Behrad Zari discovered [1] and Josiah reported [2]: if you block
and wait for a list to exist, but the list creates from
a non-push command, the blocked client never gets notified.
This commit adds notification of blocked clients into
the DB layer and away from individual commands.
Lists can be created by [LR]PUSH, SORT..STORE, RENAME, MOVE,
and RESTORE. Previously, blocked client notifications were
only triggered by [LR]PUSH. Your client would never get
notified if a list were created by SORT..STORE or RENAME or
a RESTORE, etc.
Blocked client notification now happens in one unified place:
- dbAdd() triggers notification when adding a list to the DB
Two new tests are added that fail prior to this commit.
All test pass.
Fixes#1668
[1]: https://groups.google.com/forum/#!topic/redis-db/k4oWfMkN1NU
[2]: #1668
I'm not sure if while the visibility is the inner block, the fact we
point to 'dbuf' is a problem or not, probably the stack var isx
guaranteed to live until the function returns. However obvious code is
better anyway.
The lua_to*string() family of functions use a non optimal format
specifier when converting integers to strings. This has both the problem
of the number being converted in exponential notation, which we don't
use as a Redis return value when floating point numbers are involed,
and, moreover, there is a loss of precision since the default format
specifier is not able to represent numbers that must be represented
exactly in the IEEE 754 number mantissa.
The new code handles it as a special case using a saner conversion.
This fixes issue #1118.
If we are in the signal handler, we don't want to handle
the signal again. In extreme cases, this can cause a stack overflow
and segfault Redis.
Fixes#1771
When we are blocked and a few events a processed from time to time, it
is smarter to call the event handler a few times in order to handle the
accept, read, write, close cycle of a client in a single pass, otherwise
there is too much latency added for clients to receive a reply while the
server is busy in some way (for example during the DB loading).
When the listening sockets readable event is fired, we have the chance
to accept multiple clients instead of accepting a single one. This makes
Redis more responsive when there is a mass-connect event (for example
after the server startup), and in workloads where a connect-disconnect
pattern is used often, so that multiple clients are waiting to be
accepted continuously.
As a side effect, this commit makes the LOADING, BUSY, and similar
errors much faster to deliver to the client, making Redis more
responsive when there is to return errors to inform the clients that the
server is blocked in an not interruptible operation.
When scanning the argument list inside of a redis.call() invocation
for pre-cached values, there was no check being done that the
argument we were on was in fact within the bounds of the cache size.
So if a redis.call() command was ever executed with more than 32
arguments (current cache size #define setting) redis-server could
segfault.
When a Sentinel performs a failover (successful or not), or when a
Sentinel votes for a different Sentinel trying to start a failover, it
sets a min delay before it will try to get elected for a failover.
While not strictly needed, because if multiple Sentinels will try
to failover the same master at the same time, only one configuration
will eventually win, this serialization is practically very useful.
Normal failovers are cleaner: one Sentinel starts to failover, the
others update their config when the Sentinel performing the failover
is able to get the selected slave to move from the role of slave to the
one of master.
However currently this timeout was implicit, so users could see
Sentinels not reacting, after a failed failover, for some time, without
giving any feedback in the logs to the poor sysadmin waiting for clues.
This commit makes Sentinels more verbose about the delay: when a master
is down and a failover attempt is not performed because the delay has
still not elaped, something like that will be logged:
Next failover delay: I will not start a failover
before Thu May 8 16:48:59 2014
SPOP, tested in the new test, is among the commands rewritng the
client->argv argument vector (it gets rewritten as SREM) for command
replication purposes.
Because of recent optimizations to client->argv caching in the context
of the Lua internal Redis client, it is important to test for SPOP to be
callable from Lua without bad effects to the other commands.
Sometimes the process is still there but no longer in a state that can
be checked (after being killed). This used to happen after a call to
SHUTDOWN NOSAVE in the scripting unit, causing a false positive.
Reusing small objects when possible is a major speedup under certain
conditions, since it is able to avoid the malloc/free pattern that
otherwise is performed for every argument in the client command vector.
Replace the three calls to Lua API lua_tostring, lua_lua_strlen,
and lua_isstring, with a single call to lua_tolstring.
~ 5% consistent speed gain measured.
Calling lua_gc() after every script execution is too expensive, and
apparently does not make the execution smoother: the same peak latency
was measured before and after the commit.
This change accounts for scripts execution speedup in the order of 10%.
The function showed up consuming a non trivial amount of time in the
profiler output. After this change benchmarking gives a 6% speed
improvement that can be consistently measured.
When the reply is only contained in the client static output buffer, use
a fast path avoiding the dynamic allocation of an SDS string to
concatenate the client reply objects.
I happen to be working on a system that lacks urandom. While the code does try
to handle this case and artificially create some bytes if the file pointer is
empty, it does try to close it unconditionally, leading to a segfault.
When we set a protocol error we should return with REDIS_ERR to let the
caller know it should stop processing the client.
Bug found in a code auditing related to issue #1699.