.
asn1_buf.extend_from_slice(&[0x03, (key_buf.len() + 1) as u8, 0x00]);
// Append key bitstring value.
asn1_buf.extend_from_slice(key_buf);
// Update overall length field.
asn1_buf[1] = (asn1_buf.len() - 2) as u8;
asn1_buf
}
// Check and remove ASN.1 header.
fn del_asn1_header(asn1_buf: &[u8]) -> Option<&[u8]> {
let oids_len = Self::EC_PUBLIC_KEY_OID.len() + Self::SECP_256_R1_OID.len();
let asn1_head = asn1_buf.get(..4)?;
let oids_buf = asn1_buf.get(4..4 + oids_len)?;
let bitstr_head = asn1_buf.get(4 + oids_len..4 + oids_len + 3)?;
// Sanity check
if asn1_head[0] != 0x30
|| asn1_head[2] != 0x30
|| asn1_head[3] as usize != oids_len
|| oids_buf[..Self::EC_PUBLIC_KEY_OID.len()] != Self::EC_PUBLIC_KEY_OID
|| oids_buf[Self::EC_PUBLIC_KEY_OID.len()..] != Self::SECP_256_R1_OID
|| bitstr_head[0] != 0x03
|| bitstr_head[2] != 0x00
{
return None;
}
let key_len = bitstr_head[1].checked_sub(1)? as usize;
let key_buf = asn1_buf.get(4 + oids_len + 3..4 + oids_len + 3 + key_len)?;
Some(key_buf)
}
}
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("PublicKey(asn.1 uncompressed): ")?;
for byte in &self.encode_der() {
write!(f, "{byte:x}")?;
}
Ok(())
}
}
impl cmp::PartialEq for PublicKey {
fn eq(&self, other: &Self) -> bool {
self.to_bytes().eq(&other.to_bytes())
}
}
impl hash::Hash for PublicKey {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.to_bytes().hash(state);
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn sign_verify() {
let pair = Keypair::generate();
let pk = pair.public();
let msg = "hello world".as_bytes();
let sig = pair.sign(msg);
assert!(pk.verify(msg, &sig));
let mut invalid_sig = sig.clone();
invalid_sig[3..6].copy_from_slice(&[10, 23, 42]);
assert!(!pk.verify(msg, &invalid_sig));
let invalid_msg = "h3ll0 w0rld".as_bytes();
assert!(!pk.verify(invalid_msg, &sig));
}
}