adjustOpenFilesLimit() and clusterUpdateSlotsWithConfig() that were
assuming uint64_t is the same as unsigned long long, which is true
probably for all the systems out there that we target, but still GCC
emitted a warning since technically they are two different types.
To test the bitfield array of counters set/get macros from the Redis Tcl
suite is hard, so a specialized command that is able to test the
internals was developed.
In this commit:
* Decrement steps are semantically differentiated from the reserved FDs.
Previously both values were 32 but the meaning was different.
* Make it clear that we save setrlimit errno.
* Don't explicitly handle wrapping of 'f', but prevent it from
happening.
* Add comments to make the function flow more readable.
This integrates PR #1630
Also update the original REDIS_EVENTLOOP_FDSET_INCR to
include REDIS_MIN_RESERVED_FDS. REDIS_EVENTLOOP_FDSET_INCR
exists to make sure more than (maxclients+RESERVED) entries
are allocated, but we can only guarantee that if we include
the current value of REDIS_MIN_RESERVED_FDS as a minimum
for the INCR size.
Fun fact: rlim_t is an unsigned long long on all platforms.
Continually subtracting from a rlim_t makes it get smaller
and smaller until it wraps, then you're up to 2^64-1.
This was causing an infinite loop on Redis startup if
your ulimit was extremely (almost comically) low.
The case of (f > oldlimit) would never be met in a case like:
f = 150
while (f > 20) f -= 128
Since f is unsigned, it can't go negative and would
take on values of:
Iteration 1: 150 - 128 => 22
Iteration 2: 22 - 128 => 18446744073709551510
Iterations 3-∞: ...
To catch the wraparound, we use the previous value of f
stored in limit.rlimit_cur. If we subtract from f and
get a larger number than the value it had previously,
we print an error and exit since we don't have enough
file descriptors to help the user at this point.
Thanks to @bs3g for the inspiration to fix this problem.
Patches existed from @bs3g at antirez#1227, but I needed to repair a few other
parts of Redis simultaneously, so I didn't get a chance to use them.
The log messages about open file limits have always
been slightly opaque and confusing. Here's an attempt to
fix their wording, detail, and meaning. Users will have a
better understanding of how to fix very common problems
with these reworded messages.
Also, we handle a new error case when maxclients becomes less
than one, essentially rendering the server unusable. We
now exit on startup instead of leaving the user with a server
unable to handle any connections.
This fixes antirez#356 as well.
32 was the additional number of file descriptors Redis
would reserve when managing a too-low ulimit. The
number 32 was in too many places statically, so now
we use a macro instead that looks more appropriate.
When Redis sets up the server event loop, it uses:
server.maxclients+REDIS_EVENTLOOP_FDSET_INCR
So, when reserving file descriptors, it makes sense to
reserve at least REDIS_EVENTLOOP_FDSET_INCR FDs instead
of only 32. Currently, REDIS_EVENTLOOP_FDSET_INCR is
set to 128 in redis.h.
Also, I replaced the static 128 in the while f < old loop
with REDIS_EVENTLOOP_FDSET_INCR as well, which results
in no change since it was already 128.
Impact: Users now need at least maxclients+128 as
their open file limit instead of maxclients+32 to obtain
actual "maxclients" number of clients. Redis will carve
the extra REDIS_EVENTLOOP_FDSET_INCR file descriptors it
needs out of the "maxclients" range instead of failing
to start (unless the local ulimit -n is too low to accomidate
the request).
Obtaining the RSS (Resident Set Size) info is slow in Linux and OSX.
This slowed down the generation of the INFO 'memory' section.
Since the RSS does not require to be a real-time measurement, we
now sample it with server.hz frequency (10 times per second by default)
and use this value both to show the INFO rss field and to compute the
fragmentation ratio.
Practically this does not make any difference for memory profiling of
Redis but speeds up the INFO call significantly.
Uname was profiled to be a slow syscall. It produces always the same
output in the context of a single execution of Redis, so calling it at
every INFO output generation does not make too much sense.
The uname utsname structure was modified as a static variable. At the
same time a static integer was added to check if we need to call uname
the first time.
used_memory_peak only updates in serverCron every server.hz,
but Redis can use more memory and a user can request memory
INFO before used_memory_peak gets updated in the next
cron run.
This patch updates used_memory_peak to the current
memory usage if the current memory usage is higher
than the recorded used_memory_peak value.
(And it only calls zmalloc_used_memory() once instead of
twice as it was doing before.)
The code tried to obtain the configuration file absolute path after
processing the configuration file. However if config file was a relative
path and a "dir" statement was processed reading the config, the absolute
path obtained was wrong.
With this fix the absolute path is obtained before processing the
configuration while the server is still in the original directory where
it was executed.
server.unixtime and server.mstime are cached less precise timestamps
that we use every time we don't need an accurate time representation and
a syscall would be too slow for the number of calls we require.
Such an example is the initialization and update process of the last
interaction time with the client, that is used for timeouts.
However rdbLoad() can take some time to load the DB, but at the same
time it did not updated the time during DB loading. This resulted in the
bug described in issue #1535, where in the replication process the slave
loads the DB, creates the redisClient representation of its master, but
the timestamp is so old that the master, under certain conditions, is
sensed as already "timed out".
Thanks to @yoav-steinberg and Redis Labs Inc for the bug report and
analysis.
A system similar to the RDB write error handling is used, in which when
we can't write to the AOF file, writes are no longer accepted until we
are able to write again.
For fsync == always we still abort on errors since there is currently no
easy way to avoid replying with success to the user otherwise, and this
would violate the contract with the user of only acknowledging data
already secured on disk.
In high RPS environments, the default listen backlog is not sufficient, so
giving users the power to configure it is the right approach, especially
since it requires only minor modifications to the code.
When a slave was disconnected from its master the replication offset was
reported as -1. Now it is reported as the replication offset of the
previous master, so that failover can be performed using this value in
order to try to select a slave with more processed data from a set of
slaves of the old master.
Some are just to know if the master is down, and in this case the runid
in the request is set to "*", others are actually in order to seek for a
vote and get elected. In the latter case the runid is set to the runid
of the instance seeking for the vote.