We introduce the distinction between slow and fast commands since those
are two different sources of latency. An O(1) or O(log N) command without
side effects (can't trigger deletion of large objects as a side effect of
its execution) if delayed is a symptom of inherent latency of the system.
A non-fast command (commands that may run large O(N) computations) if
delayed may just mean that the user is executing slow operations.
The advices LATENCY should provide in this two different cases are
different, so we log the two classes of commands in a separated way.
This fixes detection of wrong subcommand (that resulted in the default
all-commands output instead) and allows COMMAND INFO to be called
without arguments (resulting into an empty array) which is useful in
programmtically generated calls like the following (in Ruby):
redis.commands("command","info",*mycommands)
Note: mycommands may be empty.
Static was removed since it is needed in order to get symbols in stack
traces. Minor changes in the source code were operated to make it more
similar to the existing Redis code base.
COMMANDS returns a nested multibulk reply for each
command in the command table. The reply for each
command contains:
- command name
- arity
- array of command flags
- start key position
- end key position
- key offset step
- optional: if the keys are not deterministic and
Redis uses an internal key evaluation function,
the 6th field appears and is defined as a status
reply of: REQUIRES ARGUMENT PARSING
Cluster clients need to know where the keys are in each
command to implement proper routing to cluster nodes.
Redis commands can have multiple keys, keys at offset steps, or other
issues where you can't always assume the first element after
the command name is the cluster routing key.
Using the information exposed by COMMANDS, client implementations
can have live, accurate key extraction details for all commands.
Also implements COMMANDS INFO [commands...] to return only a
specific set of commands instead of all 160+ commands live in Redis.
From mailing list post https://groups.google.com/forum/#!topic/redis-db/D3k7KmJmYgM
In the file “config.h”, the definition HAVE_ATOMIC is used to indicate
if an architecture on which redis is implemented supports atomic
synchronization primitives. Powerpc supports atomic synchronization
primitives, however, it is not listed as one of the architectures
supported in config.h. This patch adds the __powerpc__ to the list of
architectures supporting these primitives. The improvement of redis
due to the atomic synchronization on powerpc is significant,
around 30% to 40%, over the default implementation using pthreads.
This proposal adds __powerpc__ to the list of architectures designated
to support atomic builtins.
From mailing list post https://groups.google.com/forum/#!topic/redis-db/QLjiQe4D7LA
In zmalloc.c the following primitives are currently used
to synchronize access to single global variable:
__sync_add_and_fetch
__sync_sub_and_fetch
In some architectures such as powerpc these primitives are overhead
intensive. More efficient C11 __atomic builtins are available with
newer GCC versions, see
http://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/_005f_005fatomic-Builtins.html#_005f_005fatomic-Builtins
By substituting the following __atomic… builtins:
__atomic_add_fetch
__atomic_sub_fetch
the performance improvement on certain architectures such as powerpc can be significant,
around 10% to 15%, over the implementation using __sync builtins while there is only slight uptick on
Intel architectures because it was already enforcing Intel Strongly ordered memory semantics.
The selection of __atomic built-ins can be predicated on the definition of ATOMIC_RELAXED
which Is available on in gcc 4.8.2 and later versions.
Technically the problem is due to the client type API that does not
return a special value for the master, however fixing it locally in the
CLIENT KILL command is better currently because otherwise we would
introduce a new output buffer limit class as a side effect.
Some deployments need traffic sent from a specific address. This
change uses the same policy as Cluster where the first listed bindaddr
becomes the source address for outgoing Sentinel communication.
Fixes#1667
This implements the new Sentinel-Client protocol for the Sentinel part:
now instances are reconfigured using a transaction that ensures that the
config is rewritten in the target instance, and that clients lose the
connection with the instance, in order to be forced to: ask Sentinel,
reconnect to the instance, and verify the instance role with the new
ROLE command.
This will be used by CLIENT KILL and is also a good way to ensure a
given client is still the same across CLIENT LIST calls.
The output of CLIENT LIST was modified to include the new ID, but this
change is considered to be backward compatible as the API does not imply
you can do positional parsing, since each filed as a different name.
Because of output buffer limits Redis internals had this idea of type of
clients: normal, pubsub, slave. It is possible to set different output
buffer limits for the three kinds of clients.
However all the macros and API were named after output buffer limit
classes, while the idea of a client type is a generic one that can be
reused.
This commit does two things:
1) Rename the API and defines with more general names.
2) Change the class of clients executing the MONITOR command from "slave"
to "normal".
"2" is a good idea because you want to have very special settings for
slaves, that are not a good idea for MONITOR clients that are instead
normal clients even if they are conceptually slave-alike (since it is a
push protocol).
The backward-compatibility breakage resulting from "2" is considered to
be minimal to care, since MONITOR is a debugging command, and because
anyway this change is not going to break the format or the behavior, but
just when a connection is closed on big output buffer issues.
The new ROLE command is designed in order to provide a client with
informations about the replication in a fast and easy to use way
compared to the INFO command where the same information is also
available.
This commit adds peer ID caching in the client structure plus an API
change and the use of sdsMakeRoomFor() in order to improve the
reallocation pattern to generate the CLIENT LIST output.
Both the changes account for a very significant speedup.
This commit also fixes a bug in the implementation of sdscatfmt()
resulting from stale references to the SDS string header after
sdsMakeRoomFor() calls.
sdscatprintf() relies on printf() family libc functions and is sometimes
too slow in critical code paths. sdscatfmt() is an alternative which is:
1) Far less capable.
2) Format specifier uncompatible.
3) Faster.
It is suitable to be used in those speed critical code paths such as
CLIENT LIST output generation.
Eventual configuration convergence is guaranteed by our periodic hello
messages to all the instances, however when there are important notices
to share, better make a phone call. With this commit we force an hello
message to other Sentinal and Redis instances within the next 100
milliseconds of a config update, which is practically better than
waiting a few seconds.