302 lines
10 KiB
Rust
Raw Normal View History

2017-10-30 10:22:38 +01:00
// Copyright 2017 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//! The `secio` protocol is a middleware that will encrypt and decrypt communications going
//! through a socket (or anything that implements `AsyncRead + AsyncWrite`).
//!
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! # Usage
//!
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! The `SecioConfig` implements [`InboundUpgrade`] and [`OutboundUpgrade`] and thus
//! serves as a connection upgrade for authentication of a transport.
//! See [`authenticate`](libp2p_core::transport::upgrade::builder::Builder::authenticate).
//!
2017-12-07 15:34:22 +01:00
//! ```no_run
//! # fn main() {
//! use futures::prelude::*;
//! use libp2p_secio::{SecioConfig, SecioOutput};
//! use libp2p_core::{PeerId, Multiaddr, identity, upgrade};
//! use libp2p_core::transport::Transport;
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! use libp2p_mplex::MplexConfig;
//! use libp2p_tcp::TcpConfig;
//!
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! // Create a local peer identity.
//! let local_keys = identity::Keypair::generate_ed25519();
//!
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! // Create a `Transport`.
//! let transport = TcpConfig::new()
//! .upgrade(upgrade::Version::V1)
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! .authenticate(SecioConfig::new(local_keys.clone()))
//! .multiplex(MplexConfig::default());
//!
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
//! // The transport can be used with a `Network` from `libp2p-core`, or a
//! // `Swarm` from from `libp2p-swarm`. See the documentation of these
//! // crates for mode details.
//!
//! // let network = Network::new(transport, local_keys.public().into_peer_id());
//! // let swarm = Swarm::new(transport, behaviour, local_keys.public().into_peer_id());
2017-12-07 15:34:22 +01:00
//! # }
//! ```
//!
2017-10-30 10:22:38 +01:00
pub use self::error::SecioError;
2017-11-02 11:58:02 +01:00
use futures::stream::MapErr as StreamMapErr;
use futures::prelude::*;
use libp2p_core::{PeerId, PublicKey, identity, upgrade::{UpgradeInfo, InboundUpgrade, OutboundUpgrade, Negotiated}};
use log::debug;
2017-11-02 11:58:02 +01:00
use rw_stream_sink::RwStreamSink;
use std::{io, iter, pin::Pin, task::Context, task::Poll};
2017-10-30 10:22:38 +01:00
mod algo_support;
mod codec;
mod error;
mod exchange;
2017-10-30 10:22:38 +01:00
mod handshake;
Integrate identity keys with libp2p-noise for authentication. (#1027) * Integrate use of identity keys into libp2p-noise. In order to make libp2p-noise usable with a `Swarm`, which requires a `Transport::Output` that is a pair of a peer ID and an implementation of `StreamMuxer`, it is necessary to bridge the gap between static DH public keys and public identity keys from which peer IDs are derived. Because the DH static keys and the identity keys need not be related, it is thus generally necessary that the public identity keys are exchanged as part of the Noise handshake, which the Noise protocol accomodates for through the use of handshake message payloads. The implementation of the existing (IK, IX, XX) handshake patterns is thus changed to send the public identity keys in the handshake payloads. Additionally, to facilitate the use of any identity keypair with Noise handshakes, the static DH public keys are signed using the identity keypairs and the signatures sent alongside the public identity key in handshake payloads, unless the static DH public key is "linked" to the public identity key by other means, e.g. when an Ed25519 identity keypair is (re)used as an X25519 keypair. * libp2p-noise doesn't build for wasm. Thus the development transport needs to be still constructed with secio for transport security when building for wasm. * Documentation tweaks. * For consistency, avoid wildcard enum imports. * For consistency, avoid wildcard enum imports. * Slightly simplify io::handshake::State::finish. * Simplify creation of 2-byte arrays. * Remove unnecessary cast and obey 100 char line limit. * Update protocols/noise/src/protocol.rs Co-Authored-By: romanb <romanb@users.noreply.github.com> * Address more review comments. * Cosmetics * Cosmetics * Give authentic DH keypairs a distinct type. This has a couple of advantages: * Signing the DH public key only needs to happen once, before creating a `NoiseConfig` for an authenticated handshake. * The identity keypair only needs to be borrowed and can be dropped if it is not used further outside of the Noise protocol, since it is no longer needed during Noise handshakes. * It is explicit in the construction of a `NoiseConfig` for a handshake pattern, whether it operates with a plain `Keypair` or a keypair that is authentic w.r.t. a public identity key and future handshake patterns may be built with either. * The function signatures for constructing `NoiseConfig`s for handshake patterns are simplified and a few unnecessary trait bounds removed. * Post-merge corrections. * Add note on experimental status of libp2p-noise.
2019-05-07 10:22:42 +02:00
// #[allow(rust_2018_idioms)]
mod structs_proto;
mod stream_cipher;
2017-10-30 10:22:38 +01:00
pub use crate::algo_support::Digest;
pub use crate::exchange::KeyAgreement;
pub use crate::stream_cipher::Cipher;
/// Implementation of the `ConnectionUpgrade` trait of `libp2p_core`. Automatically applies
2017-11-02 11:58:02 +01:00
/// secio on any connection.
#[derive(Clone)]
2017-12-04 15:50:14 +01:00
pub struct SecioConfig {
/// Private and public keys of the local node.
pub(crate) key: identity::Keypair,
pub(crate) agreements_prop: Option<String>,
pub(crate) ciphers_prop: Option<String>,
pub(crate) digests_prop: Option<String>,
pub(crate) max_frame_len: usize
}
impl SecioConfig {
/// Create a new `SecioConfig` with the given keypair.
pub fn new(kp: identity::Keypair) -> Self {
SecioConfig {
key: kp,
agreements_prop: None,
ciphers_prop: None,
digests_prop: None,
max_frame_len: 8 * 1024 * 1024
}
}
/// Override the default set of supported key agreement algorithms.
pub fn key_agreements<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a KeyAgreement>
{
self.agreements_prop = Some(algo_support::key_agreements_proposition(xs));
self
}
/// Override the default set of supported ciphers.
pub fn ciphers<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a Cipher>
{
self.ciphers_prop = Some(algo_support::ciphers_proposition(xs));
self
}
/// Override the default set of supported digest algorithms.
pub fn digests<'a, I>(mut self, xs: I) -> Self
where
I: IntoIterator<Item=&'a Digest>
{
self.digests_prop = Some(algo_support::digests_proposition(xs));
self
}
/// Override the default max. frame length of 8MiB.
pub fn max_frame_len(mut self, n: usize) -> Self {
self.max_frame_len = n;
self
}
fn handshake<T>(self, socket: T) -> impl Future<Output = Result<(PeerId, SecioOutput<T>), SecioError>>
where
T: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
debug!("Starting secio upgrade");
SecioMiddleware::handshake(socket, self)
.map_ok(|(stream_sink, pubkey, ephemeral)| {
let mapped = stream_sink.map_err(map_err as fn(_) -> _);
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
let peer = pubkey.clone().into_peer_id();
let io = SecioOutput {
stream: RwStreamSink::new(mapped),
remote_key: pubkey,
ephemeral_public_key: ephemeral
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
};
(peer, io)
})
}
2017-11-02 11:58:02 +01:00
}
/// Output of the secio protocol.
pub struct SecioOutput<S>
where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
/// The encrypted stream.
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
pub stream: RwStreamSink<StreamMapErr<SecioMiddleware<S>, fn(SecioError) -> io::Error>>,
/// The public key of the remote.
pub remote_key: PublicKey,
/// Ephemeral public key used during the negotiation.
pub ephemeral_public_key: Vec<u8>,
}
impl UpgradeInfo for SecioConfig {
type Info = &'static [u8];
type InfoIter = iter::Once<Self::Info>;
2017-11-02 11:58:02 +01:00
fn protocol_info(&self) -> Self::InfoIter {
iter::once(b"/secio/1.0.0")
}
}
2017-11-02 11:58:02 +01:00
impl<T> InboundUpgrade<T> for SecioConfig
where
T: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
type Output = (PeerId, SecioOutput<Negotiated<T>>);
type Error = SecioError;
type Future = Pin<Box<dyn Future<Output = Result<Self::Output, Self::Error>> + Send>>;
2018-02-14 13:02:56 +01:00
fn upgrade_inbound(self, socket: Negotiated<T>, _: Self::Info) -> Self::Future {
Box::pin(self.handshake(socket))
}
}
impl<T> OutboundUpgrade<T> for SecioConfig
where
T: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
type Output = (PeerId, SecioOutput<Negotiated<T>>);
type Error = SecioError;
type Future = Pin<Box<dyn Future<Output = Result<Self::Output, Self::Error>> + Send>>;
fn upgrade_outbound(self, socket: Negotiated<T>, _: Self::Info) -> Self::Future {
Box::pin(self.handshake(socket))
}
2017-11-02 11:58:02 +01:00
}
impl<S> AsyncRead for SecioOutput<S>
where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
fn poll_read(mut self: Pin<&mut Self>, cx: &mut Context, buf: &mut [u8])
-> Poll<Result<usize, io::Error>>
{
AsyncRead::poll_read(Pin::new(&mut self.stream), cx, buf)
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
}
}
impl<S> AsyncWrite for SecioOutput<S>
where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static
{
fn poll_write(mut self: Pin<&mut Self>, cx: &mut Context, buf: &[u8])
-> Poll<Result<usize, io::Error>>
{
AsyncWrite::poll_write(Pin::new(&mut self.stream), cx, buf)
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context)
-> Poll<Result<(), io::Error>>
{
AsyncWrite::poll_flush(Pin::new(&mut self.stream), cx)
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
}
fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context)
-> Poll<Result<(), io::Error>>
{
AsyncWrite::poll_close(Pin::new(&mut self.stream), cx)
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
}
}
fn map_err(err: SecioError) -> io::Error {
debug!("error during secio handshake {:?}", err);
Rework the transport upgrade API. (#1240) * Rework the transport upgrade API. ALthough transport upgrades must follow a specific pattern in order fot the resulting transport to be usable with a `Network` or `Swarm`, that pattern is currently not well reflected in the transport upgrade API. Rather, transport upgrades are rather laborious and involve non-trivial code duplication. This commit introduces a `transport::upgrade::Builder` that is obtained from `Transport::upgrade`. The `Builder` encodes the previously implicit rules for transport upgrades: 1. Authentication upgrades must happen first. 2. Any number of upgrades may follow. 3. A multiplexer upgrade must happen last. Since multiplexing is the last (regular) transport upgrade (because that upgrade yields a `StreamMuxer` which is no longer a `AsyncRead` / `AsyncWrite` resource, which the upgrade process is based on), the upgrade starts with `Transport::upgrade` and ends with `Builder::multiplex`, which drops back down to the `Transport`, providing a fluent API. Authentication and multiplexer upgrades must furthermore adhere to a minimal contract w.r.t their outputs: 1. An authentication upgrade is given an (async) I/O resource `C` and must produce a pair `(I, D)` where `I: ConnectionInfo` and `D` is a new (async) I/O resource `D`. 2. A multiplexer upgrade is given an (async) I/O resource `C` and must produce a `M: StreamMuxer`. To that end, two changes to the `secio` and `noise` protocols have been made: 1. The `secio` upgrade now outputs a pair of `(PeerId, SecioOutput)`. The former implements `ConnectionInfo` and the latter `AsyncRead` / `AsyncWrite`, fulfilling the `Builder` contract. 2. A new `NoiseAuthenticated` upgrade has been added that wraps around any noise upgrade (i.e. `NoiseConfig`) and has an output of `(PeerId, NoiseOutput)`, i.e. it checks if the `RemoteIdentity` from the handshake output is an `IdentityKey`, failing if that is not the case. This is the standard upgrade procedure one wants for integrating noise with libp2p-core/swarm. * Cleanup * Add a new integration test. * Add missing license.
2019-09-10 15:42:45 +02:00
io::Error::new(io::ErrorKind::InvalidData, err)
2017-11-02 11:58:02 +01:00
}
2017-10-30 10:22:38 +01:00
/// Wraps around an object that implements `AsyncRead` and `AsyncWrite`.
///
/// Implements `Sink` and `Stream` whose items are frames of data. Each frame is encoded
/// individually, so you are encouraged to group data in few frames if possible.
pub struct SecioMiddleware<S> {
inner: codec::FullCodec<S>,
2017-10-30 10:22:38 +01:00
}
impl<S> SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite + Send + Unpin + 'static,
2017-10-30 10:22:38 +01:00
{
/// Attempts to perform a handshake on the given socket.
///
/// On success, produces a `SecioMiddleware` that can then be used to encode/decode
/// communications, plus the public key of the remote, plus the ephemeral public key.
pub fn handshake(socket: S, config: SecioConfig)
-> impl Future<Output = Result<(SecioMiddleware<S>, PublicKey, Vec<u8>), SecioError>>
{
handshake::handshake(socket, config).map_ok(|(inner, pubkey, ephemeral)| {
let inner = SecioMiddleware { inner };
(inner, pubkey, ephemeral)
})
}
2017-10-30 10:22:38 +01:00
}
impl<S> Sink<Vec<u8>> for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static
2017-10-30 10:22:38 +01:00
{
type Error = io::Error;
fn poll_ready(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Sink::poll_ready(Pin::new(&mut self.inner), cx)
}
2017-10-30 10:22:38 +01:00
fn start_send(mut self: Pin<&mut Self>, item: Vec<u8>) -> Result<(), Self::Error> {
Sink::start_send(Pin::new(&mut self.inner), item)
}
2017-10-30 10:22:38 +01:00
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Sink::poll_flush(Pin::new(&mut self.inner), cx)
}
2018-09-17 15:01:37 +02:00
fn poll_close(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Result<(), Self::Error>> {
Sink::poll_close(Pin::new(&mut self.inner), cx)
2018-09-17 15:01:37 +02:00
}
2017-10-30 10:22:38 +01:00
}
impl<S> Stream for SecioMiddleware<S>
where
S: AsyncRead + AsyncWrite + Unpin + Send + 'static
2017-10-30 10:22:38 +01:00
{
type Item = Result<Vec<u8>, SecioError>;
2017-10-30 10:22:38 +01:00
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
Stream::poll_next(Pin::new(&mut self.inner), cx)
}
2017-10-30 10:22:38 +01:00
}