mirror of
https://github.com/fluencelabs/redis
synced 2025-06-20 12:36:31 +00:00
jemalloc source added
This commit is contained in:
743
deps/jemalloc/include/jemalloc/internal/arena.h
vendored
Normal file
743
deps/jemalloc/include/jemalloc/internal/arena.h
vendored
Normal file
@ -0,0 +1,743 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
/*
|
||||
* Subpages are an artificially designated partitioning of pages. Their only
|
||||
* purpose is to support subpage-spaced size classes.
|
||||
*
|
||||
* There must be at least 4 subpages per page, due to the way size classes are
|
||||
* handled.
|
||||
*/
|
||||
#define LG_SUBPAGE 8
|
||||
#define SUBPAGE ((size_t)(1U << LG_SUBPAGE))
|
||||
#define SUBPAGE_MASK (SUBPAGE - 1)
|
||||
|
||||
/* Return the smallest subpage multiple that is >= s. */
|
||||
#define SUBPAGE_CEILING(s) \
|
||||
(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
|
||||
|
||||
#ifdef JEMALLOC_TINY
|
||||
/* Smallest size class to support. */
|
||||
# define LG_TINY_MIN LG_SIZEOF_PTR
|
||||
# define TINY_MIN (1U << LG_TINY_MIN)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Maximum size class that is a multiple of the quantum, but not (necessarily)
|
||||
* a power of 2. Above this size, allocations are rounded up to the nearest
|
||||
* power of 2.
|
||||
*/
|
||||
#define LG_QSPACE_MAX_DEFAULT 7
|
||||
|
||||
/*
|
||||
* Maximum size class that is a multiple of the cacheline, but not (necessarily)
|
||||
* a power of 2. Above this size, allocations are rounded up to the nearest
|
||||
* power of 2.
|
||||
*/
|
||||
#define LG_CSPACE_MAX_DEFAULT 9
|
||||
|
||||
/*
|
||||
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
|
||||
* as small as possible such that this setting is still honored, without
|
||||
* violating other constraints. The goal is to make runs as small as possible
|
||||
* without exceeding a per run external fragmentation threshold.
|
||||
*
|
||||
* We use binary fixed point math for overhead computations, where the binary
|
||||
* point is implicitly RUN_BFP bits to the left.
|
||||
*
|
||||
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
|
||||
* honored for some/all object sizes, since when heap profiling is enabled
|
||||
* there is one pointer of header overhead per object (plus a constant). This
|
||||
* constraint is relaxed (ignored) for runs that are so small that the
|
||||
* per-region overhead is greater than:
|
||||
*
|
||||
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
|
||||
*/
|
||||
#define RUN_BFP 12
|
||||
/* \/ Implicit binary fixed point. */
|
||||
#define RUN_MAX_OVRHD 0x0000003dU
|
||||
#define RUN_MAX_OVRHD_RELAX 0x00001800U
|
||||
|
||||
/* Maximum number of regions in one run. */
|
||||
#define LG_RUN_MAXREGS 11
|
||||
#define RUN_MAXREGS (1U << LG_RUN_MAXREGS)
|
||||
|
||||
/*
|
||||
* The minimum ratio of active:dirty pages per arena is computed as:
|
||||
*
|
||||
* (nactive >> opt_lg_dirty_mult) >= ndirty
|
||||
*
|
||||
* So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
|
||||
* times as many active pages as dirty pages.
|
||||
*/
|
||||
#define LG_DIRTY_MULT_DEFAULT 5
|
||||
|
||||
typedef struct arena_chunk_map_s arena_chunk_map_t;
|
||||
typedef struct arena_chunk_s arena_chunk_t;
|
||||
typedef struct arena_run_s arena_run_t;
|
||||
typedef struct arena_bin_info_s arena_bin_info_t;
|
||||
typedef struct arena_bin_s arena_bin_t;
|
||||
typedef struct arena_s arena_t;
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
/* Each element of the chunk map corresponds to one page within the chunk. */
|
||||
struct arena_chunk_map_s {
|
||||
union {
|
||||
/*
|
||||
* Linkage for run trees. There are two disjoint uses:
|
||||
*
|
||||
* 1) arena_t's runs_avail_{clean,dirty} trees.
|
||||
* 2) arena_run_t conceptually uses this linkage for in-use
|
||||
* non-full runs, rather than directly embedding linkage.
|
||||
*/
|
||||
rb_node(arena_chunk_map_t) rb_link;
|
||||
/*
|
||||
* List of runs currently in purgatory. arena_chunk_purge()
|
||||
* temporarily allocates runs that contain dirty pages while
|
||||
* purging, so that other threads cannot use the runs while the
|
||||
* purging thread is operating without the arena lock held.
|
||||
*/
|
||||
ql_elm(arena_chunk_map_t) ql_link;
|
||||
} u;
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
/* Profile counters, used for large object runs. */
|
||||
prof_ctx_t *prof_ctx;
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Run address (or size) and various flags are stored together. The bit
|
||||
* layout looks like (assuming 32-bit system):
|
||||
*
|
||||
* ???????? ???????? ????---- ----dula
|
||||
*
|
||||
* ? : Unallocated: Run address for first/last pages, unset for internal
|
||||
* pages.
|
||||
* Small: Run page offset.
|
||||
* Large: Run size for first page, unset for trailing pages.
|
||||
* - : Unused.
|
||||
* d : dirty?
|
||||
* u : unzeroed?
|
||||
* l : large?
|
||||
* a : allocated?
|
||||
*
|
||||
* Following are example bit patterns for the three types of runs.
|
||||
*
|
||||
* p : run page offset
|
||||
* s : run size
|
||||
* c : (binind+1) for size class (used only if prof_promote is true)
|
||||
* x : don't care
|
||||
* - : 0
|
||||
* + : 1
|
||||
* [DULA] : bit set
|
||||
* [dula] : bit unset
|
||||
*
|
||||
* Unallocated (clean):
|
||||
* ssssssss ssssssss ssss---- ----du-a
|
||||
* xxxxxxxx xxxxxxxx xxxx---- -----Uxx
|
||||
* ssssssss ssssssss ssss---- ----dU-a
|
||||
*
|
||||
* Unallocated (dirty):
|
||||
* ssssssss ssssssss ssss---- ----D--a
|
||||
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
|
||||
* ssssssss ssssssss ssss---- ----D--a
|
||||
*
|
||||
* Small:
|
||||
* pppppppp pppppppp pppp---- ----d--A
|
||||
* pppppppp pppppppp pppp---- -------A
|
||||
* pppppppp pppppppp pppp---- ----d--A
|
||||
*
|
||||
* Large:
|
||||
* ssssssss ssssssss ssss---- ----D-LA
|
||||
* xxxxxxxx xxxxxxxx xxxx---- ----xxxx
|
||||
* -------- -------- -------- ----D-LA
|
||||
*
|
||||
* Large (sampled, size <= PAGE_SIZE):
|
||||
* ssssssss ssssssss sssscccc ccccD-LA
|
||||
*
|
||||
* Large (not sampled, size == PAGE_SIZE):
|
||||
* ssssssss ssssssss ssss---- ----D-LA
|
||||
*/
|
||||
size_t bits;
|
||||
#ifdef JEMALLOC_PROF
|
||||
#define CHUNK_MAP_CLASS_SHIFT 4
|
||||
#define CHUNK_MAP_CLASS_MASK ((size_t)0xff0U)
|
||||
#endif
|
||||
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
|
||||
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
|
||||
#define CHUNK_MAP_UNZEROED ((size_t)0x4U)
|
||||
#define CHUNK_MAP_LARGE ((size_t)0x2U)
|
||||
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
|
||||
#define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED
|
||||
};
|
||||
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
|
||||
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
|
||||
|
||||
/* Arena chunk header. */
|
||||
struct arena_chunk_s {
|
||||
/* Arena that owns the chunk. */
|
||||
arena_t *arena;
|
||||
|
||||
/* Linkage for the arena's chunks_dirty list. */
|
||||
ql_elm(arena_chunk_t) link_dirty;
|
||||
|
||||
/*
|
||||
* True if the chunk is currently in the chunks_dirty list, due to
|
||||
* having at some point contained one or more dirty pages. Removal
|
||||
* from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
|
||||
*/
|
||||
bool dirtied;
|
||||
|
||||
/* Number of dirty pages. */
|
||||
size_t ndirty;
|
||||
|
||||
/*
|
||||
* Map of pages within chunk that keeps track of free/large/small. The
|
||||
* first map_bias entries are omitted, since the chunk header does not
|
||||
* need to be tracked in the map. This omission saves a header page
|
||||
* for common chunk sizes (e.g. 4 MiB).
|
||||
*/
|
||||
arena_chunk_map_t map[1]; /* Dynamically sized. */
|
||||
};
|
||||
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
|
||||
|
||||
struct arena_run_s {
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
uint32_t magic;
|
||||
# define ARENA_RUN_MAGIC 0x384adf93
|
||||
#endif
|
||||
|
||||
/* Bin this run is associated with. */
|
||||
arena_bin_t *bin;
|
||||
|
||||
/* Index of next region that has never been allocated, or nregs. */
|
||||
uint32_t nextind;
|
||||
|
||||
/* Number of free regions in run. */
|
||||
unsigned nfree;
|
||||
};
|
||||
|
||||
/*
|
||||
* Read-only information associated with each element of arena_t's bins array
|
||||
* is stored separately, partly to reduce memory usage (only one copy, rather
|
||||
* than one per arena), but mainly to avoid false cacheline sharing.
|
||||
*/
|
||||
struct arena_bin_info_s {
|
||||
/* Size of regions in a run for this bin's size class. */
|
||||
size_t reg_size;
|
||||
|
||||
/* Total size of a run for this bin's size class. */
|
||||
size_t run_size;
|
||||
|
||||
/* Total number of regions in a run for this bin's size class. */
|
||||
uint32_t nregs;
|
||||
|
||||
/*
|
||||
* Offset of first bitmap_t element in a run header for this bin's size
|
||||
* class.
|
||||
*/
|
||||
uint32_t bitmap_offset;
|
||||
|
||||
/*
|
||||
* Metadata used to manipulate bitmaps for runs associated with this
|
||||
* bin.
|
||||
*/
|
||||
bitmap_info_t bitmap_info;
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
/*
|
||||
* Offset of first (prof_ctx_t *) in a run header for this bin's size
|
||||
* class, or 0 if (opt_prof == false).
|
||||
*/
|
||||
uint32_t ctx0_offset;
|
||||
#endif
|
||||
|
||||
/* Offset of first region in a run for this bin's size class. */
|
||||
uint32_t reg0_offset;
|
||||
};
|
||||
|
||||
struct arena_bin_s {
|
||||
/*
|
||||
* All operations on runcur, runs, and stats require that lock be
|
||||
* locked. Run allocation/deallocation are protected by the arena lock,
|
||||
* which may be acquired while holding one or more bin locks, but not
|
||||
* vise versa.
|
||||
*/
|
||||
malloc_mutex_t lock;
|
||||
|
||||
/*
|
||||
* Current run being used to service allocations of this bin's size
|
||||
* class.
|
||||
*/
|
||||
arena_run_t *runcur;
|
||||
|
||||
/*
|
||||
* Tree of non-full runs. This tree is used when looking for an
|
||||
* existing run when runcur is no longer usable. We choose the
|
||||
* non-full run that is lowest in memory; this policy tends to keep
|
||||
* objects packed well, and it can also help reduce the number of
|
||||
* almost-empty chunks.
|
||||
*/
|
||||
arena_run_tree_t runs;
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
/* Bin statistics. */
|
||||
malloc_bin_stats_t stats;
|
||||
#endif
|
||||
};
|
||||
|
||||
struct arena_s {
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
uint32_t magic;
|
||||
# define ARENA_MAGIC 0x947d3d24
|
||||
#endif
|
||||
|
||||
/* This arena's index within the arenas array. */
|
||||
unsigned ind;
|
||||
|
||||
/*
|
||||
* Number of threads currently assigned to this arena. This field is
|
||||
* protected by arenas_lock.
|
||||
*/
|
||||
unsigned nthreads;
|
||||
|
||||
/*
|
||||
* There are three classes of arena operations from a locking
|
||||
* perspective:
|
||||
* 1) Thread asssignment (modifies nthreads) is protected by
|
||||
* arenas_lock.
|
||||
* 2) Bin-related operations are protected by bin locks.
|
||||
* 3) Chunk- and run-related operations are protected by this mutex.
|
||||
*/
|
||||
malloc_mutex_t lock;
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
arena_stats_t stats;
|
||||
# ifdef JEMALLOC_TCACHE
|
||||
/*
|
||||
* List of tcaches for extant threads associated with this arena.
|
||||
* Stats from these are merged incrementally, and at exit.
|
||||
*/
|
||||
ql_head(tcache_t) tcache_ql;
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
uint64_t prof_accumbytes;
|
||||
#endif
|
||||
|
||||
/* List of dirty-page-containing chunks this arena manages. */
|
||||
ql_head(arena_chunk_t) chunks_dirty;
|
||||
|
||||
/*
|
||||
* In order to avoid rapid chunk allocation/deallocation when an arena
|
||||
* oscillates right on the cusp of needing a new chunk, cache the most
|
||||
* recently freed chunk. The spare is left in the arena's chunk trees
|
||||
* until it is deleted.
|
||||
*
|
||||
* There is one spare chunk per arena, rather than one spare total, in
|
||||
* order to avoid interactions between multiple threads that could make
|
||||
* a single spare inadequate.
|
||||
*/
|
||||
arena_chunk_t *spare;
|
||||
|
||||
/* Number of pages in active runs. */
|
||||
size_t nactive;
|
||||
|
||||
/*
|
||||
* Current count of pages within unused runs that are potentially
|
||||
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
|
||||
* By tracking this, we can institute a limit on how much dirty unused
|
||||
* memory is mapped for each arena.
|
||||
*/
|
||||
size_t ndirty;
|
||||
|
||||
/*
|
||||
* Approximate number of pages being purged. It is possible for
|
||||
* multiple threads to purge dirty pages concurrently, and they use
|
||||
* npurgatory to indicate the total number of pages all threads are
|
||||
* attempting to purge.
|
||||
*/
|
||||
size_t npurgatory;
|
||||
|
||||
/*
|
||||
* Size/address-ordered trees of this arena's available runs. The trees
|
||||
* are used for first-best-fit run allocation. The dirty tree contains
|
||||
* runs with dirty pages (i.e. very likely to have been touched and
|
||||
* therefore have associated physical pages), whereas the clean tree
|
||||
* contains runs with pages that either have no associated physical
|
||||
* pages, or have pages that the kernel may recycle at any time due to
|
||||
* previous madvise(2) calls. The dirty tree is used in preference to
|
||||
* the clean tree for allocations, because using dirty pages reduces
|
||||
* the amount of dirty purging necessary to keep the active:dirty page
|
||||
* ratio below the purge threshold.
|
||||
*/
|
||||
arena_avail_tree_t runs_avail_clean;
|
||||
arena_avail_tree_t runs_avail_dirty;
|
||||
|
||||
/*
|
||||
* bins is used to store trees of free regions of the following sizes,
|
||||
* assuming a 64-bit system with 16-byte quantum, 4 KiB page size, and
|
||||
* default MALLOC_CONF.
|
||||
*
|
||||
* bins[i] | size |
|
||||
* --------+--------+
|
||||
* 0 | 8 |
|
||||
* --------+--------+
|
||||
* 1 | 16 |
|
||||
* 2 | 32 |
|
||||
* 3 | 48 |
|
||||
* : :
|
||||
* 6 | 96 |
|
||||
* 7 | 112 |
|
||||
* 8 | 128 |
|
||||
* --------+--------+
|
||||
* 9 | 192 |
|
||||
* 10 | 256 |
|
||||
* 11 | 320 |
|
||||
* 12 | 384 |
|
||||
* 13 | 448 |
|
||||
* 14 | 512 |
|
||||
* --------+--------+
|
||||
* 15 | 768 |
|
||||
* 16 | 1024 |
|
||||
* 17 | 1280 |
|
||||
* : :
|
||||
* 25 | 3328 |
|
||||
* 26 | 3584 |
|
||||
* 27 | 3840 |
|
||||
* --------+--------+
|
||||
*/
|
||||
arena_bin_t bins[1]; /* Dynamically sized. */
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern size_t opt_lg_qspace_max;
|
||||
extern size_t opt_lg_cspace_max;
|
||||
extern ssize_t opt_lg_dirty_mult;
|
||||
/*
|
||||
* small_size2bin is a compact lookup table that rounds request sizes up to
|
||||
* size classes. In order to reduce cache footprint, the table is compressed,
|
||||
* and all accesses are via the SMALL_SIZE2BIN macro.
|
||||
*/
|
||||
extern uint8_t const *small_size2bin;
|
||||
#define SMALL_SIZE2BIN(s) (small_size2bin[(s-1) >> LG_TINY_MIN])
|
||||
|
||||
extern arena_bin_info_t *arena_bin_info;
|
||||
|
||||
/* Various bin-related settings. */
|
||||
#ifdef JEMALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
|
||||
# define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN))
|
||||
#else
|
||||
# define ntbins 0
|
||||
#endif
|
||||
extern unsigned nqbins; /* Number of quantum-spaced bins. */
|
||||
extern unsigned ncbins; /* Number of cacheline-spaced bins. */
|
||||
extern unsigned nsbins; /* Number of subpage-spaced bins. */
|
||||
extern unsigned nbins;
|
||||
#ifdef JEMALLOC_TINY
|
||||
# define tspace_max ((size_t)(QUANTUM >> 1))
|
||||
#endif
|
||||
#define qspace_min QUANTUM
|
||||
extern size_t qspace_max;
|
||||
extern size_t cspace_min;
|
||||
extern size_t cspace_max;
|
||||
extern size_t sspace_min;
|
||||
extern size_t sspace_max;
|
||||
#define small_maxclass sspace_max
|
||||
|
||||
#define nlclasses (chunk_npages - map_bias)
|
||||
|
||||
void arena_purge_all(arena_t *arena);
|
||||
#ifdef JEMALLOC_PROF
|
||||
void arena_prof_accum(arena_t *arena, uint64_t accumbytes);
|
||||
#endif
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin,
|
||||
size_t binind
|
||||
# ifdef JEMALLOC_PROF
|
||||
, uint64_t prof_accumbytes
|
||||
# endif
|
||||
);
|
||||
#endif
|
||||
void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
|
||||
void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
|
||||
void *arena_malloc(size_t size, bool zero);
|
||||
void *arena_palloc(arena_t *arena, size_t size, size_t alloc_size,
|
||||
size_t alignment, bool zero);
|
||||
size_t arena_salloc(const void *ptr);
|
||||
#ifdef JEMALLOC_PROF
|
||||
void arena_prof_promoted(const void *ptr, size_t size);
|
||||
size_t arena_salloc_demote(const void *ptr);
|
||||
#endif
|
||||
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
|
||||
arena_chunk_map_t *mapelm);
|
||||
void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
|
||||
#ifdef JEMALLOC_STATS
|
||||
void arena_stats_merge(arena_t *arena, size_t *nactive, size_t *ndirty,
|
||||
arena_stats_t *astats, malloc_bin_stats_t *bstats,
|
||||
malloc_large_stats_t *lstats);
|
||||
#endif
|
||||
void *arena_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
|
||||
size_t extra, bool zero);
|
||||
void *arena_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra,
|
||||
size_t alignment, bool zero);
|
||||
bool arena_new(arena_t *arena, unsigned ind);
|
||||
bool arena_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
size_t arena_bin_index(arena_t *arena, arena_bin_t *bin);
|
||||
unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info,
|
||||
const void *ptr);
|
||||
# ifdef JEMALLOC_PROF
|
||||
prof_ctx_t *arena_prof_ctx_get(const void *ptr);
|
||||
void arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
|
||||
# endif
|
||||
void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
|
||||
JEMALLOC_INLINE size_t
|
||||
arena_bin_index(arena_t *arena, arena_bin_t *bin)
|
||||
{
|
||||
size_t binind = bin - arena->bins;
|
||||
assert(binind < nbins);
|
||||
return (binind);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE unsigned
|
||||
arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr)
|
||||
{
|
||||
unsigned shift, diff, regind;
|
||||
size_t size;
|
||||
|
||||
dassert(run->magic == ARENA_RUN_MAGIC);
|
||||
/*
|
||||
* Freeing a pointer lower than region zero can cause assertion
|
||||
* failure.
|
||||
*/
|
||||
assert((uintptr_t)ptr >= (uintptr_t)run +
|
||||
(uintptr_t)bin_info->reg0_offset);
|
||||
|
||||
/*
|
||||
* Avoid doing division with a variable divisor if possible. Using
|
||||
* actual division here can reduce allocator throughput by over 20%!
|
||||
*/
|
||||
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run -
|
||||
bin_info->reg0_offset);
|
||||
|
||||
/* Rescale (factor powers of 2 out of the numerator and denominator). */
|
||||
size = bin_info->reg_size;
|
||||
shift = ffs(size) - 1;
|
||||
diff >>= shift;
|
||||
size >>= shift;
|
||||
|
||||
if (size == 1) {
|
||||
/* The divisor was a power of 2. */
|
||||
regind = diff;
|
||||
} else {
|
||||
/*
|
||||
* To divide by a number D that is not a power of two we
|
||||
* multiply by (2^21 / D) and then right shift by 21 positions.
|
||||
*
|
||||
* X / D
|
||||
*
|
||||
* becomes
|
||||
*
|
||||
* (X * size_invs[D - 3]) >> SIZE_INV_SHIFT
|
||||
*
|
||||
* We can omit the first three elements, because we never
|
||||
* divide by 0, and 1 and 2 are both powers of two, which are
|
||||
* handled above.
|
||||
*/
|
||||
#define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS)
|
||||
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
|
||||
static const unsigned size_invs[] = {
|
||||
SIZE_INV(3),
|
||||
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
|
||||
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
|
||||
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
|
||||
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
|
||||
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
|
||||
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
|
||||
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
|
||||
};
|
||||
|
||||
if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + 2))
|
||||
regind = (diff * size_invs[size - 3]) >> SIZE_INV_SHIFT;
|
||||
else
|
||||
regind = diff / size;
|
||||
#undef SIZE_INV
|
||||
#undef SIZE_INV_SHIFT
|
||||
}
|
||||
assert(diff == regind * size);
|
||||
assert(regind < bin_info->nregs);
|
||||
|
||||
return (regind);
|
||||
}
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
JEMALLOC_INLINE prof_ctx_t *
|
||||
arena_prof_ctx_get(const void *ptr)
|
||||
{
|
||||
prof_ctx_t *ret;
|
||||
arena_chunk_t *chunk;
|
||||
size_t pageind, mapbits;
|
||||
|
||||
assert(ptr != NULL);
|
||||
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
||||
mapbits = chunk->map[pageind-map_bias].bits;
|
||||
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
|
||||
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
|
||||
if (prof_promote)
|
||||
ret = (prof_ctx_t *)(uintptr_t)1U;
|
||||
else {
|
||||
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
|
||||
(uintptr_t)((pageind - (mapbits >> PAGE_SHIFT)) <<
|
||||
PAGE_SHIFT));
|
||||
size_t binind = arena_bin_index(chunk->arena, run->bin);
|
||||
arena_bin_info_t *bin_info = &arena_bin_info[binind];
|
||||
unsigned regind;
|
||||
|
||||
dassert(run->magic == ARENA_RUN_MAGIC);
|
||||
regind = arena_run_regind(run, bin_info, ptr);
|
||||
ret = *(prof_ctx_t **)((uintptr_t)run +
|
||||
bin_info->ctx0_offset + (regind *
|
||||
sizeof(prof_ctx_t *)));
|
||||
}
|
||||
} else
|
||||
ret = chunk->map[pageind-map_bias].prof_ctx;
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
arena_prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
|
||||
{
|
||||
arena_chunk_t *chunk;
|
||||
size_t pageind, mapbits;
|
||||
|
||||
assert(ptr != NULL);
|
||||
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
||||
mapbits = chunk->map[pageind-map_bias].bits;
|
||||
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
|
||||
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
|
||||
if (prof_promote == false) {
|
||||
arena_run_t *run = (arena_run_t *)((uintptr_t)chunk +
|
||||
(uintptr_t)((pageind - (mapbits >> PAGE_SHIFT)) <<
|
||||
PAGE_SHIFT));
|
||||
arena_bin_t *bin = run->bin;
|
||||
size_t binind;
|
||||
arena_bin_info_t *bin_info;
|
||||
unsigned regind;
|
||||
|
||||
dassert(run->magic == ARENA_RUN_MAGIC);
|
||||
binind = arena_bin_index(chunk->arena, bin);
|
||||
bin_info = &arena_bin_info[binind];
|
||||
regind = arena_run_regind(run, bin_info, ptr);
|
||||
|
||||
*((prof_ctx_t **)((uintptr_t)run + bin_info->ctx0_offset
|
||||
+ (regind * sizeof(prof_ctx_t *)))) = ctx;
|
||||
} else
|
||||
assert((uintptr_t)ctx == (uintptr_t)1U);
|
||||
} else
|
||||
chunk->map[pageind-map_bias].prof_ctx = ctx;
|
||||
}
|
||||
#endif
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
|
||||
{
|
||||
size_t pageind;
|
||||
arena_chunk_map_t *mapelm;
|
||||
|
||||
assert(arena != NULL);
|
||||
dassert(arena->magic == ARENA_MAGIC);
|
||||
assert(chunk->arena == arena);
|
||||
assert(ptr != NULL);
|
||||
assert(CHUNK_ADDR2BASE(ptr) != ptr);
|
||||
|
||||
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
||||
mapelm = &chunk->map[pageind-map_bias];
|
||||
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
|
||||
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
|
||||
/* Small allocation. */
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
tcache_t *tcache;
|
||||
|
||||
if ((tcache = tcache_get()) != NULL)
|
||||
tcache_dalloc_small(tcache, ptr);
|
||||
else {
|
||||
#endif
|
||||
arena_run_t *run;
|
||||
arena_bin_t *bin;
|
||||
|
||||
run = (arena_run_t *)((uintptr_t)chunk +
|
||||
(uintptr_t)((pageind - (mapelm->bits >>
|
||||
PAGE_SHIFT)) << PAGE_SHIFT));
|
||||
dassert(run->magic == ARENA_RUN_MAGIC);
|
||||
bin = run->bin;
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
{
|
||||
size_t binind = arena_bin_index(arena, bin);
|
||||
arena_bin_info_t *bin_info =
|
||||
&arena_bin_info[binind];
|
||||
assert(((uintptr_t)ptr - ((uintptr_t)run +
|
||||
(uintptr_t)bin_info->reg0_offset)) %
|
||||
bin_info->reg_size == 0);
|
||||
}
|
||||
#endif
|
||||
malloc_mutex_lock(&bin->lock);
|
||||
arena_dalloc_bin(arena, chunk, ptr, mapelm);
|
||||
malloc_mutex_unlock(&bin->lock);
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
size_t size = mapelm->bits & ~PAGE_MASK;
|
||||
|
||||
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
|
||||
if (size <= tcache_maxclass) {
|
||||
tcache_t *tcache;
|
||||
|
||||
if ((tcache = tcache_get()) != NULL)
|
||||
tcache_dalloc_large(tcache, ptr, size);
|
||||
else {
|
||||
malloc_mutex_lock(&arena->lock);
|
||||
arena_dalloc_large(arena, chunk, ptr);
|
||||
malloc_mutex_unlock(&arena->lock);
|
||||
}
|
||||
} else {
|
||||
malloc_mutex_lock(&arena->lock);
|
||||
arena_dalloc_large(arena, chunk, ptr);
|
||||
malloc_mutex_unlock(&arena->lock);
|
||||
}
|
||||
#else
|
||||
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
|
||||
malloc_mutex_lock(&arena->lock);
|
||||
arena_dalloc_large(arena, chunk, ptr);
|
||||
malloc_mutex_unlock(&arena->lock);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
169
deps/jemalloc/include/jemalloc/internal/atomic.h
vendored
Normal file
169
deps/jemalloc/include/jemalloc/internal/atomic.h
vendored
Normal file
@ -0,0 +1,169 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#define atomic_read_uint64(p) atomic_add_uint64(p, 0)
|
||||
#define atomic_read_uint32(p) atomic_add_uint32(p, 0)
|
||||
|
||||
#if (LG_SIZEOF_PTR == 3)
|
||||
# define atomic_read_z(p) \
|
||||
(size_t)atomic_add_uint64((uint64_t *)p, (uint64_t)0)
|
||||
# define atomic_add_z(p, x) \
|
||||
(size_t)atomic_add_uint64((uint64_t *)p, (uint64_t)x)
|
||||
# define atomic_sub_z(p, x) \
|
||||
(size_t)atomic_sub_uint64((uint64_t *)p, (uint64_t)x)
|
||||
#elif (LG_SIZEOF_PTR == 2)
|
||||
# define atomic_read_z(p) \
|
||||
(size_t)atomic_add_uint32((uint32_t *)p, (uint32_t)0)
|
||||
# define atomic_add_z(p, x) \
|
||||
(size_t)atomic_add_uint32((uint32_t *)p, (uint32_t)x)
|
||||
# define atomic_sub_z(p, x) \
|
||||
(size_t)atomic_sub_uint32((uint32_t *)p, (uint32_t)x)
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
uint64_t atomic_add_uint64(uint64_t *p, uint64_t x);
|
||||
uint64_t atomic_sub_uint64(uint64_t *p, uint64_t x);
|
||||
uint32_t atomic_add_uint32(uint32_t *p, uint32_t x);
|
||||
uint32_t atomic_sub_uint32(uint32_t *p, uint32_t x);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ATOMIC_C_))
|
||||
/******************************************************************************/
|
||||
/* 64-bit operations. */
|
||||
#ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_add_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
return (__sync_add_and_fetch(p, x));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_sub_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
return (__sync_sub_and_fetch(p, x));
|
||||
}
|
||||
#elif (defined(JEMALLOC_OSATOMIC))
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_add_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
return (OSAtomicAdd64((int64_t)x, (int64_t *)p));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_sub_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
return (OSAtomicAdd64(-((int64_t)x), (int64_t *)p));
|
||||
}
|
||||
#elif (defined(__amd64_) || defined(__x86_64__))
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_add_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
asm volatile (
|
||||
"lock; xaddq %0, %1;"
|
||||
: "+r" (x), "=m" (*p) /* Outputs. */
|
||||
: "m" (*p) /* Inputs. */
|
||||
);
|
||||
|
||||
return (x);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint64_t
|
||||
atomic_sub_uint64(uint64_t *p, uint64_t x)
|
||||
{
|
||||
|
||||
x = (uint64_t)(-(int64_t)x);
|
||||
asm volatile (
|
||||
"lock; xaddq %0, %1;"
|
||||
: "+r" (x), "=m" (*p) /* Outputs. */
|
||||
: "m" (*p) /* Inputs. */
|
||||
);
|
||||
|
||||
return (x);
|
||||
}
|
||||
#else
|
||||
# if (LG_SIZEOF_PTR == 3)
|
||||
# error "Missing implementation for 64-bit atomic operations"
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/******************************************************************************/
|
||||
/* 32-bit operations. */
|
||||
#ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_add_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
return (__sync_add_and_fetch(p, x));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_sub_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
return (__sync_sub_and_fetch(p, x));
|
||||
}
|
||||
#elif (defined(JEMALLOC_OSATOMIC))
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_add_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
return (OSAtomicAdd32((int32_t)x, (int32_t *)p));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_sub_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
return (OSAtomicAdd32(-((int32_t)x), (int32_t *)p));
|
||||
}
|
||||
#elif (defined(__i386__) || defined(__amd64_) || defined(__x86_64__))
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_add_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
asm volatile (
|
||||
"lock; xaddl %0, %1;"
|
||||
: "+r" (x), "=m" (*p) /* Outputs. */
|
||||
: "m" (*p) /* Inputs. */
|
||||
);
|
||||
|
||||
return (x);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE uint32_t
|
||||
atomic_sub_uint32(uint32_t *p, uint32_t x)
|
||||
{
|
||||
|
||||
x = (uint32_t)(-(int32_t)x);
|
||||
asm volatile (
|
||||
"lock; xaddl %0, %1;"
|
||||
: "+r" (x), "=m" (*p) /* Outputs. */
|
||||
: "m" (*p) /* Inputs. */
|
||||
);
|
||||
|
||||
return (x);
|
||||
}
|
||||
#else
|
||||
# error "Missing implementation for 32-bit atomic operations"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
24
deps/jemalloc/include/jemalloc/internal/base.h
vendored
Normal file
24
deps/jemalloc/include/jemalloc/internal/base.h
vendored
Normal file
@ -0,0 +1,24 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern malloc_mutex_t base_mtx;
|
||||
|
||||
void *base_alloc(size_t size);
|
||||
extent_node_t *base_node_alloc(void);
|
||||
void base_node_dealloc(extent_node_t *node);
|
||||
bool base_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
184
deps/jemalloc/include/jemalloc/internal/bitmap.h
vendored
Normal file
184
deps/jemalloc/include/jemalloc/internal/bitmap.h
vendored
Normal file
@ -0,0 +1,184 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
/* Maximum bitmap bit count is 2^LG_BITMAP_MAXBITS. */
|
||||
#define LG_BITMAP_MAXBITS LG_RUN_MAXREGS
|
||||
|
||||
typedef struct bitmap_level_s bitmap_level_t;
|
||||
typedef struct bitmap_info_s bitmap_info_t;
|
||||
typedef unsigned long bitmap_t;
|
||||
#define LG_SIZEOF_BITMAP LG_SIZEOF_LONG
|
||||
|
||||
/* Number of bits per group. */
|
||||
#define LG_BITMAP_GROUP_NBITS (LG_SIZEOF_BITMAP + 3)
|
||||
#define BITMAP_GROUP_NBITS (ZU(1) << LG_BITMAP_GROUP_NBITS)
|
||||
#define BITMAP_GROUP_NBITS_MASK (BITMAP_GROUP_NBITS-1)
|
||||
|
||||
/* Maximum number of levels possible. */
|
||||
#define BITMAP_MAX_LEVELS \
|
||||
(LG_BITMAP_MAXBITS / LG_SIZEOF_BITMAP) \
|
||||
+ !!(LG_BITMAP_MAXBITS % LG_SIZEOF_BITMAP)
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
struct bitmap_level_s {
|
||||
/* Offset of this level's groups within the array of groups. */
|
||||
size_t group_offset;
|
||||
};
|
||||
|
||||
struct bitmap_info_s {
|
||||
/* Logical number of bits in bitmap (stored at bottom level). */
|
||||
size_t nbits;
|
||||
|
||||
/* Number of levels necessary for nbits. */
|
||||
unsigned nlevels;
|
||||
|
||||
/*
|
||||
* Only the first (nlevels+1) elements are used, and levels are ordered
|
||||
* bottom to top (e.g. the bottom level is stored in levels[0]).
|
||||
*/
|
||||
bitmap_level_t levels[BITMAP_MAX_LEVELS+1];
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
void bitmap_info_init(bitmap_info_t *binfo, size_t nbits);
|
||||
size_t bitmap_info_ngroups(const bitmap_info_t *binfo);
|
||||
size_t bitmap_size(size_t nbits);
|
||||
void bitmap_init(bitmap_t *bitmap, const bitmap_info_t *binfo);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
bool bitmap_full(bitmap_t *bitmap, const bitmap_info_t *binfo);
|
||||
bool bitmap_get(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
|
||||
void bitmap_set(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
|
||||
size_t bitmap_sfu(bitmap_t *bitmap, const bitmap_info_t *binfo);
|
||||
void bitmap_unset(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_BITMAP_C_))
|
||||
JEMALLOC_INLINE bool
|
||||
bitmap_full(bitmap_t *bitmap, const bitmap_info_t *binfo)
|
||||
{
|
||||
unsigned rgoff = binfo->levels[binfo->nlevels].group_offset - 1;
|
||||
bitmap_t rg = bitmap[rgoff];
|
||||
/* The bitmap is full iff the root group is 0. */
|
||||
return (rg == 0);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE bool
|
||||
bitmap_get(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
|
||||
{
|
||||
size_t goff;
|
||||
bitmap_t g;
|
||||
|
||||
assert(bit < binfo->nbits);
|
||||
goff = bit >> LG_BITMAP_GROUP_NBITS;
|
||||
g = bitmap[goff];
|
||||
return (!(g & (1LU << (bit & BITMAP_GROUP_NBITS_MASK))));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
bitmap_set(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
|
||||
{
|
||||
size_t goff;
|
||||
bitmap_t *gp;
|
||||
bitmap_t g;
|
||||
|
||||
assert(bit < binfo->nbits);
|
||||
assert(bitmap_get(bitmap, binfo, bit) == false);
|
||||
goff = bit >> LG_BITMAP_GROUP_NBITS;
|
||||
gp = &bitmap[goff];
|
||||
g = *gp;
|
||||
assert(g & (1LU << (bit & BITMAP_GROUP_NBITS_MASK)));
|
||||
g ^= 1LU << (bit & BITMAP_GROUP_NBITS_MASK);
|
||||
*gp = g;
|
||||
assert(bitmap_get(bitmap, binfo, bit));
|
||||
/* Propagate group state transitions up the tree. */
|
||||
if (g == 0) {
|
||||
unsigned i;
|
||||
for (i = 1; i < binfo->nlevels; i++) {
|
||||
bit = goff;
|
||||
goff = bit >> LG_BITMAP_GROUP_NBITS;
|
||||
gp = &bitmap[binfo->levels[i].group_offset + goff];
|
||||
g = *gp;
|
||||
assert(g & (1LU << (bit & BITMAP_GROUP_NBITS_MASK)));
|
||||
g ^= 1LU << (bit & BITMAP_GROUP_NBITS_MASK);
|
||||
*gp = g;
|
||||
if (g != 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* sfu: set first unset. */
|
||||
JEMALLOC_INLINE size_t
|
||||
bitmap_sfu(bitmap_t *bitmap, const bitmap_info_t *binfo)
|
||||
{
|
||||
size_t bit;
|
||||
bitmap_t g;
|
||||
unsigned i;
|
||||
|
||||
assert(bitmap_full(bitmap, binfo) == false);
|
||||
|
||||
i = binfo->nlevels - 1;
|
||||
g = bitmap[binfo->levels[i].group_offset];
|
||||
bit = ffsl(g) - 1;
|
||||
while (i > 0) {
|
||||
i--;
|
||||
g = bitmap[binfo->levels[i].group_offset + bit];
|
||||
bit = (bit << LG_BITMAP_GROUP_NBITS) + (ffsl(g) - 1);
|
||||
}
|
||||
|
||||
bitmap_set(bitmap, binfo, bit);
|
||||
return (bit);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
bitmap_unset(bitmap_t *bitmap, const bitmap_info_t *binfo, size_t bit)
|
||||
{
|
||||
size_t goff;
|
||||
bitmap_t *gp;
|
||||
bitmap_t g;
|
||||
bool propagate;
|
||||
|
||||
assert(bit < binfo->nbits);
|
||||
assert(bitmap_get(bitmap, binfo, bit));
|
||||
goff = bit >> LG_BITMAP_GROUP_NBITS;
|
||||
gp = &bitmap[goff];
|
||||
g = *gp;
|
||||
propagate = (g == 0);
|
||||
assert((g & (1LU << (bit & BITMAP_GROUP_NBITS_MASK))) == 0);
|
||||
g ^= 1LU << (bit & BITMAP_GROUP_NBITS_MASK);
|
||||
*gp = g;
|
||||
assert(bitmap_get(bitmap, binfo, bit) == false);
|
||||
/* Propagate group state transitions up the tree. */
|
||||
if (propagate) {
|
||||
unsigned i;
|
||||
for (i = 1; i < binfo->nlevels; i++) {
|
||||
bit = goff;
|
||||
goff = bit >> LG_BITMAP_GROUP_NBITS;
|
||||
gp = &bitmap[binfo->levels[i].group_offset + goff];
|
||||
g = *gp;
|
||||
propagate = (g == 0);
|
||||
assert((g & (1LU << (bit & BITMAP_GROUP_NBITS_MASK)))
|
||||
== 0);
|
||||
g ^= 1LU << (bit & BITMAP_GROUP_NBITS_MASK);
|
||||
*gp = g;
|
||||
if (propagate == false)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
65
deps/jemalloc/include/jemalloc/internal/chunk.h
vendored
Normal file
65
deps/jemalloc/include/jemalloc/internal/chunk.h
vendored
Normal file
@ -0,0 +1,65 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
/*
|
||||
* Size and alignment of memory chunks that are allocated by the OS's virtual
|
||||
* memory system.
|
||||
*/
|
||||
#define LG_CHUNK_DEFAULT 22
|
||||
|
||||
/* Return the chunk address for allocation address a. */
|
||||
#define CHUNK_ADDR2BASE(a) \
|
||||
((void *)((uintptr_t)(a) & ~chunksize_mask))
|
||||
|
||||
/* Return the chunk offset of address a. */
|
||||
#define CHUNK_ADDR2OFFSET(a) \
|
||||
((size_t)((uintptr_t)(a) & chunksize_mask))
|
||||
|
||||
/* Return the smallest chunk multiple that is >= s. */
|
||||
#define CHUNK_CEILING(s) \
|
||||
(((s) + chunksize_mask) & ~chunksize_mask)
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern size_t opt_lg_chunk;
|
||||
#ifdef JEMALLOC_SWAP
|
||||
extern bool opt_overcommit;
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
/* Protects stats_chunks; currently not used for any other purpose. */
|
||||
extern malloc_mutex_t chunks_mtx;
|
||||
/* Chunk statistics. */
|
||||
extern chunk_stats_t stats_chunks;
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_IVSALLOC
|
||||
extern rtree_t *chunks_rtree;
|
||||
#endif
|
||||
|
||||
extern size_t chunksize;
|
||||
extern size_t chunksize_mask; /* (chunksize - 1). */
|
||||
extern size_t chunk_npages;
|
||||
extern size_t map_bias; /* Number of arena chunk header pages. */
|
||||
extern size_t arena_maxclass; /* Max size class for arenas. */
|
||||
|
||||
void *chunk_alloc(size_t size, bool base, bool *zero);
|
||||
void chunk_dealloc(void *chunk, size_t size);
|
||||
bool chunk_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
|
||||
#include "jemalloc/internal/chunk_swap.h"
|
||||
#include "jemalloc/internal/chunk_dss.h"
|
||||
#include "jemalloc/internal/chunk_mmap.h"
|
30
deps/jemalloc/include/jemalloc/internal/chunk_dss.h
vendored
Normal file
30
deps/jemalloc/include/jemalloc/internal/chunk_dss.h
vendored
Normal file
@ -0,0 +1,30 @@
|
||||
#ifdef JEMALLOC_DSS
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
/*
|
||||
* Protects sbrk() calls. This avoids malloc races among threads, though it
|
||||
* does not protect against races with threads that call sbrk() directly.
|
||||
*/
|
||||
extern malloc_mutex_t dss_mtx;
|
||||
|
||||
void *chunk_alloc_dss(size_t size, bool *zero);
|
||||
bool chunk_in_dss(void *chunk);
|
||||
bool chunk_dealloc_dss(void *chunk, size_t size);
|
||||
bool chunk_dss_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
#endif /* JEMALLOC_DSS */
|
23
deps/jemalloc/include/jemalloc/internal/chunk_mmap.h
vendored
Normal file
23
deps/jemalloc/include/jemalloc/internal/chunk_mmap.h
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
void *chunk_alloc_mmap(size_t size);
|
||||
void *chunk_alloc_mmap_noreserve(size_t size);
|
||||
void chunk_dealloc_mmap(void *chunk, size_t size);
|
||||
|
||||
bool chunk_mmap_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
34
deps/jemalloc/include/jemalloc/internal/chunk_swap.h
vendored
Normal file
34
deps/jemalloc/include/jemalloc/internal/chunk_swap.h
vendored
Normal file
@ -0,0 +1,34 @@
|
||||
#ifdef JEMALLOC_SWAP
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern malloc_mutex_t swap_mtx;
|
||||
extern bool swap_enabled;
|
||||
extern bool swap_prezeroed;
|
||||
extern size_t swap_nfds;
|
||||
extern int *swap_fds;
|
||||
#ifdef JEMALLOC_STATS
|
||||
extern size_t swap_avail;
|
||||
#endif
|
||||
|
||||
void *chunk_alloc_swap(size_t size, bool *zero);
|
||||
bool chunk_in_swap(void *chunk);
|
||||
bool chunk_dealloc_swap(void *chunk, size_t size);
|
||||
bool chunk_swap_enable(const int *fds, unsigned nfds, bool prezeroed);
|
||||
bool chunk_swap_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
#endif /* JEMALLOC_SWAP */
|
95
deps/jemalloc/include/jemalloc/internal/ckh.h
vendored
Normal file
95
deps/jemalloc/include/jemalloc/internal/ckh.h
vendored
Normal file
@ -0,0 +1,95 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct ckh_s ckh_t;
|
||||
typedef struct ckhc_s ckhc_t;
|
||||
|
||||
/* Typedefs to allow easy function pointer passing. */
|
||||
typedef void ckh_hash_t (const void *, unsigned, size_t *, size_t *);
|
||||
typedef bool ckh_keycomp_t (const void *, const void *);
|
||||
|
||||
/* Maintain counters used to get an idea of performance. */
|
||||
/* #define CKH_COUNT */
|
||||
/* Print counter values in ckh_delete() (requires CKH_COUNT). */
|
||||
/* #define CKH_VERBOSE */
|
||||
|
||||
/*
|
||||
* There are 2^LG_CKH_BUCKET_CELLS cells in each hash table bucket. Try to fit
|
||||
* one bucket per L1 cache line.
|
||||
*/
|
||||
#define LG_CKH_BUCKET_CELLS (LG_CACHELINE - LG_SIZEOF_PTR - 1)
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
/* Hash table cell. */
|
||||
struct ckhc_s {
|
||||
const void *key;
|
||||
const void *data;
|
||||
};
|
||||
|
||||
struct ckh_s {
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
#define CKH_MAGIC 0x3af2489d
|
||||
uint32_t magic;
|
||||
#endif
|
||||
|
||||
#ifdef CKH_COUNT
|
||||
/* Counters used to get an idea of performance. */
|
||||
uint64_t ngrows;
|
||||
uint64_t nshrinks;
|
||||
uint64_t nshrinkfails;
|
||||
uint64_t ninserts;
|
||||
uint64_t nrelocs;
|
||||
#endif
|
||||
|
||||
/* Used for pseudo-random number generation. */
|
||||
#define CKH_A 1103515241
|
||||
#define CKH_C 12347
|
||||
uint32_t prn_state;
|
||||
|
||||
/* Total number of items. */
|
||||
size_t count;
|
||||
|
||||
/*
|
||||
* Minimum and current number of hash table buckets. There are
|
||||
* 2^LG_CKH_BUCKET_CELLS cells per bucket.
|
||||
*/
|
||||
unsigned lg_minbuckets;
|
||||
unsigned lg_curbuckets;
|
||||
|
||||
/* Hash and comparison functions. */
|
||||
ckh_hash_t *hash;
|
||||
ckh_keycomp_t *keycomp;
|
||||
|
||||
/* Hash table with 2^lg_curbuckets buckets. */
|
||||
ckhc_t *tab;
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
bool ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
|
||||
ckh_keycomp_t *keycomp);
|
||||
void ckh_delete(ckh_t *ckh);
|
||||
size_t ckh_count(ckh_t *ckh);
|
||||
bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data);
|
||||
bool ckh_insert(ckh_t *ckh, const void *key, const void *data);
|
||||
bool ckh_remove(ckh_t *ckh, const void *searchkey, void **key,
|
||||
void **data);
|
||||
bool ckh_search(ckh_t *ckh, const void *seachkey, void **key, void **data);
|
||||
void ckh_string_hash(const void *key, unsigned minbits, size_t *hash1,
|
||||
size_t *hash2);
|
||||
bool ckh_string_keycomp(const void *k1, const void *k2);
|
||||
void ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
|
||||
size_t *hash2);
|
||||
bool ckh_pointer_keycomp(const void *k1, const void *k2);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
118
deps/jemalloc/include/jemalloc/internal/ctl.h
vendored
Normal file
118
deps/jemalloc/include/jemalloc/internal/ctl.h
vendored
Normal file
@ -0,0 +1,118 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct ctl_node_s ctl_node_t;
|
||||
typedef struct ctl_arena_stats_s ctl_arena_stats_t;
|
||||
typedef struct ctl_stats_s ctl_stats_t;
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
struct ctl_node_s {
|
||||
bool named;
|
||||
union {
|
||||
struct {
|
||||
const char *name;
|
||||
/* If (nchildren == 0), this is a terminal node. */
|
||||
unsigned nchildren;
|
||||
const ctl_node_t *children;
|
||||
} named;
|
||||
struct {
|
||||
const ctl_node_t *(*index)(const size_t *, size_t,
|
||||
size_t);
|
||||
} indexed;
|
||||
} u;
|
||||
int (*ctl)(const size_t *, size_t, void *, size_t *, void *,
|
||||
size_t);
|
||||
};
|
||||
|
||||
struct ctl_arena_stats_s {
|
||||
bool initialized;
|
||||
unsigned nthreads;
|
||||
size_t pactive;
|
||||
size_t pdirty;
|
||||
#ifdef JEMALLOC_STATS
|
||||
arena_stats_t astats;
|
||||
|
||||
/* Aggregate stats for small size classes, based on bin stats. */
|
||||
size_t allocated_small;
|
||||
uint64_t nmalloc_small;
|
||||
uint64_t ndalloc_small;
|
||||
uint64_t nrequests_small;
|
||||
|
||||
malloc_bin_stats_t *bstats; /* nbins elements. */
|
||||
malloc_large_stats_t *lstats; /* nlclasses elements. */
|
||||
#endif
|
||||
};
|
||||
|
||||
struct ctl_stats_s {
|
||||
#ifdef JEMALLOC_STATS
|
||||
size_t allocated;
|
||||
size_t active;
|
||||
size_t mapped;
|
||||
struct {
|
||||
size_t current; /* stats_chunks.curchunks */
|
||||
uint64_t total; /* stats_chunks.nchunks */
|
||||
size_t high; /* stats_chunks.highchunks */
|
||||
} chunks;
|
||||
struct {
|
||||
size_t allocated; /* huge_allocated */
|
||||
uint64_t nmalloc; /* huge_nmalloc */
|
||||
uint64_t ndalloc; /* huge_ndalloc */
|
||||
} huge;
|
||||
#endif
|
||||
ctl_arena_stats_t *arenas; /* (narenas + 1) elements. */
|
||||
#ifdef JEMALLOC_SWAP
|
||||
size_t swap_avail;
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
int ctl_byname(const char *name, void *oldp, size_t *oldlenp, void *newp,
|
||||
size_t newlen);
|
||||
int ctl_nametomib(const char *name, size_t *mibp, size_t *miblenp);
|
||||
|
||||
int ctl_bymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
|
||||
void *newp, size_t newlen);
|
||||
bool ctl_boot(void);
|
||||
|
||||
#define xmallctl(name, oldp, oldlenp, newp, newlen) do { \
|
||||
if (JEMALLOC_P(mallctl)(name, oldp, oldlenp, newp, newlen) \
|
||||
!= 0) { \
|
||||
malloc_write("<jemalloc>: Failure in xmallctl(\""); \
|
||||
malloc_write(name); \
|
||||
malloc_write("\", ...)\n"); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define xmallctlnametomib(name, mibp, miblenp) do { \
|
||||
if (JEMALLOC_P(mallctlnametomib)(name, mibp, miblenp) != 0) { \
|
||||
malloc_write( \
|
||||
"<jemalloc>: Failure in xmallctlnametomib(\""); \
|
||||
malloc_write(name); \
|
||||
malloc_write("\", ...)\n"); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define xmallctlbymib(mib, miblen, oldp, oldlenp, newp, newlen) do { \
|
||||
if (JEMALLOC_P(mallctlbymib)(mib, miblen, oldp, oldlenp, newp, \
|
||||
newlen) != 0) { \
|
||||
malloc_write( \
|
||||
"<jemalloc>: Failure in xmallctlbymib()\n"); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
|
49
deps/jemalloc/include/jemalloc/internal/extent.h
vendored
Normal file
49
deps/jemalloc/include/jemalloc/internal/extent.h
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct extent_node_s extent_node_t;
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
/* Tree of extents. */
|
||||
struct extent_node_s {
|
||||
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
|
||||
/* Linkage for the size/address-ordered tree. */
|
||||
rb_node(extent_node_t) link_szad;
|
||||
#endif
|
||||
|
||||
/* Linkage for the address-ordered tree. */
|
||||
rb_node(extent_node_t) link_ad;
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
/* Profile counters, used for huge objects. */
|
||||
prof_ctx_t *prof_ctx;
|
||||
#endif
|
||||
|
||||
/* Pointer to the extent that this tree node is responsible for. */
|
||||
void *addr;
|
||||
|
||||
/* Total region size. */
|
||||
size_t size;
|
||||
};
|
||||
typedef rb_tree(extent_node_t) extent_tree_t;
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
|
||||
rb_proto(, extent_tree_szad_, extent_tree_t, extent_node_t)
|
||||
#endif
|
||||
|
||||
rb_proto(, extent_tree_ad_, extent_tree_t, extent_node_t)
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
|
70
deps/jemalloc/include/jemalloc/internal/hash.h
vendored
Normal file
70
deps/jemalloc/include/jemalloc/internal/hash.h
vendored
Normal file
@ -0,0 +1,70 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
uint64_t hash(const void *key, size_t len, uint64_t seed);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_HASH_C_))
|
||||
/*
|
||||
* The following hash function is based on MurmurHash64A(), placed into the
|
||||
* public domain by Austin Appleby. See http://murmurhash.googlepages.com/ for
|
||||
* details.
|
||||
*/
|
||||
JEMALLOC_INLINE uint64_t
|
||||
hash(const void *key, size_t len, uint64_t seed)
|
||||
{
|
||||
const uint64_t m = 0xc6a4a7935bd1e995;
|
||||
const int r = 47;
|
||||
uint64_t h = seed ^ (len * m);
|
||||
const uint64_t *data = (const uint64_t *)key;
|
||||
const uint64_t *end = data + (len/8);
|
||||
const unsigned char *data2;
|
||||
|
||||
assert(((uintptr_t)key & 0x7) == 0);
|
||||
|
||||
while(data != end) {
|
||||
uint64_t k = *data++;
|
||||
|
||||
k *= m;
|
||||
k ^= k >> r;
|
||||
k *= m;
|
||||
|
||||
h ^= k;
|
||||
h *= m;
|
||||
}
|
||||
|
||||
data2 = (const unsigned char *)data;
|
||||
switch(len & 7) {
|
||||
case 7: h ^= ((uint64_t)(data2[6])) << 48;
|
||||
case 6: h ^= ((uint64_t)(data2[5])) << 40;
|
||||
case 5: h ^= ((uint64_t)(data2[4])) << 32;
|
||||
case 4: h ^= ((uint64_t)(data2[3])) << 24;
|
||||
case 3: h ^= ((uint64_t)(data2[2])) << 16;
|
||||
case 2: h ^= ((uint64_t)(data2[1])) << 8;
|
||||
case 1: h ^= ((uint64_t)(data2[0]));
|
||||
h *= m;
|
||||
}
|
||||
|
||||
h ^= h >> r;
|
||||
h *= m;
|
||||
h ^= h >> r;
|
||||
|
||||
return (h);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
41
deps/jemalloc/include/jemalloc/internal/huge.h
vendored
Normal file
41
deps/jemalloc/include/jemalloc/internal/huge.h
vendored
Normal file
@ -0,0 +1,41 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
/* Huge allocation statistics. */
|
||||
extern uint64_t huge_nmalloc;
|
||||
extern uint64_t huge_ndalloc;
|
||||
extern size_t huge_allocated;
|
||||
#endif
|
||||
|
||||
/* Protects chunk-related data structures. */
|
||||
extern malloc_mutex_t huge_mtx;
|
||||
|
||||
void *huge_malloc(size_t size, bool zero);
|
||||
void *huge_palloc(size_t size, size_t alignment, bool zero);
|
||||
void *huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
|
||||
size_t extra);
|
||||
void *huge_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra,
|
||||
size_t alignment, bool zero);
|
||||
void huge_dalloc(void *ptr, bool unmap);
|
||||
size_t huge_salloc(const void *ptr);
|
||||
#ifdef JEMALLOC_PROF
|
||||
prof_ctx_t *huge_prof_ctx_get(const void *ptr);
|
||||
void huge_prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
|
||||
#endif
|
||||
bool huge_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
782
deps/jemalloc/include/jemalloc/internal/jemalloc_internal.h.in
vendored
Normal file
782
deps/jemalloc/include/jemalloc/internal/jemalloc_internal.h.in
vendored
Normal file
@ -0,0 +1,782 @@
|
||||
#include <sys/mman.h>
|
||||
#include <sys/param.h>
|
||||
#include <sys/time.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/uio.h>
|
||||
|
||||
#include <errno.h>
|
||||
#include <limits.h>
|
||||
#ifndef SIZE_T_MAX
|
||||
# define SIZE_T_MAX SIZE_MAX
|
||||
#endif
|
||||
#include <pthread.h>
|
||||
#include <sched.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#ifndef offsetof
|
||||
# define offsetof(type, member) ((size_t)&(((type *)NULL)->member))
|
||||
#endif
|
||||
#include <inttypes.h>
|
||||
#include <string.h>
|
||||
#include <strings.h>
|
||||
#include <ctype.h>
|
||||
#include <unistd.h>
|
||||
#include <fcntl.h>
|
||||
#include <pthread.h>
|
||||
#include <math.h>
|
||||
|
||||
#define JEMALLOC_MANGLE
|
||||
#include "../jemalloc@install_suffix@.h"
|
||||
|
||||
#if (defined(JEMALLOC_OSATOMIC) || defined(JEMALLOC_OSSPIN))
|
||||
#include <libkern/OSAtomic.h>
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_ZONE
|
||||
#include <mach/mach_error.h>
|
||||
#include <mach/mach_init.h>
|
||||
#include <mach/vm_map.h>
|
||||
#include <malloc/malloc.h>
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_LAZY_LOCK
|
||||
#include <dlfcn.h>
|
||||
#endif
|
||||
|
||||
#define RB_COMPACT
|
||||
#include "jemalloc/internal/rb.h"
|
||||
#include "jemalloc/internal/qr.h"
|
||||
#include "jemalloc/internal/ql.h"
|
||||
|
||||
extern void (*JEMALLOC_P(malloc_message))(void *wcbopaque, const char *s);
|
||||
|
||||
/*
|
||||
* Define a custom assert() in order to reduce the chances of deadlock during
|
||||
* assertion failure.
|
||||
*/
|
||||
#ifndef assert
|
||||
# ifdef JEMALLOC_DEBUG
|
||||
# define assert(e) do { \
|
||||
if (!(e)) { \
|
||||
char line_buf[UMAX2S_BUFSIZE]; \
|
||||
malloc_write("<jemalloc>: "); \
|
||||
malloc_write(__FILE__); \
|
||||
malloc_write(":"); \
|
||||
malloc_write(u2s(__LINE__, 10, line_buf)); \
|
||||
malloc_write(": Failed assertion: "); \
|
||||
malloc_write("\""); \
|
||||
malloc_write(#e); \
|
||||
malloc_write("\"\n"); \
|
||||
abort(); \
|
||||
} \
|
||||
} while (0)
|
||||
# else
|
||||
# define assert(e)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
# define dassert(e) assert(e)
|
||||
#else
|
||||
# define dassert(e)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* jemalloc can conceptually be broken into components (arena, tcache, etc.),
|
||||
* but there are circular dependencies that cannot be broken without
|
||||
* substantial performance degradation. In order to reduce the effect on
|
||||
* visual code flow, read the header files in multiple passes, with one of the
|
||||
* following cpp variables defined during each pass:
|
||||
*
|
||||
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
|
||||
* types.
|
||||
* JEMALLOC_H_STRUCTS : Data structures.
|
||||
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
|
||||
* JEMALLOC_H_INLINES : Inline functions.
|
||||
*/
|
||||
/******************************************************************************/
|
||||
#define JEMALLOC_H_TYPES
|
||||
|
||||
#define ALLOCM_LG_ALIGN_MASK ((int)0x3f)
|
||||
|
||||
#define ZU(z) ((size_t)z)
|
||||
|
||||
#ifndef __DECONST
|
||||
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
|
||||
#endif
|
||||
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
/* Disable inlining to make debugging easier. */
|
||||
# define JEMALLOC_INLINE
|
||||
# define inline
|
||||
#else
|
||||
# define JEMALLOC_ENABLE_INLINE
|
||||
# define JEMALLOC_INLINE static inline
|
||||
#endif
|
||||
|
||||
/* Size of stack-allocated buffer passed to buferror(). */
|
||||
#define BUFERROR_BUF 64
|
||||
|
||||
/* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */
|
||||
#ifdef __i386__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#ifdef __ia64__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#ifdef __alpha__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#ifdef __sparc64__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#if (defined(__amd64__) || defined(__x86_64__))
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#ifdef __arm__
|
||||
# define LG_QUANTUM 3
|
||||
#endif
|
||||
#ifdef __mips__
|
||||
# define LG_QUANTUM 3
|
||||
#endif
|
||||
#ifdef __powerpc__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
#ifdef __s390x__
|
||||
# define LG_QUANTUM 4
|
||||
#endif
|
||||
|
||||
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
|
||||
#define QUANTUM_MASK (QUANTUM - 1)
|
||||
|
||||
/* Return the smallest quantum multiple that is >= a. */
|
||||
#define QUANTUM_CEILING(a) \
|
||||
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
|
||||
|
||||
#define LONG ((size_t)(1U << LG_SIZEOF_LONG))
|
||||
#define LONG_MASK (LONG - 1)
|
||||
|
||||
/* Return the smallest long multiple that is >= a. */
|
||||
#define LONG_CEILING(a) \
|
||||
(((a) + LONG_MASK) & ~LONG_MASK)
|
||||
|
||||
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
|
||||
#define PTR_MASK (SIZEOF_PTR - 1)
|
||||
|
||||
/* Return the smallest (void *) multiple that is >= a. */
|
||||
#define PTR_CEILING(a) \
|
||||
(((a) + PTR_MASK) & ~PTR_MASK)
|
||||
|
||||
/*
|
||||
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
|
||||
* In addition, this controls the spacing of cacheline-spaced size classes.
|
||||
*/
|
||||
#define LG_CACHELINE 6
|
||||
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
|
||||
#define CACHELINE_MASK (CACHELINE - 1)
|
||||
|
||||
/* Return the smallest cacheline multiple that is >= s. */
|
||||
#define CACHELINE_CEILING(s) \
|
||||
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
|
||||
|
||||
/*
|
||||
* Page size. STATIC_PAGE_SHIFT is determined by the configure script. If
|
||||
* DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where
|
||||
* compile-time values are required for the purposes of defining data
|
||||
* structures.
|
||||
*/
|
||||
#define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT))
|
||||
#define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1))
|
||||
|
||||
#ifdef PAGE_SHIFT
|
||||
# undef PAGE_SHIFT
|
||||
#endif
|
||||
#ifdef PAGE_SIZE
|
||||
# undef PAGE_SIZE
|
||||
#endif
|
||||
#ifdef PAGE_MASK
|
||||
# undef PAGE_MASK
|
||||
#endif
|
||||
|
||||
#ifdef DYNAMIC_PAGE_SHIFT
|
||||
# define PAGE_SHIFT lg_pagesize
|
||||
# define PAGE_SIZE pagesize
|
||||
# define PAGE_MASK pagesize_mask
|
||||
#else
|
||||
# define PAGE_SHIFT STATIC_PAGE_SHIFT
|
||||
# define PAGE_SIZE STATIC_PAGE_SIZE
|
||||
# define PAGE_MASK STATIC_PAGE_MASK
|
||||
#endif
|
||||
|
||||
/* Return the smallest pagesize multiple that is >= s. */
|
||||
#define PAGE_CEILING(s) \
|
||||
(((s) + PAGE_MASK) & ~PAGE_MASK)
|
||||
|
||||
#include "jemalloc/internal/atomic.h"
|
||||
#include "jemalloc/internal/prn.h"
|
||||
#include "jemalloc/internal/ckh.h"
|
||||
#include "jemalloc/internal/stats.h"
|
||||
#include "jemalloc/internal/ctl.h"
|
||||
#include "jemalloc/internal/mutex.h"
|
||||
#include "jemalloc/internal/mb.h"
|
||||
#include "jemalloc/internal/extent.h"
|
||||
#include "jemalloc/internal/arena.h"
|
||||
#include "jemalloc/internal/bitmap.h"
|
||||
#include "jemalloc/internal/base.h"
|
||||
#include "jemalloc/internal/chunk.h"
|
||||
#include "jemalloc/internal/huge.h"
|
||||
#include "jemalloc/internal/rtree.h"
|
||||
#include "jemalloc/internal/tcache.h"
|
||||
#include "jemalloc/internal/hash.h"
|
||||
#ifdef JEMALLOC_ZONE
|
||||
#include "jemalloc/internal/zone.h"
|
||||
#endif
|
||||
#include "jemalloc/internal/prof.h"
|
||||
|
||||
#undef JEMALLOC_H_TYPES
|
||||
/******************************************************************************/
|
||||
#define JEMALLOC_H_STRUCTS
|
||||
|
||||
#include "jemalloc/internal/atomic.h"
|
||||
#include "jemalloc/internal/prn.h"
|
||||
#include "jemalloc/internal/ckh.h"
|
||||
#include "jemalloc/internal/stats.h"
|
||||
#include "jemalloc/internal/ctl.h"
|
||||
#include "jemalloc/internal/mutex.h"
|
||||
#include "jemalloc/internal/mb.h"
|
||||
#include "jemalloc/internal/bitmap.h"
|
||||
#include "jemalloc/internal/extent.h"
|
||||
#include "jemalloc/internal/arena.h"
|
||||
#include "jemalloc/internal/base.h"
|
||||
#include "jemalloc/internal/chunk.h"
|
||||
#include "jemalloc/internal/huge.h"
|
||||
#include "jemalloc/internal/rtree.h"
|
||||
#include "jemalloc/internal/tcache.h"
|
||||
#include "jemalloc/internal/hash.h"
|
||||
#ifdef JEMALLOC_ZONE
|
||||
#include "jemalloc/internal/zone.h"
|
||||
#endif
|
||||
#include "jemalloc/internal/prof.h"
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
typedef struct {
|
||||
uint64_t allocated;
|
||||
uint64_t deallocated;
|
||||
} thread_allocated_t;
|
||||
#endif
|
||||
|
||||
#undef JEMALLOC_H_STRUCTS
|
||||
/******************************************************************************/
|
||||
#define JEMALLOC_H_EXTERNS
|
||||
|
||||
extern bool opt_abort;
|
||||
#ifdef JEMALLOC_FILL
|
||||
extern bool opt_junk;
|
||||
#endif
|
||||
#ifdef JEMALLOC_SYSV
|
||||
extern bool opt_sysv;
|
||||
#endif
|
||||
#ifdef JEMALLOC_XMALLOC
|
||||
extern bool opt_xmalloc;
|
||||
#endif
|
||||
#ifdef JEMALLOC_FILL
|
||||
extern bool opt_zero;
|
||||
#endif
|
||||
extern size_t opt_narenas;
|
||||
|
||||
#ifdef DYNAMIC_PAGE_SHIFT
|
||||
extern size_t pagesize;
|
||||
extern size_t pagesize_mask;
|
||||
extern size_t lg_pagesize;
|
||||
#endif
|
||||
|
||||
/* Number of CPUs. */
|
||||
extern unsigned ncpus;
|
||||
|
||||
extern malloc_mutex_t arenas_lock; /* Protects arenas initialization. */
|
||||
extern pthread_key_t arenas_tsd;
|
||||
#ifndef NO_TLS
|
||||
/*
|
||||
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
|
||||
* for allocations.
|
||||
*/
|
||||
extern __thread arena_t *arenas_tls JEMALLOC_ATTR(tls_model("initial-exec"));
|
||||
# define ARENA_GET() arenas_tls
|
||||
# define ARENA_SET(v) do { \
|
||||
arenas_tls = (v); \
|
||||
pthread_setspecific(arenas_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#else
|
||||
# define ARENA_GET() ((arena_t *)pthread_getspecific(arenas_tsd))
|
||||
# define ARENA_SET(v) do { \
|
||||
pthread_setspecific(arenas_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Arenas that are used to service external requests. Not all elements of the
|
||||
* arenas array are necessarily used; arenas are created lazily as needed.
|
||||
*/
|
||||
extern arena_t **arenas;
|
||||
extern unsigned narenas;
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
# ifndef NO_TLS
|
||||
extern __thread thread_allocated_t thread_allocated_tls;
|
||||
# define ALLOCATED_GET() (thread_allocated_tls.allocated)
|
||||
# define ALLOCATEDP_GET() (&thread_allocated_tls.allocated)
|
||||
# define DEALLOCATED_GET() (thread_allocated_tls.deallocated)
|
||||
# define DEALLOCATEDP_GET() (&thread_allocated_tls.deallocated)
|
||||
# define ALLOCATED_ADD(a, d) do { \
|
||||
thread_allocated_tls.allocated += a; \
|
||||
thread_allocated_tls.deallocated += d; \
|
||||
} while (0)
|
||||
# else
|
||||
extern pthread_key_t thread_allocated_tsd;
|
||||
thread_allocated_t *thread_allocated_get_hard(void);
|
||||
|
||||
# define ALLOCATED_GET() (thread_allocated_get()->allocated)
|
||||
# define ALLOCATEDP_GET() (&thread_allocated_get()->allocated)
|
||||
# define DEALLOCATED_GET() (thread_allocated_get()->deallocated)
|
||||
# define DEALLOCATEDP_GET() (&thread_allocated_get()->deallocated)
|
||||
# define ALLOCATED_ADD(a, d) do { \
|
||||
thread_allocated_t *thread_allocated = thread_allocated_get(); \
|
||||
thread_allocated->allocated += (a); \
|
||||
thread_allocated->deallocated += (d); \
|
||||
} while (0)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
arena_t *arenas_extend(unsigned ind);
|
||||
arena_t *choose_arena_hard(void);
|
||||
int buferror(int errnum, char *buf, size_t buflen);
|
||||
void jemalloc_prefork(void);
|
||||
void jemalloc_postfork(void);
|
||||
|
||||
#include "jemalloc/internal/atomic.h"
|
||||
#include "jemalloc/internal/prn.h"
|
||||
#include "jemalloc/internal/ckh.h"
|
||||
#include "jemalloc/internal/stats.h"
|
||||
#include "jemalloc/internal/ctl.h"
|
||||
#include "jemalloc/internal/mutex.h"
|
||||
#include "jemalloc/internal/mb.h"
|
||||
#include "jemalloc/internal/bitmap.h"
|
||||
#include "jemalloc/internal/extent.h"
|
||||
#include "jemalloc/internal/arena.h"
|
||||
#include "jemalloc/internal/base.h"
|
||||
#include "jemalloc/internal/chunk.h"
|
||||
#include "jemalloc/internal/huge.h"
|
||||
#include "jemalloc/internal/rtree.h"
|
||||
#include "jemalloc/internal/tcache.h"
|
||||
#include "jemalloc/internal/hash.h"
|
||||
#ifdef JEMALLOC_ZONE
|
||||
#include "jemalloc/internal/zone.h"
|
||||
#endif
|
||||
#include "jemalloc/internal/prof.h"
|
||||
|
||||
#undef JEMALLOC_H_EXTERNS
|
||||
/******************************************************************************/
|
||||
#define JEMALLOC_H_INLINES
|
||||
|
||||
#include "jemalloc/internal/atomic.h"
|
||||
#include "jemalloc/internal/prn.h"
|
||||
#include "jemalloc/internal/ckh.h"
|
||||
#include "jemalloc/internal/stats.h"
|
||||
#include "jemalloc/internal/ctl.h"
|
||||
#include "jemalloc/internal/mutex.h"
|
||||
#include "jemalloc/internal/mb.h"
|
||||
#include "jemalloc/internal/extent.h"
|
||||
#include "jemalloc/internal/base.h"
|
||||
#include "jemalloc/internal/chunk.h"
|
||||
#include "jemalloc/internal/huge.h"
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
size_t pow2_ceil(size_t x);
|
||||
size_t s2u(size_t size);
|
||||
size_t sa2u(size_t size, size_t alignment, size_t *run_size_p);
|
||||
void malloc_write(const char *s);
|
||||
arena_t *choose_arena(void);
|
||||
# if (defined(JEMALLOC_STATS) && defined(NO_TLS))
|
||||
thread_allocated_t *thread_allocated_get(void);
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
|
||||
/* Compute the smallest power of 2 that is >= x. */
|
||||
JEMALLOC_INLINE size_t
|
||||
pow2_ceil(size_t x)
|
||||
{
|
||||
|
||||
x--;
|
||||
x |= x >> 1;
|
||||
x |= x >> 2;
|
||||
x |= x >> 4;
|
||||
x |= x >> 8;
|
||||
x |= x >> 16;
|
||||
#if (LG_SIZEOF_PTR == 3)
|
||||
x |= x >> 32;
|
||||
#endif
|
||||
x++;
|
||||
return (x);
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute usable size that would result from allocating an object with the
|
||||
* specified size.
|
||||
*/
|
||||
JEMALLOC_INLINE size_t
|
||||
s2u(size_t size)
|
||||
{
|
||||
|
||||
if (size <= small_maxclass)
|
||||
return (arena_bin_info[SMALL_SIZE2BIN(size)].reg_size);
|
||||
if (size <= arena_maxclass)
|
||||
return (PAGE_CEILING(size));
|
||||
return (CHUNK_CEILING(size));
|
||||
}
|
||||
|
||||
/*
|
||||
* Compute usable size that would result from allocating an object with the
|
||||
* specified size and alignment.
|
||||
*/
|
||||
JEMALLOC_INLINE size_t
|
||||
sa2u(size_t size, size_t alignment, size_t *run_size_p)
|
||||
{
|
||||
size_t usize;
|
||||
|
||||
/*
|
||||
* Round size up to the nearest multiple of alignment.
|
||||
*
|
||||
* This done, we can take advantage of the fact that for each small
|
||||
* size class, every object is aligned at the smallest power of two
|
||||
* that is non-zero in the base two representation of the size. For
|
||||
* example:
|
||||
*
|
||||
* Size | Base 2 | Minimum alignment
|
||||
* -----+----------+------------------
|
||||
* 96 | 1100000 | 32
|
||||
* 144 | 10100000 | 32
|
||||
* 192 | 11000000 | 64
|
||||
*
|
||||
* Depending on runtime settings, it is possible that arena_malloc()
|
||||
* will further round up to a power of two, but that never causes
|
||||
* correctness issues.
|
||||
*/
|
||||
usize = (size + (alignment - 1)) & (-alignment);
|
||||
/*
|
||||
* (usize < size) protects against the combination of maximal
|
||||
* alignment and size greater than maximal alignment.
|
||||
*/
|
||||
if (usize < size) {
|
||||
/* size_t overflow. */
|
||||
return (0);
|
||||
}
|
||||
|
||||
if (usize <= arena_maxclass && alignment <= PAGE_SIZE) {
|
||||
if (usize <= small_maxclass)
|
||||
return (arena_bin_info[SMALL_SIZE2BIN(usize)].reg_size);
|
||||
return (PAGE_CEILING(usize));
|
||||
} else {
|
||||
size_t run_size;
|
||||
|
||||
/*
|
||||
* We can't achieve subpage alignment, so round up alignment
|
||||
* permanently; it makes later calculations simpler.
|
||||
*/
|
||||
alignment = PAGE_CEILING(alignment);
|
||||
usize = PAGE_CEILING(size);
|
||||
/*
|
||||
* (usize < size) protects against very large sizes within
|
||||
* PAGE_SIZE of SIZE_T_MAX.
|
||||
*
|
||||
* (usize + alignment < usize) protects against the
|
||||
* combination of maximal alignment and usize large enough
|
||||
* to cause overflow. This is similar to the first overflow
|
||||
* check above, but it needs to be repeated due to the new
|
||||
* usize value, which may now be *equal* to maximal
|
||||
* alignment, whereas before we only detected overflow if the
|
||||
* original size was *greater* than maximal alignment.
|
||||
*/
|
||||
if (usize < size || usize + alignment < usize) {
|
||||
/* size_t overflow. */
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the size of the over-size run that arena_palloc()
|
||||
* would need to allocate in order to guarantee the alignment.
|
||||
*/
|
||||
if (usize >= alignment)
|
||||
run_size = usize + alignment - PAGE_SIZE;
|
||||
else {
|
||||
/*
|
||||
* It is possible that (alignment << 1) will cause
|
||||
* overflow, but it doesn't matter because we also
|
||||
* subtract PAGE_SIZE, which in the case of overflow
|
||||
* leaves us with a very large run_size. That causes
|
||||
* the first conditional below to fail, which means
|
||||
* that the bogus run_size value never gets used for
|
||||
* anything important.
|
||||
*/
|
||||
run_size = (alignment << 1) - PAGE_SIZE;
|
||||
}
|
||||
if (run_size_p != NULL)
|
||||
*run_size_p = run_size;
|
||||
|
||||
if (run_size <= arena_maxclass)
|
||||
return (PAGE_CEILING(usize));
|
||||
return (CHUNK_CEILING(usize));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Wrapper around malloc_message() that avoids the need for
|
||||
* JEMALLOC_P(malloc_message)(...) throughout the code.
|
||||
*/
|
||||
JEMALLOC_INLINE void
|
||||
malloc_write(const char *s)
|
||||
{
|
||||
|
||||
JEMALLOC_P(malloc_message)(NULL, s);
|
||||
}
|
||||
|
||||
/*
|
||||
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
|
||||
* code if necessary).
|
||||
*/
|
||||
JEMALLOC_INLINE arena_t *
|
||||
choose_arena(void)
|
||||
{
|
||||
arena_t *ret;
|
||||
|
||||
ret = ARENA_GET();
|
||||
if (ret == NULL) {
|
||||
ret = choose_arena_hard();
|
||||
assert(ret != NULL);
|
||||
}
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
#if (defined(JEMALLOC_STATS) && defined(NO_TLS))
|
||||
JEMALLOC_INLINE thread_allocated_t *
|
||||
thread_allocated_get(void)
|
||||
{
|
||||
thread_allocated_t *thread_allocated = (thread_allocated_t *)
|
||||
pthread_getspecific(thread_allocated_tsd);
|
||||
|
||||
if (thread_allocated == NULL)
|
||||
return (thread_allocated_get_hard());
|
||||
return (thread_allocated);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include "jemalloc/internal/bitmap.h"
|
||||
#include "jemalloc/internal/rtree.h"
|
||||
#include "jemalloc/internal/tcache.h"
|
||||
#include "jemalloc/internal/arena.h"
|
||||
#include "jemalloc/internal/hash.h"
|
||||
#ifdef JEMALLOC_ZONE
|
||||
#include "jemalloc/internal/zone.h"
|
||||
#endif
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
void *imalloc(size_t size);
|
||||
void *icalloc(size_t size);
|
||||
void *ipalloc(size_t usize, size_t alignment, bool zero);
|
||||
size_t isalloc(const void *ptr);
|
||||
# ifdef JEMALLOC_IVSALLOC
|
||||
size_t ivsalloc(const void *ptr);
|
||||
# endif
|
||||
void idalloc(void *ptr);
|
||||
void *iralloc(void *ptr, size_t size, size_t extra, size_t alignment,
|
||||
bool zero, bool no_move);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
|
||||
JEMALLOC_INLINE void *
|
||||
imalloc(size_t size)
|
||||
{
|
||||
|
||||
assert(size != 0);
|
||||
|
||||
if (size <= arena_maxclass)
|
||||
return (arena_malloc(size, false));
|
||||
else
|
||||
return (huge_malloc(size, false));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
icalloc(size_t size)
|
||||
{
|
||||
|
||||
if (size <= arena_maxclass)
|
||||
return (arena_malloc(size, true));
|
||||
else
|
||||
return (huge_malloc(size, true));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
ipalloc(size_t usize, size_t alignment, bool zero)
|
||||
{
|
||||
void *ret;
|
||||
|
||||
assert(usize != 0);
|
||||
assert(usize == sa2u(usize, alignment, NULL));
|
||||
|
||||
if (usize <= arena_maxclass && alignment <= PAGE_SIZE)
|
||||
ret = arena_malloc(usize, zero);
|
||||
else {
|
||||
size_t run_size = 0;
|
||||
|
||||
/*
|
||||
* Ideally we would only ever call sa2u() once per aligned
|
||||
* allocation request, and the caller of this function has
|
||||
* already done so once. However, it's rather burdensome to
|
||||
* require every caller to pass in run_size, especially given
|
||||
* that it's only relevant to large allocations. Therefore,
|
||||
* just call it again here in order to get run_size.
|
||||
*/
|
||||
sa2u(usize, alignment, &run_size);
|
||||
if (run_size <= arena_maxclass) {
|
||||
ret = arena_palloc(choose_arena(), usize, run_size,
|
||||
alignment, zero);
|
||||
} else if (alignment <= chunksize)
|
||||
ret = huge_malloc(usize, zero);
|
||||
else
|
||||
ret = huge_palloc(usize, alignment, zero);
|
||||
}
|
||||
|
||||
assert(((uintptr_t)ret & (alignment - 1)) == 0);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE size_t
|
||||
isalloc(const void *ptr)
|
||||
{
|
||||
size_t ret;
|
||||
arena_chunk_t *chunk;
|
||||
|
||||
assert(ptr != NULL);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
if (chunk != ptr) {
|
||||
/* Region. */
|
||||
dassert(chunk->arena->magic == ARENA_MAGIC);
|
||||
|
||||
#ifdef JEMALLOC_PROF
|
||||
ret = arena_salloc_demote(ptr);
|
||||
#else
|
||||
ret = arena_salloc(ptr);
|
||||
#endif
|
||||
} else
|
||||
ret = huge_salloc(ptr);
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
#ifdef JEMALLOC_IVSALLOC
|
||||
JEMALLOC_INLINE size_t
|
||||
ivsalloc(const void *ptr)
|
||||
{
|
||||
|
||||
/* Return 0 if ptr is not within a chunk managed by jemalloc. */
|
||||
if (rtree_get(chunks_rtree, (uintptr_t)CHUNK_ADDR2BASE(ptr)) == NULL)
|
||||
return (0);
|
||||
|
||||
return (isalloc(ptr));
|
||||
}
|
||||
#endif
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
idalloc(void *ptr)
|
||||
{
|
||||
arena_chunk_t *chunk;
|
||||
|
||||
assert(ptr != NULL);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
if (chunk != ptr)
|
||||
arena_dalloc(chunk->arena, chunk, ptr);
|
||||
else
|
||||
huge_dalloc(ptr, true);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
iralloc(void *ptr, size_t size, size_t extra, size_t alignment, bool zero,
|
||||
bool no_move)
|
||||
{
|
||||
void *ret;
|
||||
size_t oldsize;
|
||||
|
||||
assert(ptr != NULL);
|
||||
assert(size != 0);
|
||||
|
||||
oldsize = isalloc(ptr);
|
||||
|
||||
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
|
||||
!= 0) {
|
||||
size_t usize, copysize;
|
||||
|
||||
/*
|
||||
* Existing object alignment is inadquate; allocate new space
|
||||
* and copy.
|
||||
*/
|
||||
if (no_move)
|
||||
return (NULL);
|
||||
usize = sa2u(size + extra, alignment, NULL);
|
||||
if (usize == 0)
|
||||
return (NULL);
|
||||
ret = ipalloc(usize, alignment, zero);
|
||||
if (ret == NULL) {
|
||||
if (extra == 0)
|
||||
return (NULL);
|
||||
/* Try again, without extra this time. */
|
||||
usize = sa2u(size, alignment, NULL);
|
||||
if (usize == 0)
|
||||
return (NULL);
|
||||
ret = ipalloc(usize, alignment, zero);
|
||||
if (ret == NULL)
|
||||
return (NULL);
|
||||
}
|
||||
/*
|
||||
* Copy at most size bytes (not size+extra), since the caller
|
||||
* has no expectation that the extra bytes will be reliably
|
||||
* preserved.
|
||||
*/
|
||||
copysize = (size < oldsize) ? size : oldsize;
|
||||
memcpy(ret, ptr, copysize);
|
||||
idalloc(ptr);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
if (no_move) {
|
||||
if (size <= arena_maxclass) {
|
||||
return (arena_ralloc_no_move(ptr, oldsize, size,
|
||||
extra, zero));
|
||||
} else {
|
||||
return (huge_ralloc_no_move(ptr, oldsize, size,
|
||||
extra));
|
||||
}
|
||||
} else {
|
||||
if (size + extra <= arena_maxclass) {
|
||||
return (arena_ralloc(ptr, oldsize, size, extra,
|
||||
alignment, zero));
|
||||
} else {
|
||||
return (huge_ralloc(ptr, oldsize, size, extra,
|
||||
alignment, zero));
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "jemalloc/internal/prof.h"
|
||||
|
||||
#undef JEMALLOC_H_INLINES
|
||||
/******************************************************************************/
|
108
deps/jemalloc/include/jemalloc/internal/mb.h
vendored
Normal file
108
deps/jemalloc/include/jemalloc/internal/mb.h
vendored
Normal file
@ -0,0 +1,108 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
void mb_write(void);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MB_C_))
|
||||
#ifdef __i386__
|
||||
/*
|
||||
* According to the Intel Architecture Software Developer's Manual, current
|
||||
* processors execute instructions in order from the perspective of other
|
||||
* processors in a multiprocessor system, but 1) Intel reserves the right to
|
||||
* change that, and 2) the compiler's optimizer could re-order instructions if
|
||||
* there weren't some form of barrier. Therefore, even if running on an
|
||||
* architecture that does not need memory barriers (everything through at least
|
||||
* i686), an "optimizer barrier" is necessary.
|
||||
*/
|
||||
JEMALLOC_INLINE void
|
||||
mb_write(void)
|
||||
{
|
||||
|
||||
# if 0
|
||||
/* This is a true memory barrier. */
|
||||
asm volatile ("pusha;"
|
||||
"xor %%eax,%%eax;"
|
||||
"cpuid;"
|
||||
"popa;"
|
||||
: /* Outputs. */
|
||||
: /* Inputs. */
|
||||
: "memory" /* Clobbers. */
|
||||
);
|
||||
#else
|
||||
/*
|
||||
* This is hopefully enough to keep the compiler from reordering
|
||||
* instructions around this one.
|
||||
*/
|
||||
asm volatile ("nop;"
|
||||
: /* Outputs. */
|
||||
: /* Inputs. */
|
||||
: "memory" /* Clobbers. */
|
||||
);
|
||||
#endif
|
||||
}
|
||||
#elif (defined(__amd64_) || defined(__x86_64__))
|
||||
JEMALLOC_INLINE void
|
||||
mb_write(void)
|
||||
{
|
||||
|
||||
asm volatile ("sfence"
|
||||
: /* Outputs. */
|
||||
: /* Inputs. */
|
||||
: "memory" /* Clobbers. */
|
||||
);
|
||||
}
|
||||
#elif defined(__powerpc__)
|
||||
JEMALLOC_INLINE void
|
||||
mb_write(void)
|
||||
{
|
||||
|
||||
asm volatile ("eieio"
|
||||
: /* Outputs. */
|
||||
: /* Inputs. */
|
||||
: "memory" /* Clobbers. */
|
||||
);
|
||||
}
|
||||
#elif defined(__sparc64__)
|
||||
JEMALLOC_INLINE void
|
||||
mb_write(void)
|
||||
{
|
||||
|
||||
asm volatile ("membar #StoreStore"
|
||||
: /* Outputs. */
|
||||
: /* Inputs. */
|
||||
: "memory" /* Clobbers. */
|
||||
);
|
||||
}
|
||||
#else
|
||||
/*
|
||||
* This is much slower than a simple memory barrier, but the semantics of mutex
|
||||
* unlock make this work.
|
||||
*/
|
||||
JEMALLOC_INLINE void
|
||||
mb_write(void)
|
||||
{
|
||||
malloc_mutex_t mtx;
|
||||
|
||||
malloc_mutex_init(&mtx);
|
||||
malloc_mutex_lock(&mtx);
|
||||
malloc_mutex_unlock(&mtx);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
86
deps/jemalloc/include/jemalloc/internal/mutex.h
vendored
Normal file
86
deps/jemalloc/include/jemalloc/internal/mutex.h
vendored
Normal file
@ -0,0 +1,86 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#ifdef JEMALLOC_OSSPIN
|
||||
typedef OSSpinLock malloc_mutex_t;
|
||||
#else
|
||||
typedef pthread_mutex_t malloc_mutex_t;
|
||||
#endif
|
||||
|
||||
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
|
||||
# define MALLOC_MUTEX_INITIALIZER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
|
||||
#else
|
||||
# define MALLOC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#ifdef JEMALLOC_LAZY_LOCK
|
||||
extern bool isthreaded;
|
||||
#else
|
||||
# define isthreaded true
|
||||
#endif
|
||||
|
||||
bool malloc_mutex_init(malloc_mutex_t *mutex);
|
||||
void malloc_mutex_destroy(malloc_mutex_t *mutex);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
void malloc_mutex_lock(malloc_mutex_t *mutex);
|
||||
bool malloc_mutex_trylock(malloc_mutex_t *mutex);
|
||||
void malloc_mutex_unlock(malloc_mutex_t *mutex);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
|
||||
JEMALLOC_INLINE void
|
||||
malloc_mutex_lock(malloc_mutex_t *mutex)
|
||||
{
|
||||
|
||||
if (isthreaded) {
|
||||
#ifdef JEMALLOC_OSSPIN
|
||||
OSSpinLockLock(mutex);
|
||||
#else
|
||||
pthread_mutex_lock(mutex);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE bool
|
||||
malloc_mutex_trylock(malloc_mutex_t *mutex)
|
||||
{
|
||||
|
||||
if (isthreaded) {
|
||||
#ifdef JEMALLOC_OSSPIN
|
||||
return (OSSpinLockTry(mutex) == false);
|
||||
#else
|
||||
return (pthread_mutex_trylock(mutex) != 0);
|
||||
#endif
|
||||
} else
|
||||
return (false);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
malloc_mutex_unlock(malloc_mutex_t *mutex)
|
||||
{
|
||||
|
||||
if (isthreaded) {
|
||||
#ifdef JEMALLOC_OSSPIN
|
||||
OSSpinLockUnlock(mutex);
|
||||
#else
|
||||
pthread_mutex_unlock(mutex);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
60
deps/jemalloc/include/jemalloc/internal/prn.h
vendored
Normal file
60
deps/jemalloc/include/jemalloc/internal/prn.h
vendored
Normal file
@ -0,0 +1,60 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
/*
|
||||
* Simple linear congruential pseudo-random number generator:
|
||||
*
|
||||
* prn(y) = (a*x + c) % m
|
||||
*
|
||||
* where the following constants ensure maximal period:
|
||||
*
|
||||
* a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
|
||||
* c == Odd number (relatively prime to 2^n).
|
||||
* m == 2^32
|
||||
*
|
||||
* See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
|
||||
*
|
||||
* This choice of m has the disadvantage that the quality of the bits is
|
||||
* proportional to bit position. For example. the lowest bit has a cycle of 2,
|
||||
* the next has a cycle of 4, etc. For this reason, we prefer to use the upper
|
||||
* bits.
|
||||
*
|
||||
* Macro parameters:
|
||||
* uint32_t r : Result.
|
||||
* unsigned lg_range : (0..32], number of least significant bits to return.
|
||||
* uint32_t state : Seed value.
|
||||
* const uint32_t a, c : See above discussion.
|
||||
*/
|
||||
#define prn32(r, lg_range, state, a, c) do { \
|
||||
assert(lg_range > 0); \
|
||||
assert(lg_range <= 32); \
|
||||
\
|
||||
r = (state * (a)) + (c); \
|
||||
state = r; \
|
||||
r >>= (32 - lg_range); \
|
||||
} while (false)
|
||||
|
||||
/* Same as prn32(), but 64 bits of pseudo-randomness, using uint64_t. */
|
||||
#define prn64(r, lg_range, state, a, c) do { \
|
||||
assert(lg_range > 0); \
|
||||
assert(lg_range <= 64); \
|
||||
\
|
||||
r = (state * (a)) + (c); \
|
||||
state = r; \
|
||||
r >>= (64 - lg_range); \
|
||||
} while (false)
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
561
deps/jemalloc/include/jemalloc/internal/prof.h
vendored
Normal file
561
deps/jemalloc/include/jemalloc/internal/prof.h
vendored
Normal file
@ -0,0 +1,561 @@
|
||||
#ifdef JEMALLOC_PROF
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct prof_bt_s prof_bt_t;
|
||||
typedef struct prof_cnt_s prof_cnt_t;
|
||||
typedef struct prof_thr_cnt_s prof_thr_cnt_t;
|
||||
typedef struct prof_ctx_s prof_ctx_t;
|
||||
typedef struct prof_tdata_s prof_tdata_t;
|
||||
|
||||
/* Option defaults. */
|
||||
#define PROF_PREFIX_DEFAULT "jeprof"
|
||||
#define LG_PROF_BT_MAX_DEFAULT 7
|
||||
#define LG_PROF_SAMPLE_DEFAULT 0
|
||||
#define LG_PROF_INTERVAL_DEFAULT -1
|
||||
#define LG_PROF_TCMAX_DEFAULT -1
|
||||
|
||||
/*
|
||||
* Hard limit on stack backtrace depth. Note that the version of
|
||||
* prof_backtrace() that is based on __builtin_return_address() necessarily has
|
||||
* a hard-coded number of backtrace frame handlers.
|
||||
*/
|
||||
#if (defined(JEMALLOC_PROF_LIBGCC) || defined(JEMALLOC_PROF_LIBUNWIND))
|
||||
# define LG_PROF_BT_MAX ((ZU(1) << (LG_SIZEOF_PTR+3)) - 1)
|
||||
#else
|
||||
# define LG_PROF_BT_MAX 7 /* >= LG_PROF_BT_MAX_DEFAULT */
|
||||
#endif
|
||||
#define PROF_BT_MAX (1U << LG_PROF_BT_MAX)
|
||||
|
||||
/* Initial hash table size. */
|
||||
#define PROF_CKH_MINITEMS 64
|
||||
|
||||
/* Size of memory buffer to use when writing dump files. */
|
||||
#define PROF_DUMP_BUF_SIZE 65536
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
struct prof_bt_s {
|
||||
/* Backtrace, stored as len program counters. */
|
||||
void **vec;
|
||||
unsigned len;
|
||||
};
|
||||
|
||||
#ifdef JEMALLOC_PROF_LIBGCC
|
||||
/* Data structure passed to libgcc _Unwind_Backtrace() callback functions. */
|
||||
typedef struct {
|
||||
prof_bt_t *bt;
|
||||
unsigned nignore;
|
||||
unsigned max;
|
||||
} prof_unwind_data_t;
|
||||
#endif
|
||||
|
||||
struct prof_cnt_s {
|
||||
/*
|
||||
* Profiling counters. An allocation/deallocation pair can operate on
|
||||
* different prof_thr_cnt_t objects that are linked into the same
|
||||
* prof_ctx_t cnts_ql, so it is possible for the cur* counters to go
|
||||
* negative. In principle it is possible for the *bytes counters to
|
||||
* overflow/underflow, but a general solution would require something
|
||||
* like 128-bit counters; this implementation doesn't bother to solve
|
||||
* that problem.
|
||||
*/
|
||||
int64_t curobjs;
|
||||
int64_t curbytes;
|
||||
uint64_t accumobjs;
|
||||
uint64_t accumbytes;
|
||||
};
|
||||
|
||||
struct prof_thr_cnt_s {
|
||||
/* Linkage into prof_ctx_t's cnts_ql. */
|
||||
ql_elm(prof_thr_cnt_t) cnts_link;
|
||||
|
||||
/* Linkage into thread's LRU. */
|
||||
ql_elm(prof_thr_cnt_t) lru_link;
|
||||
|
||||
/*
|
||||
* Associated context. If a thread frees an object that it did not
|
||||
* allocate, it is possible that the context is not cached in the
|
||||
* thread's hash table, in which case it must be able to look up the
|
||||
* context, insert a new prof_thr_cnt_t into the thread's hash table,
|
||||
* and link it into the prof_ctx_t's cnts_ql.
|
||||
*/
|
||||
prof_ctx_t *ctx;
|
||||
|
||||
/*
|
||||
* Threads use memory barriers to update the counters. Since there is
|
||||
* only ever one writer, the only challenge is for the reader to get a
|
||||
* consistent read of the counters.
|
||||
*
|
||||
* The writer uses this series of operations:
|
||||
*
|
||||
* 1) Increment epoch to an odd number.
|
||||
* 2) Update counters.
|
||||
* 3) Increment epoch to an even number.
|
||||
*
|
||||
* The reader must assure 1) that the epoch is even while it reads the
|
||||
* counters, and 2) that the epoch doesn't change between the time it
|
||||
* starts and finishes reading the counters.
|
||||
*/
|
||||
unsigned epoch;
|
||||
|
||||
/* Profiling counters. */
|
||||
prof_cnt_t cnts;
|
||||
};
|
||||
|
||||
struct prof_ctx_s {
|
||||
/* Associated backtrace. */
|
||||
prof_bt_t *bt;
|
||||
|
||||
/* Protects cnt_merged and cnts_ql. */
|
||||
malloc_mutex_t lock;
|
||||
|
||||
/* Temporary storage for summation during dump. */
|
||||
prof_cnt_t cnt_summed;
|
||||
|
||||
/* When threads exit, they merge their stats into cnt_merged. */
|
||||
prof_cnt_t cnt_merged;
|
||||
|
||||
/*
|
||||
* List of profile counters, one for each thread that has allocated in
|
||||
* this context.
|
||||
*/
|
||||
ql_head(prof_thr_cnt_t) cnts_ql;
|
||||
};
|
||||
|
||||
struct prof_tdata_s {
|
||||
/*
|
||||
* Hash of (prof_bt_t *)-->(prof_thr_cnt_t *). Each thread keeps a
|
||||
* cache of backtraces, with associated thread-specific prof_thr_cnt_t
|
||||
* objects. Other threads may read the prof_thr_cnt_t contents, but no
|
||||
* others will ever write them.
|
||||
*
|
||||
* Upon thread exit, the thread must merge all the prof_thr_cnt_t
|
||||
* counter data into the associated prof_ctx_t objects, and unlink/free
|
||||
* the prof_thr_cnt_t objects.
|
||||
*/
|
||||
ckh_t bt2cnt;
|
||||
|
||||
/* LRU for contents of bt2cnt. */
|
||||
ql_head(prof_thr_cnt_t) lru_ql;
|
||||
|
||||
/* Backtrace vector, used for calls to prof_backtrace(). */
|
||||
void **vec;
|
||||
|
||||
/* Sampling state. */
|
||||
uint64_t prn_state;
|
||||
uint64_t threshold;
|
||||
uint64_t accum;
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern bool opt_prof;
|
||||
/*
|
||||
* Even if opt_prof is true, sampling can be temporarily disabled by setting
|
||||
* opt_prof_active to false. No locking is used when updating opt_prof_active,
|
||||
* so there are no guarantees regarding how long it will take for all threads
|
||||
* to notice state changes.
|
||||
*/
|
||||
extern bool opt_prof_active;
|
||||
extern size_t opt_lg_prof_bt_max; /* Maximum backtrace depth. */
|
||||
extern size_t opt_lg_prof_sample; /* Mean bytes between samples. */
|
||||
extern ssize_t opt_lg_prof_interval; /* lg(prof_interval). */
|
||||
extern bool opt_prof_gdump; /* High-water memory dumping. */
|
||||
extern bool opt_prof_leak; /* Dump leak summary at exit. */
|
||||
extern bool opt_prof_accum; /* Report cumulative bytes. */
|
||||
extern ssize_t opt_lg_prof_tcmax; /* lg(max per thread bactrace cache) */
|
||||
extern char opt_prof_prefix[PATH_MAX + 1];
|
||||
|
||||
/*
|
||||
* Profile dump interval, measured in bytes allocated. Each arena triggers a
|
||||
* profile dump when it reaches this threshold. The effect is that the
|
||||
* interval between profile dumps averages prof_interval, though the actual
|
||||
* interval between dumps will tend to be sporadic, and the interval will be a
|
||||
* maximum of approximately (prof_interval * narenas).
|
||||
*/
|
||||
extern uint64_t prof_interval;
|
||||
|
||||
/*
|
||||
* If true, promote small sampled objects to large objects, since small run
|
||||
* headers do not have embedded profile context pointers.
|
||||
*/
|
||||
extern bool prof_promote;
|
||||
|
||||
/* (1U << opt_lg_prof_bt_max). */
|
||||
extern unsigned prof_bt_max;
|
||||
|
||||
/* Thread-specific backtrace cache, used to reduce bt2ctx contention. */
|
||||
#ifndef NO_TLS
|
||||
extern __thread prof_tdata_t *prof_tdata_tls
|
||||
JEMALLOC_ATTR(tls_model("initial-exec"));
|
||||
# define PROF_TCACHE_GET() prof_tdata_tls
|
||||
# define PROF_TCACHE_SET(v) do { \
|
||||
prof_tdata_tls = (v); \
|
||||
pthread_setspecific(prof_tdata_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#else
|
||||
# define PROF_TCACHE_GET() \
|
||||
((prof_tdata_t *)pthread_getspecific(prof_tdata_tsd))
|
||||
# define PROF_TCACHE_SET(v) do { \
|
||||
pthread_setspecific(prof_tdata_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#endif
|
||||
/*
|
||||
* Same contents as b2cnt_tls, but initialized such that the TSD destructor is
|
||||
* called when a thread exits, so that prof_tdata_tls contents can be merged,
|
||||
* unlinked, and deallocated.
|
||||
*/
|
||||
extern pthread_key_t prof_tdata_tsd;
|
||||
|
||||
void bt_init(prof_bt_t *bt, void **vec);
|
||||
void prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max);
|
||||
prof_thr_cnt_t *prof_lookup(prof_bt_t *bt);
|
||||
void prof_idump(void);
|
||||
bool prof_mdump(const char *filename);
|
||||
void prof_gdump(void);
|
||||
prof_tdata_t *prof_tdata_init(void);
|
||||
void prof_boot0(void);
|
||||
void prof_boot1(void);
|
||||
bool prof_boot2(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
void prof_sample_threshold_update(prof_tdata_t *prof_tdata);
|
||||
prof_thr_cnt_t *prof_alloc_prep(size_t size);
|
||||
prof_ctx_t *prof_ctx_get(const void *ptr);
|
||||
void prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
|
||||
bool prof_sample_accum_update(size_t size);
|
||||
void prof_malloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt);
|
||||
void prof_realloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt,
|
||||
size_t old_size, prof_ctx_t *old_ctx);
|
||||
void prof_free(const void *ptr, size_t size);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_PROF_C_))
|
||||
JEMALLOC_INLINE void
|
||||
prof_sample_threshold_update(prof_tdata_t *prof_tdata)
|
||||
{
|
||||
uint64_t r;
|
||||
double u;
|
||||
|
||||
/*
|
||||
* Compute sample threshold as a geometrically distributed random
|
||||
* variable with mean (2^opt_lg_prof_sample).
|
||||
*
|
||||
* __ __
|
||||
* | log(u) | 1
|
||||
* prof_tdata->threshold = | -------- |, where p = -------------------
|
||||
* | log(1-p) | opt_lg_prof_sample
|
||||
* 2
|
||||
*
|
||||
* For more information on the math, see:
|
||||
*
|
||||
* Non-Uniform Random Variate Generation
|
||||
* Luc Devroye
|
||||
* Springer-Verlag, New York, 1986
|
||||
* pp 500
|
||||
* (http://cg.scs.carleton.ca/~luc/rnbookindex.html)
|
||||
*/
|
||||
prn64(r, 53, prof_tdata->prn_state,
|
||||
(uint64_t)6364136223846793005LLU, (uint64_t)1442695040888963407LLU);
|
||||
u = (double)r * (1.0/9007199254740992.0L);
|
||||
prof_tdata->threshold = (uint64_t)(log(u) /
|
||||
log(1.0 - (1.0 / (double)((uint64_t)1U << opt_lg_prof_sample))))
|
||||
+ (uint64_t)1U;
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE prof_thr_cnt_t *
|
||||
prof_alloc_prep(size_t size)
|
||||
{
|
||||
#ifdef JEMALLOC_ENABLE_INLINE
|
||||
/* This function does not have its own stack frame, because it is inlined. */
|
||||
# define NIGNORE 1
|
||||
#else
|
||||
# define NIGNORE 2
|
||||
#endif
|
||||
prof_thr_cnt_t *ret;
|
||||
prof_tdata_t *prof_tdata;
|
||||
prof_bt_t bt;
|
||||
|
||||
assert(size == s2u(size));
|
||||
|
||||
prof_tdata = PROF_TCACHE_GET();
|
||||
if (prof_tdata == NULL) {
|
||||
prof_tdata = prof_tdata_init();
|
||||
if (prof_tdata == NULL)
|
||||
return (NULL);
|
||||
}
|
||||
|
||||
if (opt_prof_active == false) {
|
||||
/* Sampling is currently inactive, so avoid sampling. */
|
||||
ret = (prof_thr_cnt_t *)(uintptr_t)1U;
|
||||
} else if (opt_lg_prof_sample == 0) {
|
||||
/*
|
||||
* Don't bother with sampling logic, since sampling interval is
|
||||
* 1.
|
||||
*/
|
||||
bt_init(&bt, prof_tdata->vec);
|
||||
prof_backtrace(&bt, NIGNORE, prof_bt_max);
|
||||
ret = prof_lookup(&bt);
|
||||
} else {
|
||||
if (prof_tdata->threshold == 0) {
|
||||
/*
|
||||
* Initialize. Seed the prng differently for each
|
||||
* thread.
|
||||
*/
|
||||
prof_tdata->prn_state = (uint64_t)(uintptr_t)&size;
|
||||
prof_sample_threshold_update(prof_tdata);
|
||||
}
|
||||
|
||||
/*
|
||||
* Determine whether to capture a backtrace based on whether
|
||||
* size is enough for prof_accum to reach
|
||||
* prof_tdata->threshold. However, delay updating these
|
||||
* variables until prof_{m,re}alloc(), because we don't know
|
||||
* for sure that the allocation will succeed.
|
||||
*
|
||||
* Use subtraction rather than addition to avoid potential
|
||||
* integer overflow.
|
||||
*/
|
||||
if (size >= prof_tdata->threshold - prof_tdata->accum) {
|
||||
bt_init(&bt, prof_tdata->vec);
|
||||
prof_backtrace(&bt, NIGNORE, prof_bt_max);
|
||||
ret = prof_lookup(&bt);
|
||||
} else
|
||||
ret = (prof_thr_cnt_t *)(uintptr_t)1U;
|
||||
}
|
||||
|
||||
return (ret);
|
||||
#undef NIGNORE
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE prof_ctx_t *
|
||||
prof_ctx_get(const void *ptr)
|
||||
{
|
||||
prof_ctx_t *ret;
|
||||
arena_chunk_t *chunk;
|
||||
|
||||
assert(ptr != NULL);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
if (chunk != ptr) {
|
||||
/* Region. */
|
||||
dassert(chunk->arena->magic == ARENA_MAGIC);
|
||||
|
||||
ret = arena_prof_ctx_get(ptr);
|
||||
} else
|
||||
ret = huge_prof_ctx_get(ptr);
|
||||
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
|
||||
{
|
||||
arena_chunk_t *chunk;
|
||||
|
||||
assert(ptr != NULL);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
if (chunk != ptr) {
|
||||
/* Region. */
|
||||
dassert(chunk->arena->magic == ARENA_MAGIC);
|
||||
|
||||
arena_prof_ctx_set(ptr, ctx);
|
||||
} else
|
||||
huge_prof_ctx_set(ptr, ctx);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE bool
|
||||
prof_sample_accum_update(size_t size)
|
||||
{
|
||||
prof_tdata_t *prof_tdata;
|
||||
|
||||
/* Sampling logic is unnecessary if the interval is 1. */
|
||||
assert(opt_lg_prof_sample != 0);
|
||||
|
||||
prof_tdata = PROF_TCACHE_GET();
|
||||
assert(prof_tdata != NULL);
|
||||
|
||||
/* Take care to avoid integer overflow. */
|
||||
if (size >= prof_tdata->threshold - prof_tdata->accum) {
|
||||
prof_tdata->accum -= (prof_tdata->threshold - size);
|
||||
/* Compute new sample threshold. */
|
||||
prof_sample_threshold_update(prof_tdata);
|
||||
while (prof_tdata->accum >= prof_tdata->threshold) {
|
||||
prof_tdata->accum -= prof_tdata->threshold;
|
||||
prof_sample_threshold_update(prof_tdata);
|
||||
}
|
||||
return (false);
|
||||
} else {
|
||||
prof_tdata->accum += size;
|
||||
return (true);
|
||||
}
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
prof_malloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt)
|
||||
{
|
||||
|
||||
assert(ptr != NULL);
|
||||
assert(size == isalloc(ptr));
|
||||
|
||||
if (opt_lg_prof_sample != 0) {
|
||||
if (prof_sample_accum_update(size)) {
|
||||
/*
|
||||
* Don't sample. For malloc()-like allocation, it is
|
||||
* always possible to tell in advance how large an
|
||||
* object's usable size will be, so there should never
|
||||
* be a difference between the size passed to
|
||||
* prof_alloc_prep() and prof_malloc().
|
||||
*/
|
||||
assert((uintptr_t)cnt == (uintptr_t)1U);
|
||||
}
|
||||
}
|
||||
|
||||
if ((uintptr_t)cnt > (uintptr_t)1U) {
|
||||
prof_ctx_set(ptr, cnt->ctx);
|
||||
|
||||
cnt->epoch++;
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
cnt->cnts.curobjs++;
|
||||
cnt->cnts.curbytes += size;
|
||||
if (opt_prof_accum) {
|
||||
cnt->cnts.accumobjs++;
|
||||
cnt->cnts.accumbytes += size;
|
||||
}
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
cnt->epoch++;
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
} else
|
||||
prof_ctx_set(ptr, (prof_ctx_t *)(uintptr_t)1U);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
prof_realloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt,
|
||||
size_t old_size, prof_ctx_t *old_ctx)
|
||||
{
|
||||
prof_thr_cnt_t *told_cnt;
|
||||
|
||||
assert(ptr != NULL || (uintptr_t)cnt <= (uintptr_t)1U);
|
||||
|
||||
if (ptr != NULL) {
|
||||
assert(size == isalloc(ptr));
|
||||
if (opt_lg_prof_sample != 0) {
|
||||
if (prof_sample_accum_update(size)) {
|
||||
/*
|
||||
* Don't sample. The size passed to
|
||||
* prof_alloc_prep() was larger than what
|
||||
* actually got allocated, so a backtrace was
|
||||
* captured for this allocation, even though
|
||||
* its actual size was insufficient to cross
|
||||
* the sample threshold.
|
||||
*/
|
||||
cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((uintptr_t)old_ctx > (uintptr_t)1U) {
|
||||
told_cnt = prof_lookup(old_ctx->bt);
|
||||
if (told_cnt == NULL) {
|
||||
/*
|
||||
* It's too late to propagate OOM for this realloc(),
|
||||
* so operate directly on old_cnt->ctx->cnt_merged.
|
||||
*/
|
||||
malloc_mutex_lock(&old_ctx->lock);
|
||||
old_ctx->cnt_merged.curobjs--;
|
||||
old_ctx->cnt_merged.curbytes -= old_size;
|
||||
malloc_mutex_unlock(&old_ctx->lock);
|
||||
told_cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
|
||||
}
|
||||
} else
|
||||
told_cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
|
||||
|
||||
if ((uintptr_t)told_cnt > (uintptr_t)1U)
|
||||
told_cnt->epoch++;
|
||||
if ((uintptr_t)cnt > (uintptr_t)1U) {
|
||||
prof_ctx_set(ptr, cnt->ctx);
|
||||
cnt->epoch++;
|
||||
} else
|
||||
prof_ctx_set(ptr, (prof_ctx_t *)(uintptr_t)1U);
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
if ((uintptr_t)told_cnt > (uintptr_t)1U) {
|
||||
told_cnt->cnts.curobjs--;
|
||||
told_cnt->cnts.curbytes -= old_size;
|
||||
}
|
||||
if ((uintptr_t)cnt > (uintptr_t)1U) {
|
||||
cnt->cnts.curobjs++;
|
||||
cnt->cnts.curbytes += size;
|
||||
if (opt_prof_accum) {
|
||||
cnt->cnts.accumobjs++;
|
||||
cnt->cnts.accumbytes += size;
|
||||
}
|
||||
}
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
if ((uintptr_t)told_cnt > (uintptr_t)1U)
|
||||
told_cnt->epoch++;
|
||||
if ((uintptr_t)cnt > (uintptr_t)1U)
|
||||
cnt->epoch++;
|
||||
/*********/
|
||||
mb_write(); /* Not strictly necessary. */
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
prof_free(const void *ptr, size_t size)
|
||||
{
|
||||
prof_ctx_t *ctx = prof_ctx_get(ptr);
|
||||
|
||||
if ((uintptr_t)ctx > (uintptr_t)1) {
|
||||
assert(size == isalloc(ptr));
|
||||
prof_thr_cnt_t *tcnt = prof_lookup(ctx->bt);
|
||||
|
||||
if (tcnt != NULL) {
|
||||
tcnt->epoch++;
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
tcnt->cnts.curobjs--;
|
||||
tcnt->cnts.curbytes -= size;
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
tcnt->epoch++;
|
||||
/*********/
|
||||
mb_write();
|
||||
/*********/
|
||||
} else {
|
||||
/*
|
||||
* OOM during free() cannot be propagated, so operate
|
||||
* directly on cnt->ctx->cnt_merged.
|
||||
*/
|
||||
malloc_mutex_lock(&ctx->lock);
|
||||
ctx->cnt_merged.curobjs--;
|
||||
ctx->cnt_merged.curbytes -= size;
|
||||
malloc_mutex_unlock(&ctx->lock);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
#endif /* JEMALLOC_PROF */
|
83
deps/jemalloc/include/jemalloc/internal/ql.h
vendored
Normal file
83
deps/jemalloc/include/jemalloc/internal/ql.h
vendored
Normal file
@ -0,0 +1,83 @@
|
||||
/*
|
||||
* List definitions.
|
||||
*/
|
||||
#define ql_head(a_type) \
|
||||
struct { \
|
||||
a_type *qlh_first; \
|
||||
}
|
||||
|
||||
#define ql_head_initializer(a_head) {NULL}
|
||||
|
||||
#define ql_elm(a_type) qr(a_type)
|
||||
|
||||
/* List functions. */
|
||||
#define ql_new(a_head) do { \
|
||||
(a_head)->qlh_first = NULL; \
|
||||
} while (0)
|
||||
|
||||
#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
|
||||
|
||||
#define ql_first(a_head) ((a_head)->qlh_first)
|
||||
|
||||
#define ql_last(a_head, a_field) \
|
||||
((ql_first(a_head) != NULL) \
|
||||
? qr_prev(ql_first(a_head), a_field) : NULL)
|
||||
|
||||
#define ql_next(a_head, a_elm, a_field) \
|
||||
((ql_last(a_head, a_field) != (a_elm)) \
|
||||
? qr_next((a_elm), a_field) : NULL)
|
||||
|
||||
#define ql_prev(a_head, a_elm, a_field) \
|
||||
((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
|
||||
: NULL)
|
||||
|
||||
#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
|
||||
qr_before_insert((a_qlelm), (a_elm), a_field); \
|
||||
if (ql_first(a_head) == (a_qlelm)) { \
|
||||
ql_first(a_head) = (a_elm); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define ql_after_insert(a_qlelm, a_elm, a_field) \
|
||||
qr_after_insert((a_qlelm), (a_elm), a_field)
|
||||
|
||||
#define ql_head_insert(a_head, a_elm, a_field) do { \
|
||||
if (ql_first(a_head) != NULL) { \
|
||||
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
|
||||
} \
|
||||
ql_first(a_head) = (a_elm); \
|
||||
} while (0)
|
||||
|
||||
#define ql_tail_insert(a_head, a_elm, a_field) do { \
|
||||
if (ql_first(a_head) != NULL) { \
|
||||
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
|
||||
} \
|
||||
ql_first(a_head) = qr_next((a_elm), a_field); \
|
||||
} while (0)
|
||||
|
||||
#define ql_remove(a_head, a_elm, a_field) do { \
|
||||
if (ql_first(a_head) == (a_elm)) { \
|
||||
ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
|
||||
} \
|
||||
if (ql_first(a_head) != (a_elm)) { \
|
||||
qr_remove((a_elm), a_field); \
|
||||
} else { \
|
||||
ql_first(a_head) = NULL; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define ql_head_remove(a_head, a_type, a_field) do { \
|
||||
a_type *t = ql_first(a_head); \
|
||||
ql_remove((a_head), t, a_field); \
|
||||
} while (0)
|
||||
|
||||
#define ql_tail_remove(a_head, a_type, a_field) do { \
|
||||
a_type *t = ql_last(a_head, a_field); \
|
||||
ql_remove((a_head), t, a_field); \
|
||||
} while (0)
|
||||
|
||||
#define ql_foreach(a_var, a_head, a_field) \
|
||||
qr_foreach((a_var), ql_first(a_head), a_field)
|
||||
|
||||
#define ql_reverse_foreach(a_var, a_head, a_field) \
|
||||
qr_reverse_foreach((a_var), ql_first(a_head), a_field)
|
67
deps/jemalloc/include/jemalloc/internal/qr.h
vendored
Normal file
67
deps/jemalloc/include/jemalloc/internal/qr.h
vendored
Normal file
@ -0,0 +1,67 @@
|
||||
/* Ring definitions. */
|
||||
#define qr(a_type) \
|
||||
struct { \
|
||||
a_type *qre_next; \
|
||||
a_type *qre_prev; \
|
||||
}
|
||||
|
||||
/* Ring functions. */
|
||||
#define qr_new(a_qr, a_field) do { \
|
||||
(a_qr)->a_field.qre_next = (a_qr); \
|
||||
(a_qr)->a_field.qre_prev = (a_qr); \
|
||||
} while (0)
|
||||
|
||||
#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
|
||||
|
||||
#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
|
||||
|
||||
#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
|
||||
(a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
|
||||
(a_qr)->a_field.qre_next = (a_qrelm); \
|
||||
(a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
|
||||
(a_qrelm)->a_field.qre_prev = (a_qr); \
|
||||
} while (0)
|
||||
|
||||
#define qr_after_insert(a_qrelm, a_qr, a_field) \
|
||||
do \
|
||||
{ \
|
||||
(a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
|
||||
(a_qr)->a_field.qre_prev = (a_qrelm); \
|
||||
(a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
|
||||
(a_qrelm)->a_field.qre_next = (a_qr); \
|
||||
} while (0)
|
||||
|
||||
#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
|
||||
void *t; \
|
||||
(a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
|
||||
(a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
|
||||
t = (a_qr_a)->a_field.qre_prev; \
|
||||
(a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
|
||||
(a_qr_b)->a_field.qre_prev = t; \
|
||||
} while (0)
|
||||
|
||||
/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
|
||||
* have two copies of the code. */
|
||||
#define qr_split(a_qr_a, a_qr_b, a_field) \
|
||||
qr_meld((a_qr_a), (a_qr_b), a_field)
|
||||
|
||||
#define qr_remove(a_qr, a_field) do { \
|
||||
(a_qr)->a_field.qre_prev->a_field.qre_next \
|
||||
= (a_qr)->a_field.qre_next; \
|
||||
(a_qr)->a_field.qre_next->a_field.qre_prev \
|
||||
= (a_qr)->a_field.qre_prev; \
|
||||
(a_qr)->a_field.qre_next = (a_qr); \
|
||||
(a_qr)->a_field.qre_prev = (a_qr); \
|
||||
} while (0)
|
||||
|
||||
#define qr_foreach(var, a_qr, a_field) \
|
||||
for ((var) = (a_qr); \
|
||||
(var) != NULL; \
|
||||
(var) = (((var)->a_field.qre_next != (a_qr)) \
|
||||
? (var)->a_field.qre_next : NULL))
|
||||
|
||||
#define qr_reverse_foreach(var, a_qr, a_field) \
|
||||
for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
|
||||
(var) != NULL; \
|
||||
(var) = (((var) != (a_qr)) \
|
||||
? (var)->a_field.qre_prev : NULL))
|
973
deps/jemalloc/include/jemalloc/internal/rb.h
vendored
Normal file
973
deps/jemalloc/include/jemalloc/internal/rb.h
vendored
Normal file
@ -0,0 +1,973 @@
|
||||
/*-
|
||||
*******************************************************************************
|
||||
*
|
||||
* cpp macro implementation of left-leaning 2-3 red-black trees. Parent
|
||||
* pointers are not used, and color bits are stored in the least significant
|
||||
* bit of right-child pointers (if RB_COMPACT is defined), thus making node
|
||||
* linkage as compact as is possible for red-black trees.
|
||||
*
|
||||
* Usage:
|
||||
*
|
||||
* #include <stdint.h>
|
||||
* #include <stdbool.h>
|
||||
* #define NDEBUG // (Optional, see assert(3).)
|
||||
* #include <assert.h>
|
||||
* #define RB_COMPACT // (Optional, embed color bits in right-child pointers.)
|
||||
* #include <rb.h>
|
||||
* ...
|
||||
*
|
||||
*******************************************************************************
|
||||
*/
|
||||
|
||||
#ifndef RB_H_
|
||||
#define RB_H_
|
||||
|
||||
#if 0
|
||||
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 204493 2010-02-28 22:57:13Z jasone $");
|
||||
#endif
|
||||
|
||||
#ifdef RB_COMPACT
|
||||
/* Node structure. */
|
||||
#define rb_node(a_type) \
|
||||
struct { \
|
||||
a_type *rbn_left; \
|
||||
a_type *rbn_right_red; \
|
||||
}
|
||||
#else
|
||||
#define rb_node(a_type) \
|
||||
struct { \
|
||||
a_type *rbn_left; \
|
||||
a_type *rbn_right; \
|
||||
bool rbn_red; \
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Root structure. */
|
||||
#define rb_tree(a_type) \
|
||||
struct { \
|
||||
a_type *rbt_root; \
|
||||
a_type rbt_nil; \
|
||||
}
|
||||
|
||||
/* Left accessors. */
|
||||
#define rbtn_left_get(a_type, a_field, a_node) \
|
||||
((a_node)->a_field.rbn_left)
|
||||
#define rbtn_left_set(a_type, a_field, a_node, a_left) do { \
|
||||
(a_node)->a_field.rbn_left = a_left; \
|
||||
} while (0)
|
||||
|
||||
#ifdef RB_COMPACT
|
||||
/* Right accessors. */
|
||||
#define rbtn_right_get(a_type, a_field, a_node) \
|
||||
((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
|
||||
& ((ssize_t)-2)))
|
||||
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
|
||||
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
|
||||
| (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
|
||||
} while (0)
|
||||
|
||||
/* Color accessors. */
|
||||
#define rbtn_red_get(a_type, a_field, a_node) \
|
||||
((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
|
||||
& ((size_t)1)))
|
||||
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
|
||||
(a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
|
||||
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
|
||||
| ((ssize_t)a_red)); \
|
||||
} while (0)
|
||||
#define rbtn_red_set(a_type, a_field, a_node) do { \
|
||||
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
|
||||
(a_node)->a_field.rbn_right_red) | ((size_t)1)); \
|
||||
} while (0)
|
||||
#define rbtn_black_set(a_type, a_field, a_node) do { \
|
||||
(a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
|
||||
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
|
||||
} while (0)
|
||||
#else
|
||||
/* Right accessors. */
|
||||
#define rbtn_right_get(a_type, a_field, a_node) \
|
||||
((a_node)->a_field.rbn_right)
|
||||
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
|
||||
(a_node)->a_field.rbn_right = a_right; \
|
||||
} while (0)
|
||||
|
||||
/* Color accessors. */
|
||||
#define rbtn_red_get(a_type, a_field, a_node) \
|
||||
((a_node)->a_field.rbn_red)
|
||||
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
|
||||
(a_node)->a_field.rbn_red = (a_red); \
|
||||
} while (0)
|
||||
#define rbtn_red_set(a_type, a_field, a_node) do { \
|
||||
(a_node)->a_field.rbn_red = true; \
|
||||
} while (0)
|
||||
#define rbtn_black_set(a_type, a_field, a_node) do { \
|
||||
(a_node)->a_field.rbn_red = false; \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
/* Node initializer. */
|
||||
#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \
|
||||
rbtn_left_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
|
||||
rbtn_right_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
|
||||
rbtn_red_set(a_type, a_field, (a_node)); \
|
||||
} while (0)
|
||||
|
||||
/* Tree initializer. */
|
||||
#define rb_new(a_type, a_field, a_rbt) do { \
|
||||
(a_rbt)->rbt_root = &(a_rbt)->rbt_nil; \
|
||||
rbt_node_new(a_type, a_field, a_rbt, &(a_rbt)->rbt_nil); \
|
||||
rbtn_black_set(a_type, a_field, &(a_rbt)->rbt_nil); \
|
||||
} while (0)
|
||||
|
||||
/* Internal utility macros. */
|
||||
#define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \
|
||||
(r_node) = (a_root); \
|
||||
if ((r_node) != &(a_rbt)->rbt_nil) { \
|
||||
for (; \
|
||||
rbtn_left_get(a_type, a_field, (r_node)) != &(a_rbt)->rbt_nil;\
|
||||
(r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \
|
||||
(r_node) = (a_root); \
|
||||
if ((r_node) != &(a_rbt)->rbt_nil) { \
|
||||
for (; rbtn_right_get(a_type, a_field, (r_node)) != \
|
||||
&(a_rbt)->rbt_nil; (r_node) = rbtn_right_get(a_type, a_field, \
|
||||
(r_node))) { \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \
|
||||
(r_node) = rbtn_right_get(a_type, a_field, (a_node)); \
|
||||
rbtn_right_set(a_type, a_field, (a_node), \
|
||||
rbtn_left_get(a_type, a_field, (r_node))); \
|
||||
rbtn_left_set(a_type, a_field, (r_node), (a_node)); \
|
||||
} while (0)
|
||||
|
||||
#define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \
|
||||
(r_node) = rbtn_left_get(a_type, a_field, (a_node)); \
|
||||
rbtn_left_set(a_type, a_field, (a_node), \
|
||||
rbtn_right_get(a_type, a_field, (r_node))); \
|
||||
rbtn_right_set(a_type, a_field, (r_node), (a_node)); \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* The rb_proto() macro generates function prototypes that correspond to the
|
||||
* functions generated by an equivalently parameterized call to rb_gen().
|
||||
*/
|
||||
|
||||
#define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \
|
||||
a_attr void \
|
||||
a_prefix##new(a_rbt_type *rbtree); \
|
||||
a_attr a_type * \
|
||||
a_prefix##first(a_rbt_type *rbtree); \
|
||||
a_attr a_type * \
|
||||
a_prefix##last(a_rbt_type *rbtree); \
|
||||
a_attr a_type * \
|
||||
a_prefix##next(a_rbt_type *rbtree, a_type *node); \
|
||||
a_attr a_type * \
|
||||
a_prefix##prev(a_rbt_type *rbtree, a_type *node); \
|
||||
a_attr a_type * \
|
||||
a_prefix##search(a_rbt_type *rbtree, a_type *key); \
|
||||
a_attr a_type * \
|
||||
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key); \
|
||||
a_attr a_type * \
|
||||
a_prefix##psearch(a_rbt_type *rbtree, a_type *key); \
|
||||
a_attr void \
|
||||
a_prefix##insert(a_rbt_type *rbtree, a_type *node); \
|
||||
a_attr void \
|
||||
a_prefix##remove(a_rbt_type *rbtree, a_type *node); \
|
||||
a_attr a_type * \
|
||||
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
|
||||
a_rbt_type *, a_type *, void *), void *arg); \
|
||||
a_attr a_type * \
|
||||
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
|
||||
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg);
|
||||
|
||||
/*
|
||||
* The rb_gen() macro generates a type-specific red-black tree implementation,
|
||||
* based on the above cpp macros.
|
||||
*
|
||||
* Arguments:
|
||||
*
|
||||
* a_attr : Function attribute for generated functions (ex: static).
|
||||
* a_prefix : Prefix for generated functions (ex: ex_).
|
||||
* a_rb_type : Type for red-black tree data structure (ex: ex_t).
|
||||
* a_type : Type for red-black tree node data structure (ex: ex_node_t).
|
||||
* a_field : Name of red-black tree node linkage (ex: ex_link).
|
||||
* a_cmp : Node comparison function name, with the following prototype:
|
||||
* int (a_cmp *)(a_type *a_node, a_type *a_other);
|
||||
* ^^^^^^
|
||||
* or a_key
|
||||
* Interpretation of comparision function return values:
|
||||
* -1 : a_node < a_other
|
||||
* 0 : a_node == a_other
|
||||
* 1 : a_node > a_other
|
||||
* In all cases, the a_node or a_key macro argument is the first
|
||||
* argument to the comparison function, which makes it possible
|
||||
* to write comparison functions that treat the first argument
|
||||
* specially.
|
||||
*
|
||||
* Assuming the following setup:
|
||||
*
|
||||
* typedef struct ex_node_s ex_node_t;
|
||||
* struct ex_node_s {
|
||||
* rb_node(ex_node_t) ex_link;
|
||||
* };
|
||||
* typedef rb_tree(ex_node_t) ex_t;
|
||||
* rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp)
|
||||
*
|
||||
* The following API is generated:
|
||||
*
|
||||
* static void
|
||||
* ex_new(ex_t *extree);
|
||||
* Description: Initialize a red-black tree structure.
|
||||
* Args:
|
||||
* extree: Pointer to an uninitialized red-black tree object.
|
||||
*
|
||||
* static ex_node_t *
|
||||
* ex_first(ex_t *extree);
|
||||
* static ex_node_t *
|
||||
* ex_last(ex_t *extree);
|
||||
* Description: Get the first/last node in extree.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* Ret: First/last node in extree, or NULL if extree is empty.
|
||||
*
|
||||
* static ex_node_t *
|
||||
* ex_next(ex_t *extree, ex_node_t *node);
|
||||
* static ex_node_t *
|
||||
* ex_prev(ex_t *extree, ex_node_t *node);
|
||||
* Description: Get node's successor/predecessor.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* node : A node in extree.
|
||||
* Ret: node's successor/predecessor in extree, or NULL if node is
|
||||
* last/first.
|
||||
*
|
||||
* static ex_node_t *
|
||||
* ex_search(ex_t *extree, ex_node_t *key);
|
||||
* Description: Search for node that matches key.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* key : Search key.
|
||||
* Ret: Node in extree that matches key, or NULL if no match.
|
||||
*
|
||||
* static ex_node_t *
|
||||
* ex_nsearch(ex_t *extree, ex_node_t *key);
|
||||
* static ex_node_t *
|
||||
* ex_psearch(ex_t *extree, ex_node_t *key);
|
||||
* Description: Search for node that matches key. If no match is found,
|
||||
* return what would be key's successor/predecessor, were
|
||||
* key in extree.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* key : Search key.
|
||||
* Ret: Node in extree that matches key, or if no match, hypothetical
|
||||
* node's successor/predecessor (NULL if no successor/predecessor).
|
||||
*
|
||||
* static void
|
||||
* ex_insert(ex_t *extree, ex_node_t *node);
|
||||
* Description: Insert node into extree.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* node : Node to be inserted into extree.
|
||||
*
|
||||
* static void
|
||||
* ex_remove(ex_t *extree, ex_node_t *node);
|
||||
* Description: Remove node from extree.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* node : Node in extree to be removed.
|
||||
*
|
||||
* static ex_node_t *
|
||||
* ex_iter(ex_t *extree, ex_node_t *start, ex_node_t *(*cb)(ex_t *,
|
||||
* ex_node_t *, void *), void *arg);
|
||||
* static ex_node_t *
|
||||
* ex_reverse_iter(ex_t *extree, ex_node_t *start, ex_node *(*cb)(ex_t *,
|
||||
* ex_node_t *, void *), void *arg);
|
||||
* Description: Iterate forward/backward over extree, starting at node.
|
||||
* If extree is modified, iteration must be immediately
|
||||
* terminated by the callback function that causes the
|
||||
* modification.
|
||||
* Args:
|
||||
* extree: Pointer to an initialized red-black tree object.
|
||||
* start : Node at which to start iteration, or NULL to start at
|
||||
* first/last node.
|
||||
* cb : Callback function, which is called for each node during
|
||||
* iteration. Under normal circumstances the callback function
|
||||
* should return NULL, which causes iteration to continue. If a
|
||||
* callback function returns non-NULL, iteration is immediately
|
||||
* terminated and the non-NULL return value is returned by the
|
||||
* iterator. This is useful for re-starting iteration after
|
||||
* modifying extree.
|
||||
* arg : Opaque pointer passed to cb().
|
||||
* Ret: NULL if iteration completed, or the non-NULL callback return value
|
||||
* that caused termination of the iteration.
|
||||
*/
|
||||
#define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \
|
||||
a_attr void \
|
||||
a_prefix##new(a_rbt_type *rbtree) { \
|
||||
rb_new(a_type, a_field, rbtree); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##first(a_rbt_type *rbtree) { \
|
||||
a_type *ret; \
|
||||
rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = NULL; \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##last(a_rbt_type *rbtree) { \
|
||||
a_type *ret; \
|
||||
rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = NULL; \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##next(a_rbt_type *rbtree, a_type *node) { \
|
||||
a_type *ret; \
|
||||
if (rbtn_right_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
|
||||
rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \
|
||||
a_field, node), ret); \
|
||||
} else { \
|
||||
a_type *tnode = rbtree->rbt_root; \
|
||||
assert(tnode != &rbtree->rbt_nil); \
|
||||
ret = &rbtree->rbt_nil; \
|
||||
while (true) { \
|
||||
int cmp = (a_cmp)(node, tnode); \
|
||||
if (cmp < 0) { \
|
||||
ret = tnode; \
|
||||
tnode = rbtn_left_get(a_type, a_field, tnode); \
|
||||
} else if (cmp > 0) { \
|
||||
tnode = rbtn_right_get(a_type, a_field, tnode); \
|
||||
} else { \
|
||||
break; \
|
||||
} \
|
||||
assert(tnode != &rbtree->rbt_nil); \
|
||||
} \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = (NULL); \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \
|
||||
a_type *ret; \
|
||||
if (rbtn_left_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
|
||||
rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \
|
||||
a_field, node), ret); \
|
||||
} else { \
|
||||
a_type *tnode = rbtree->rbt_root; \
|
||||
assert(tnode != &rbtree->rbt_nil); \
|
||||
ret = &rbtree->rbt_nil; \
|
||||
while (true) { \
|
||||
int cmp = (a_cmp)(node, tnode); \
|
||||
if (cmp < 0) { \
|
||||
tnode = rbtn_left_get(a_type, a_field, tnode); \
|
||||
} else if (cmp > 0) { \
|
||||
ret = tnode; \
|
||||
tnode = rbtn_right_get(a_type, a_field, tnode); \
|
||||
} else { \
|
||||
break; \
|
||||
} \
|
||||
assert(tnode != &rbtree->rbt_nil); \
|
||||
} \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = (NULL); \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##search(a_rbt_type *rbtree, a_type *key) { \
|
||||
a_type *ret; \
|
||||
int cmp; \
|
||||
ret = rbtree->rbt_root; \
|
||||
while (ret != &rbtree->rbt_nil \
|
||||
&& (cmp = (a_cmp)(key, ret)) != 0) { \
|
||||
if (cmp < 0) { \
|
||||
ret = rbtn_left_get(a_type, a_field, ret); \
|
||||
} else { \
|
||||
ret = rbtn_right_get(a_type, a_field, ret); \
|
||||
} \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = (NULL); \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key) { \
|
||||
a_type *ret; \
|
||||
a_type *tnode = rbtree->rbt_root; \
|
||||
ret = &rbtree->rbt_nil; \
|
||||
while (tnode != &rbtree->rbt_nil) { \
|
||||
int cmp = (a_cmp)(key, tnode); \
|
||||
if (cmp < 0) { \
|
||||
ret = tnode; \
|
||||
tnode = rbtn_left_get(a_type, a_field, tnode); \
|
||||
} else if (cmp > 0) { \
|
||||
tnode = rbtn_right_get(a_type, a_field, tnode); \
|
||||
} else { \
|
||||
ret = tnode; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = (NULL); \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##psearch(a_rbt_type *rbtree, a_type *key) { \
|
||||
a_type *ret; \
|
||||
a_type *tnode = rbtree->rbt_root; \
|
||||
ret = &rbtree->rbt_nil; \
|
||||
while (tnode != &rbtree->rbt_nil) { \
|
||||
int cmp = (a_cmp)(key, tnode); \
|
||||
if (cmp < 0) { \
|
||||
tnode = rbtn_left_get(a_type, a_field, tnode); \
|
||||
} else if (cmp > 0) { \
|
||||
ret = tnode; \
|
||||
tnode = rbtn_right_get(a_type, a_field, tnode); \
|
||||
} else { \
|
||||
ret = tnode; \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = (NULL); \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr void \
|
||||
a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \
|
||||
struct { \
|
||||
a_type *node; \
|
||||
int cmp; \
|
||||
} path[sizeof(void *) << 4], *pathp; \
|
||||
rbt_node_new(a_type, a_field, rbtree, node); \
|
||||
/* Wind. */ \
|
||||
path->node = rbtree->rbt_root; \
|
||||
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
|
||||
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
|
||||
assert(cmp != 0); \
|
||||
if (cmp < 0) { \
|
||||
pathp[1].node = rbtn_left_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
} else { \
|
||||
pathp[1].node = rbtn_right_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
} \
|
||||
} \
|
||||
pathp->node = node; \
|
||||
/* Unwind. */ \
|
||||
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
|
||||
a_type *cnode = pathp->node; \
|
||||
if (pathp->cmp < 0) { \
|
||||
a_type *left = pathp[1].node; \
|
||||
rbtn_left_set(a_type, a_field, cnode, left); \
|
||||
if (rbtn_red_get(a_type, a_field, left)) { \
|
||||
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
|
||||
if (rbtn_red_get(a_type, a_field, leftleft)) { \
|
||||
/* Fix up 4-node. */ \
|
||||
a_type *tnode; \
|
||||
rbtn_black_set(a_type, a_field, leftleft); \
|
||||
rbtn_rotate_right(a_type, a_field, cnode, tnode); \
|
||||
cnode = tnode; \
|
||||
} \
|
||||
} else { \
|
||||
return; \
|
||||
} \
|
||||
} else { \
|
||||
a_type *right = pathp[1].node; \
|
||||
rbtn_right_set(a_type, a_field, cnode, right); \
|
||||
if (rbtn_red_get(a_type, a_field, right)) { \
|
||||
a_type *left = rbtn_left_get(a_type, a_field, cnode); \
|
||||
if (rbtn_red_get(a_type, a_field, left)) { \
|
||||
/* Split 4-node. */ \
|
||||
rbtn_black_set(a_type, a_field, left); \
|
||||
rbtn_black_set(a_type, a_field, right); \
|
||||
rbtn_red_set(a_type, a_field, cnode); \
|
||||
} else { \
|
||||
/* Lean left. */ \
|
||||
a_type *tnode; \
|
||||
bool tred = rbtn_red_get(a_type, a_field, cnode); \
|
||||
rbtn_rotate_left(a_type, a_field, cnode, tnode); \
|
||||
rbtn_color_set(a_type, a_field, tnode, tred); \
|
||||
rbtn_red_set(a_type, a_field, cnode); \
|
||||
cnode = tnode; \
|
||||
} \
|
||||
} else { \
|
||||
return; \
|
||||
} \
|
||||
} \
|
||||
pathp->node = cnode; \
|
||||
} \
|
||||
/* Set root, and make it black. */ \
|
||||
rbtree->rbt_root = path->node; \
|
||||
rbtn_black_set(a_type, a_field, rbtree->rbt_root); \
|
||||
} \
|
||||
a_attr void \
|
||||
a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \
|
||||
struct { \
|
||||
a_type *node; \
|
||||
int cmp; \
|
||||
} *pathp, *nodep, path[sizeof(void *) << 4]; \
|
||||
/* Wind. */ \
|
||||
nodep = NULL; /* Silence compiler warning. */ \
|
||||
path->node = rbtree->rbt_root; \
|
||||
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
|
||||
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
|
||||
if (cmp < 0) { \
|
||||
pathp[1].node = rbtn_left_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
} else { \
|
||||
pathp[1].node = rbtn_right_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
if (cmp == 0) { \
|
||||
/* Find node's successor, in preparation for swap. */ \
|
||||
pathp->cmp = 1; \
|
||||
nodep = pathp; \
|
||||
for (pathp++; pathp->node != &rbtree->rbt_nil; \
|
||||
pathp++) { \
|
||||
pathp->cmp = -1; \
|
||||
pathp[1].node = rbtn_left_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
assert(nodep->node == node); \
|
||||
pathp--; \
|
||||
if (pathp->node != node) { \
|
||||
/* Swap node with its successor. */ \
|
||||
bool tred = rbtn_red_get(a_type, a_field, pathp->node); \
|
||||
rbtn_color_set(a_type, a_field, pathp->node, \
|
||||
rbtn_red_get(a_type, a_field, node)); \
|
||||
rbtn_left_set(a_type, a_field, pathp->node, \
|
||||
rbtn_left_get(a_type, a_field, node)); \
|
||||
/* If node's successor is its right child, the following code */\
|
||||
/* will do the wrong thing for the right child pointer. */\
|
||||
/* However, it doesn't matter, because the pointer will be */\
|
||||
/* properly set when the successor is pruned. */\
|
||||
rbtn_right_set(a_type, a_field, pathp->node, \
|
||||
rbtn_right_get(a_type, a_field, node)); \
|
||||
rbtn_color_set(a_type, a_field, node, tred); \
|
||||
/* The pruned leaf node's child pointers are never accessed */\
|
||||
/* again, so don't bother setting them to nil. */\
|
||||
nodep->node = pathp->node; \
|
||||
pathp->node = node; \
|
||||
if (nodep == path) { \
|
||||
rbtree->rbt_root = nodep->node; \
|
||||
} else { \
|
||||
if (nodep[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, nodep[-1].node, \
|
||||
nodep->node); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, nodep[-1].node, \
|
||||
nodep->node); \
|
||||
} \
|
||||
} \
|
||||
} else { \
|
||||
a_type *left = rbtn_left_get(a_type, a_field, node); \
|
||||
if (left != &rbtree->rbt_nil) { \
|
||||
/* node has no successor, but it has a left child. */\
|
||||
/* Splice node out, without losing the left child. */\
|
||||
assert(rbtn_red_get(a_type, a_field, node) == false); \
|
||||
assert(rbtn_red_get(a_type, a_field, left)); \
|
||||
rbtn_black_set(a_type, a_field, left); \
|
||||
if (pathp == path) { \
|
||||
rbtree->rbt_root = left; \
|
||||
} else { \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, pathp[-1].node, \
|
||||
left); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, pathp[-1].node, \
|
||||
left); \
|
||||
} \
|
||||
} \
|
||||
return; \
|
||||
} else if (pathp == path) { \
|
||||
/* The tree only contained one node. */ \
|
||||
rbtree->rbt_root = &rbtree->rbt_nil; \
|
||||
return; \
|
||||
} \
|
||||
} \
|
||||
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
|
||||
/* Prune red node, which requires no fixup. */ \
|
||||
assert(pathp[-1].cmp < 0); \
|
||||
rbtn_left_set(a_type, a_field, pathp[-1].node, \
|
||||
&rbtree->rbt_nil); \
|
||||
return; \
|
||||
} \
|
||||
/* The node to be pruned is black, so unwind until balance is */\
|
||||
/* restored. */\
|
||||
pathp->node = &rbtree->rbt_nil; \
|
||||
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
|
||||
assert(pathp->cmp != 0); \
|
||||
if (pathp->cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, pathp->node, \
|
||||
pathp[1].node); \
|
||||
assert(rbtn_red_get(a_type, a_field, pathp[1].node) \
|
||||
== false); \
|
||||
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
|
||||
a_type *right = rbtn_right_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
a_type *rightleft = rbtn_left_get(a_type, a_field, \
|
||||
right); \
|
||||
a_type *tnode; \
|
||||
if (rbtn_red_get(a_type, a_field, rightleft)) { \
|
||||
/* In the following diagrams, ||, //, and \\ */\
|
||||
/* indicate the path to the removed node. */\
|
||||
/* */\
|
||||
/* || */\
|
||||
/* pathp(r) */\
|
||||
/* // \ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (r) */\
|
||||
/* */\
|
||||
rbtn_black_set(a_type, a_field, pathp->node); \
|
||||
rbtn_rotate_right(a_type, a_field, right, tnode); \
|
||||
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
|
||||
rbtn_rotate_left(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
} else { \
|
||||
/* || */\
|
||||
/* pathp(r) */\
|
||||
/* // \ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (b) */\
|
||||
/* */\
|
||||
rbtn_rotate_left(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
} \
|
||||
/* Balance restored, but rotation modified subtree */\
|
||||
/* root. */\
|
||||
assert((uintptr_t)pathp > (uintptr_t)path); \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} \
|
||||
return; \
|
||||
} else { \
|
||||
a_type *right = rbtn_right_get(a_type, a_field, \
|
||||
pathp->node); \
|
||||
a_type *rightleft = rbtn_left_get(a_type, a_field, \
|
||||
right); \
|
||||
if (rbtn_red_get(a_type, a_field, rightleft)) { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* // \ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (r) */\
|
||||
a_type *tnode; \
|
||||
rbtn_black_set(a_type, a_field, rightleft); \
|
||||
rbtn_rotate_right(a_type, a_field, right, tnode); \
|
||||
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
|
||||
rbtn_rotate_left(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
/* Balance restored, but rotation modified */\
|
||||
/* subree root, which may actually be the tree */\
|
||||
/* root. */\
|
||||
if (pathp == path) { \
|
||||
/* Set root. */ \
|
||||
rbtree->rbt_root = tnode; \
|
||||
} else { \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, \
|
||||
pathp[-1].node, tnode); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, \
|
||||
pathp[-1].node, tnode); \
|
||||
} \
|
||||
} \
|
||||
return; \
|
||||
} else { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* // \ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (b) */\
|
||||
a_type *tnode; \
|
||||
rbtn_red_set(a_type, a_field, pathp->node); \
|
||||
rbtn_rotate_left(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
pathp->node = tnode; \
|
||||
} \
|
||||
} \
|
||||
} else { \
|
||||
a_type *left; \
|
||||
rbtn_right_set(a_type, a_field, pathp->node, \
|
||||
pathp[1].node); \
|
||||
left = rbtn_left_get(a_type, a_field, pathp->node); \
|
||||
if (rbtn_red_get(a_type, a_field, left)) { \
|
||||
a_type *tnode; \
|
||||
a_type *leftright = rbtn_right_get(a_type, a_field, \
|
||||
left); \
|
||||
a_type *leftrightleft = rbtn_left_get(a_type, a_field, \
|
||||
leftright); \
|
||||
if (rbtn_red_get(a_type, a_field, leftrightleft)) { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* / \\ */\
|
||||
/* (r) (b) */\
|
||||
/* \ */\
|
||||
/* (b) */\
|
||||
/* / */\
|
||||
/* (r) */\
|
||||
a_type *unode; \
|
||||
rbtn_black_set(a_type, a_field, leftrightleft); \
|
||||
rbtn_rotate_right(a_type, a_field, pathp->node, \
|
||||
unode); \
|
||||
rbtn_rotate_right(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
rbtn_right_set(a_type, a_field, unode, tnode); \
|
||||
rbtn_rotate_left(a_type, a_field, unode, tnode); \
|
||||
} else { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* / \\ */\
|
||||
/* (r) (b) */\
|
||||
/* \ */\
|
||||
/* (b) */\
|
||||
/* / */\
|
||||
/* (b) */\
|
||||
assert(leftright != &rbtree->rbt_nil); \
|
||||
rbtn_red_set(a_type, a_field, leftright); \
|
||||
rbtn_rotate_right(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
rbtn_black_set(a_type, a_field, tnode); \
|
||||
} \
|
||||
/* Balance restored, but rotation modified subtree */\
|
||||
/* root, which may actually be the tree root. */\
|
||||
if (pathp == path) { \
|
||||
/* Set root. */ \
|
||||
rbtree->rbt_root = tnode; \
|
||||
} else { \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} \
|
||||
} \
|
||||
return; \
|
||||
} else if (rbtn_red_get(a_type, a_field, pathp->node)) { \
|
||||
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
|
||||
if (rbtn_red_get(a_type, a_field, leftleft)) { \
|
||||
/* || */\
|
||||
/* pathp(r) */\
|
||||
/* / \\ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (r) */\
|
||||
a_type *tnode; \
|
||||
rbtn_black_set(a_type, a_field, pathp->node); \
|
||||
rbtn_red_set(a_type, a_field, left); \
|
||||
rbtn_black_set(a_type, a_field, leftleft); \
|
||||
rbtn_rotate_right(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
/* Balance restored, but rotation modified */\
|
||||
/* subtree root. */\
|
||||
assert((uintptr_t)pathp > (uintptr_t)path); \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, pathp[-1].node, \
|
||||
tnode); \
|
||||
} \
|
||||
return; \
|
||||
} else { \
|
||||
/* || */\
|
||||
/* pathp(r) */\
|
||||
/* / \\ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (b) */\
|
||||
rbtn_red_set(a_type, a_field, left); \
|
||||
rbtn_black_set(a_type, a_field, pathp->node); \
|
||||
/* Balance restored. */ \
|
||||
return; \
|
||||
} \
|
||||
} else { \
|
||||
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
|
||||
if (rbtn_red_get(a_type, a_field, leftleft)) { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* / \\ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (r) */\
|
||||
a_type *tnode; \
|
||||
rbtn_black_set(a_type, a_field, leftleft); \
|
||||
rbtn_rotate_right(a_type, a_field, pathp->node, \
|
||||
tnode); \
|
||||
/* Balance restored, but rotation modified */\
|
||||
/* subtree root, which may actually be the tree */\
|
||||
/* root. */\
|
||||
if (pathp == path) { \
|
||||
/* Set root. */ \
|
||||
rbtree->rbt_root = tnode; \
|
||||
} else { \
|
||||
if (pathp[-1].cmp < 0) { \
|
||||
rbtn_left_set(a_type, a_field, \
|
||||
pathp[-1].node, tnode); \
|
||||
} else { \
|
||||
rbtn_right_set(a_type, a_field, \
|
||||
pathp[-1].node, tnode); \
|
||||
} \
|
||||
} \
|
||||
return; \
|
||||
} else { \
|
||||
/* || */\
|
||||
/* pathp(b) */\
|
||||
/* / \\ */\
|
||||
/* (b) (b) */\
|
||||
/* / */\
|
||||
/* (b) */\
|
||||
rbtn_red_set(a_type, a_field, left); \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
/* Set root. */ \
|
||||
rbtree->rbt_root = path->node; \
|
||||
assert(rbtn_red_get(a_type, a_field, rbtree->rbt_root) == false); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \
|
||||
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
|
||||
if (node == &rbtree->rbt_nil) { \
|
||||
return (&rbtree->rbt_nil); \
|
||||
} else { \
|
||||
a_type *ret; \
|
||||
if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \
|
||||
a_field, node), cb, arg)) != &rbtree->rbt_nil \
|
||||
|| (ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
|
||||
a_field, node), cb, arg)); \
|
||||
} \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \
|
||||
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
|
||||
int cmp = a_cmp(start, node); \
|
||||
if (cmp < 0) { \
|
||||
a_type *ret; \
|
||||
if ((ret = a_prefix##iter_start(rbtree, start, \
|
||||
rbtn_left_get(a_type, a_field, node), cb, arg)) != \
|
||||
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
|
||||
a_field, node), cb, arg)); \
|
||||
} else if (cmp > 0) { \
|
||||
return (a_prefix##iter_start(rbtree, start, \
|
||||
rbtn_right_get(a_type, a_field, node), cb, arg)); \
|
||||
} else { \
|
||||
a_type *ret; \
|
||||
if ((ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
|
||||
a_field, node), cb, arg)); \
|
||||
} \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
|
||||
a_rbt_type *, a_type *, void *), void *arg) { \
|
||||
a_type *ret; \
|
||||
if (start != NULL) { \
|
||||
ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \
|
||||
cb, arg); \
|
||||
} else { \
|
||||
ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = NULL; \
|
||||
} \
|
||||
return (ret); \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \
|
||||
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
|
||||
if (node == &rbtree->rbt_nil) { \
|
||||
return (&rbtree->rbt_nil); \
|
||||
} else { \
|
||||
a_type *ret; \
|
||||
if ((ret = a_prefix##reverse_iter_recurse(rbtree, \
|
||||
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
|
||||
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##reverse_iter_recurse(rbtree, \
|
||||
rbtn_left_get(a_type, a_field, node), cb, arg)); \
|
||||
} \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \
|
||||
a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
|
||||
void *arg) { \
|
||||
int cmp = a_cmp(start, node); \
|
||||
if (cmp > 0) { \
|
||||
a_type *ret; \
|
||||
if ((ret = a_prefix##reverse_iter_start(rbtree, start, \
|
||||
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
|
||||
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##reverse_iter_recurse(rbtree, \
|
||||
rbtn_left_get(a_type, a_field, node), cb, arg)); \
|
||||
} else if (cmp < 0) { \
|
||||
return (a_prefix##reverse_iter_start(rbtree, start, \
|
||||
rbtn_left_get(a_type, a_field, node), cb, arg)); \
|
||||
} else { \
|
||||
a_type *ret; \
|
||||
if ((ret = cb(rbtree, node, arg)) != NULL) { \
|
||||
return (ret); \
|
||||
} \
|
||||
return (a_prefix##reverse_iter_recurse(rbtree, \
|
||||
rbtn_left_get(a_type, a_field, node), cb, arg)); \
|
||||
} \
|
||||
} \
|
||||
a_attr a_type * \
|
||||
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
|
||||
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
|
||||
a_type *ret; \
|
||||
if (start != NULL) { \
|
||||
ret = a_prefix##reverse_iter_start(rbtree, start, \
|
||||
rbtree->rbt_root, cb, arg); \
|
||||
} else { \
|
||||
ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \
|
||||
cb, arg); \
|
||||
} \
|
||||
if (ret == &rbtree->rbt_nil) { \
|
||||
ret = NULL; \
|
||||
} \
|
||||
return (ret); \
|
||||
}
|
||||
|
||||
#endif /* RB_H_ */
|
161
deps/jemalloc/include/jemalloc/internal/rtree.h
vendored
Normal file
161
deps/jemalloc/include/jemalloc/internal/rtree.h
vendored
Normal file
@ -0,0 +1,161 @@
|
||||
/*
|
||||
* This radix tree implementation is tailored to the singular purpose of
|
||||
* tracking which chunks are currently owned by jemalloc. This functionality
|
||||
* is mandatory for OS X, where jemalloc must be able to respond to object
|
||||
* ownership queries.
|
||||
*
|
||||
*******************************************************************************
|
||||
*/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct rtree_s rtree_t;
|
||||
|
||||
/*
|
||||
* Size of each radix tree node (must be a power of 2). This impacts tree
|
||||
* depth.
|
||||
*/
|
||||
#if (LG_SIZEOF_PTR == 2)
|
||||
# define RTREE_NODESIZE (1U << 14)
|
||||
#else
|
||||
# define RTREE_NODESIZE CACHELINE
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
struct rtree_s {
|
||||
malloc_mutex_t mutex;
|
||||
void **root;
|
||||
unsigned height;
|
||||
unsigned level2bits[1]; /* Dynamically sized. */
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
rtree_t *rtree_new(unsigned bits);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
#ifndef JEMALLOC_DEBUG
|
||||
void *rtree_get_locked(rtree_t *rtree, uintptr_t key);
|
||||
#endif
|
||||
void *rtree_get(rtree_t *rtree, uintptr_t key);
|
||||
bool rtree_set(rtree_t *rtree, uintptr_t key, void *val);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_))
|
||||
#define RTREE_GET_GENERATE(f) \
|
||||
/* The least significant bits of the key are ignored. */ \
|
||||
JEMALLOC_INLINE void * \
|
||||
f(rtree_t *rtree, uintptr_t key) \
|
||||
{ \
|
||||
void *ret; \
|
||||
uintptr_t subkey; \
|
||||
unsigned i, lshift, height, bits; \
|
||||
void **node, **child; \
|
||||
\
|
||||
RTREE_LOCK(&rtree->mutex); \
|
||||
for (i = lshift = 0, height = rtree->height, node = rtree->root;\
|
||||
i < height - 1; \
|
||||
i++, lshift += bits, node = child) { \
|
||||
bits = rtree->level2bits[i]; \
|
||||
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR + \
|
||||
3)) - bits); \
|
||||
child = (void**)node[subkey]; \
|
||||
if (child == NULL) { \
|
||||
RTREE_UNLOCK(&rtree->mutex); \
|
||||
return (NULL); \
|
||||
} \
|
||||
} \
|
||||
\
|
||||
/* \
|
||||
* node is a leaf, so it contains values rather than node \
|
||||
* pointers. \
|
||||
*/ \
|
||||
bits = rtree->level2bits[i]; \
|
||||
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) - \
|
||||
bits); \
|
||||
ret = node[subkey]; \
|
||||
RTREE_UNLOCK(&rtree->mutex); \
|
||||
\
|
||||
RTREE_GET_VALIDATE \
|
||||
return (ret); \
|
||||
}
|
||||
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
# define RTREE_LOCK(l) malloc_mutex_lock(l)
|
||||
# define RTREE_UNLOCK(l) malloc_mutex_unlock(l)
|
||||
# define RTREE_GET_VALIDATE
|
||||
RTREE_GET_GENERATE(rtree_get_locked)
|
||||
# undef RTREE_LOCK
|
||||
# undef RTREE_UNLOCK
|
||||
# undef RTREE_GET_VALIDATE
|
||||
#endif
|
||||
|
||||
#define RTREE_LOCK(l)
|
||||
#define RTREE_UNLOCK(l)
|
||||
#ifdef JEMALLOC_DEBUG
|
||||
/*
|
||||
* Suppose that it were possible for a jemalloc-allocated chunk to be
|
||||
* munmap()ped, followed by a different allocator in another thread re-using
|
||||
* overlapping virtual memory, all without invalidating the cached rtree
|
||||
* value. The result would be a false positive (the rtree would claim that
|
||||
* jemalloc owns memory that it had actually discarded). This scenario
|
||||
* seems impossible, but the following assertion is a prudent sanity check.
|
||||
*/
|
||||
# define RTREE_GET_VALIDATE \
|
||||
assert(rtree_get_locked(rtree, key) == ret);
|
||||
#else
|
||||
# define RTREE_GET_VALIDATE
|
||||
#endif
|
||||
RTREE_GET_GENERATE(rtree_get)
|
||||
#undef RTREE_LOCK
|
||||
#undef RTREE_UNLOCK
|
||||
#undef RTREE_GET_VALIDATE
|
||||
|
||||
JEMALLOC_INLINE bool
|
||||
rtree_set(rtree_t *rtree, uintptr_t key, void *val)
|
||||
{
|
||||
uintptr_t subkey;
|
||||
unsigned i, lshift, height, bits;
|
||||
void **node, **child;
|
||||
|
||||
malloc_mutex_lock(&rtree->mutex);
|
||||
for (i = lshift = 0, height = rtree->height, node = rtree->root;
|
||||
i < height - 1;
|
||||
i++, lshift += bits, node = child) {
|
||||
bits = rtree->level2bits[i];
|
||||
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) -
|
||||
bits);
|
||||
child = (void**)node[subkey];
|
||||
if (child == NULL) {
|
||||
child = (void**)base_alloc(sizeof(void *) <<
|
||||
rtree->level2bits[i+1]);
|
||||
if (child == NULL) {
|
||||
malloc_mutex_unlock(&rtree->mutex);
|
||||
return (true);
|
||||
}
|
||||
memset(child, 0, sizeof(void *) <<
|
||||
rtree->level2bits[i+1]);
|
||||
node[subkey] = child;
|
||||
}
|
||||
}
|
||||
|
||||
/* node is a leaf, so it contains values rather than node pointers. */
|
||||
bits = rtree->level2bits[i];
|
||||
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) - bits);
|
||||
node[subkey] = val;
|
||||
malloc_mutex_unlock(&rtree->mutex);
|
||||
|
||||
return (false);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
207
deps/jemalloc/include/jemalloc/internal/stats.h
vendored
Normal file
207
deps/jemalloc/include/jemalloc/internal/stats.h
vendored
Normal file
@ -0,0 +1,207 @@
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#define UMAX2S_BUFSIZE 65
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
|
||||
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
|
||||
typedef struct malloc_large_stats_s malloc_large_stats_t;
|
||||
typedef struct arena_stats_s arena_stats_t;
|
||||
#endif
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
typedef struct chunk_stats_s chunk_stats_t;
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
struct tcache_bin_stats_s {
|
||||
/*
|
||||
* Number of allocation requests that corresponded to the size of this
|
||||
* bin.
|
||||
*/
|
||||
uint64_t nrequests;
|
||||
};
|
||||
#endif
|
||||
|
||||
struct malloc_bin_stats_s {
|
||||
/*
|
||||
* Current number of bytes allocated, including objects currently
|
||||
* cached by tcache.
|
||||
*/
|
||||
size_t allocated;
|
||||
|
||||
/*
|
||||
* Total number of allocation/deallocation requests served directly by
|
||||
* the bin. Note that tcache may allocate an object, then recycle it
|
||||
* many times, resulting many increments to nrequests, but only one
|
||||
* each to nmalloc and ndalloc.
|
||||
*/
|
||||
uint64_t nmalloc;
|
||||
uint64_t ndalloc;
|
||||
|
||||
/*
|
||||
* Number of allocation requests that correspond to the size of this
|
||||
* bin. This includes requests served by tcache, though tcache only
|
||||
* periodically merges into this counter.
|
||||
*/
|
||||
uint64_t nrequests;
|
||||
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
/* Number of tcache fills from this bin. */
|
||||
uint64_t nfills;
|
||||
|
||||
/* Number of tcache flushes to this bin. */
|
||||
uint64_t nflushes;
|
||||
#endif
|
||||
|
||||
/* Total number of runs created for this bin's size class. */
|
||||
uint64_t nruns;
|
||||
|
||||
/*
|
||||
* Total number of runs reused by extracting them from the runs tree for
|
||||
* this bin's size class.
|
||||
*/
|
||||
uint64_t reruns;
|
||||
|
||||
/* High-water mark for this bin. */
|
||||
size_t highruns;
|
||||
|
||||
/* Current number of runs in this bin. */
|
||||
size_t curruns;
|
||||
};
|
||||
|
||||
struct malloc_large_stats_s {
|
||||
/*
|
||||
* Total number of allocation/deallocation requests served directly by
|
||||
* the arena. Note that tcache may allocate an object, then recycle it
|
||||
* many times, resulting many increments to nrequests, but only one
|
||||
* each to nmalloc and ndalloc.
|
||||
*/
|
||||
uint64_t nmalloc;
|
||||
uint64_t ndalloc;
|
||||
|
||||
/*
|
||||
* Number of allocation requests that correspond to this size class.
|
||||
* This includes requests served by tcache, though tcache only
|
||||
* periodically merges into this counter.
|
||||
*/
|
||||
uint64_t nrequests;
|
||||
|
||||
/* High-water mark for this size class. */
|
||||
size_t highruns;
|
||||
|
||||
/* Current number of runs of this size class. */
|
||||
size_t curruns;
|
||||
};
|
||||
|
||||
struct arena_stats_s {
|
||||
/* Number of bytes currently mapped. */
|
||||
size_t mapped;
|
||||
|
||||
/*
|
||||
* Total number of purge sweeps, total number of madvise calls made,
|
||||
* and total pages purged in order to keep dirty unused memory under
|
||||
* control.
|
||||
*/
|
||||
uint64_t npurge;
|
||||
uint64_t nmadvise;
|
||||
uint64_t purged;
|
||||
|
||||
/* Per-size-category statistics. */
|
||||
size_t allocated_large;
|
||||
uint64_t nmalloc_large;
|
||||
uint64_t ndalloc_large;
|
||||
uint64_t nrequests_large;
|
||||
|
||||
/*
|
||||
* One element for each possible size class, including sizes that
|
||||
* overlap with bin size classes. This is necessary because ipalloc()
|
||||
* sometimes has to use such large objects in order to assure proper
|
||||
* alignment.
|
||||
*/
|
||||
malloc_large_stats_t *lstats;
|
||||
};
|
||||
#endif /* JEMALLOC_STATS */
|
||||
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
struct chunk_stats_s {
|
||||
# ifdef JEMALLOC_STATS
|
||||
/* Number of chunks that were allocated. */
|
||||
uint64_t nchunks;
|
||||
# endif
|
||||
|
||||
/* High-water mark for number of chunks allocated. */
|
||||
size_t highchunks;
|
||||
|
||||
/*
|
||||
* Current number of chunks allocated. This value isn't maintained for
|
||||
* any other purpose, so keep track of it in order to be able to set
|
||||
* highchunks.
|
||||
*/
|
||||
size_t curchunks;
|
||||
};
|
||||
#endif /* JEMALLOC_STATS */
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern bool opt_stats_print;
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
extern size_t stats_cactive;
|
||||
#endif
|
||||
|
||||
char *u2s(uint64_t x, unsigned base, char *s);
|
||||
#ifdef JEMALLOC_STATS
|
||||
void malloc_cprintf(void (*write)(void *, const char *), void *cbopaque,
|
||||
const char *format, ...) JEMALLOC_ATTR(format(printf, 3, 4));
|
||||
void malloc_printf(const char *format, ...)
|
||||
JEMALLOC_ATTR(format(printf, 1, 2));
|
||||
#endif
|
||||
void stats_print(void (*write)(void *, const char *), void *cbopaque,
|
||||
const char *opts);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
#ifdef JEMALLOC_STATS
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
size_t stats_cactive_get(void);
|
||||
void stats_cactive_add(size_t size);
|
||||
void stats_cactive_sub(size_t size);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_STATS_C_))
|
||||
JEMALLOC_INLINE size_t
|
||||
stats_cactive_get(void)
|
||||
{
|
||||
|
||||
return (atomic_read_z(&stats_cactive));
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
stats_cactive_add(size_t size)
|
||||
{
|
||||
|
||||
atomic_add_z(&stats_cactive, size);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
stats_cactive_sub(size_t size)
|
||||
{
|
||||
|
||||
atomic_sub_z(&stats_cactive, size);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_STATS */
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
431
deps/jemalloc/include/jemalloc/internal/tcache.h
vendored
Normal file
431
deps/jemalloc/include/jemalloc/internal/tcache.h
vendored
Normal file
@ -0,0 +1,431 @@
|
||||
#ifdef JEMALLOC_TCACHE
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
typedef struct tcache_bin_info_s tcache_bin_info_t;
|
||||
typedef struct tcache_bin_s tcache_bin_t;
|
||||
typedef struct tcache_s tcache_t;
|
||||
|
||||
/*
|
||||
* Absolute maximum number of cache slots for each small bin in the thread
|
||||
* cache. This is an additional constraint beyond that imposed as: twice the
|
||||
* number of regions per run for this size class.
|
||||
*
|
||||
* This constant must be an even number.
|
||||
*/
|
||||
#define TCACHE_NSLOTS_SMALL_MAX 200
|
||||
|
||||
/* Number of cache slots for large size classes. */
|
||||
#define TCACHE_NSLOTS_LARGE 20
|
||||
|
||||
/* (1U << opt_lg_tcache_max) is used to compute tcache_maxclass. */
|
||||
#define LG_TCACHE_MAXCLASS_DEFAULT 15
|
||||
|
||||
/*
|
||||
* (1U << opt_lg_tcache_gc_sweep) is the approximate number of allocation
|
||||
* events between full GC sweeps (-1: disabled). Integer rounding may cause
|
||||
* the actual number to be slightly higher, since GC is performed
|
||||
* incrementally.
|
||||
*/
|
||||
#define LG_TCACHE_GC_SWEEP_DEFAULT 13
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
/*
|
||||
* Read-only information associated with each element of tcache_t's tbins array
|
||||
* is stored separately, mainly to reduce memory usage.
|
||||
*/
|
||||
struct tcache_bin_info_s {
|
||||
unsigned ncached_max; /* Upper limit on ncached. */
|
||||
};
|
||||
|
||||
struct tcache_bin_s {
|
||||
# ifdef JEMALLOC_STATS
|
||||
tcache_bin_stats_t tstats;
|
||||
# endif
|
||||
int low_water; /* Min # cached since last GC. */
|
||||
unsigned lg_fill_div; /* Fill (ncached_max >> lg_fill_div). */
|
||||
unsigned ncached; /* # of cached objects. */
|
||||
void **avail; /* Stack of available objects. */
|
||||
};
|
||||
|
||||
struct tcache_s {
|
||||
# ifdef JEMALLOC_STATS
|
||||
ql_elm(tcache_t) link; /* Used for aggregating stats. */
|
||||
# endif
|
||||
# ifdef JEMALLOC_PROF
|
||||
uint64_t prof_accumbytes;/* Cleared after arena_prof_accum() */
|
||||
# endif
|
||||
arena_t *arena; /* This thread's arena. */
|
||||
unsigned ev_cnt; /* Event count since incremental GC. */
|
||||
unsigned next_gc_bin; /* Next bin to GC. */
|
||||
tcache_bin_t tbins[1]; /* Dynamically sized. */
|
||||
/*
|
||||
* The pointer stacks associated with tbins follow as a contiguous
|
||||
* array. During tcache initialization, the avail pointer in each
|
||||
* element of tbins is initialized to point to the proper offset within
|
||||
* this array.
|
||||
*/
|
||||
};
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
extern bool opt_tcache;
|
||||
extern ssize_t opt_lg_tcache_max;
|
||||
extern ssize_t opt_lg_tcache_gc_sweep;
|
||||
|
||||
extern tcache_bin_info_t *tcache_bin_info;
|
||||
|
||||
/* Map of thread-specific caches. */
|
||||
#ifndef NO_TLS
|
||||
extern __thread tcache_t *tcache_tls
|
||||
JEMALLOC_ATTR(tls_model("initial-exec"));
|
||||
# define TCACHE_GET() tcache_tls
|
||||
# define TCACHE_SET(v) do { \
|
||||
tcache_tls = (tcache_t *)(v); \
|
||||
pthread_setspecific(tcache_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#else
|
||||
# define TCACHE_GET() ((tcache_t *)pthread_getspecific(tcache_tsd))
|
||||
# define TCACHE_SET(v) do { \
|
||||
pthread_setspecific(tcache_tsd, (void *)(v)); \
|
||||
} while (0)
|
||||
#endif
|
||||
extern pthread_key_t tcache_tsd;
|
||||
|
||||
/*
|
||||
* Number of tcache bins. There are nbins small-object bins, plus 0 or more
|
||||
* large-object bins.
|
||||
*/
|
||||
extern size_t nhbins;
|
||||
|
||||
/* Maximum cached size class. */
|
||||
extern size_t tcache_maxclass;
|
||||
|
||||
/* Number of tcache allocation/deallocation events between incremental GCs. */
|
||||
extern unsigned tcache_gc_incr;
|
||||
|
||||
void tcache_bin_flush_small(tcache_bin_t *tbin, size_t binind, unsigned rem
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache_t *tcache
|
||||
#endif
|
||||
);
|
||||
void tcache_bin_flush_large(tcache_bin_t *tbin, size_t binind, unsigned rem
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache_t *tcache
|
||||
#endif
|
||||
);
|
||||
tcache_t *tcache_create(arena_t *arena);
|
||||
void *tcache_alloc_small_hard(tcache_t *tcache, tcache_bin_t *tbin,
|
||||
size_t binind);
|
||||
void tcache_destroy(tcache_t *tcache);
|
||||
#ifdef JEMALLOC_STATS
|
||||
void tcache_stats_merge(tcache_t *tcache, arena_t *arena);
|
||||
#endif
|
||||
bool tcache_boot(void);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#ifndef JEMALLOC_ENABLE_INLINE
|
||||
void tcache_event(tcache_t *tcache);
|
||||
tcache_t *tcache_get(void);
|
||||
void *tcache_alloc_easy(tcache_bin_t *tbin);
|
||||
void *tcache_alloc_small(tcache_t *tcache, size_t size, bool zero);
|
||||
void *tcache_alloc_large(tcache_t *tcache, size_t size, bool zero);
|
||||
void tcache_dalloc_small(tcache_t *tcache, void *ptr);
|
||||
void tcache_dalloc_large(tcache_t *tcache, void *ptr, size_t size);
|
||||
#endif
|
||||
|
||||
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TCACHE_C_))
|
||||
JEMALLOC_INLINE tcache_t *
|
||||
tcache_get(void)
|
||||
{
|
||||
tcache_t *tcache;
|
||||
|
||||
if ((isthreaded & opt_tcache) == false)
|
||||
return (NULL);
|
||||
|
||||
tcache = TCACHE_GET();
|
||||
if ((uintptr_t)tcache <= (uintptr_t)2) {
|
||||
if (tcache == NULL) {
|
||||
tcache = tcache_create(choose_arena());
|
||||
if (tcache == NULL)
|
||||
return (NULL);
|
||||
} else {
|
||||
if (tcache == (void *)(uintptr_t)1) {
|
||||
/*
|
||||
* Make a note that an allocator function was
|
||||
* called after the tcache_thread_cleanup() was
|
||||
* called.
|
||||
*/
|
||||
TCACHE_SET((uintptr_t)2);
|
||||
}
|
||||
return (NULL);
|
||||
}
|
||||
}
|
||||
|
||||
return (tcache);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
tcache_event(tcache_t *tcache)
|
||||
{
|
||||
|
||||
if (tcache_gc_incr == 0)
|
||||
return;
|
||||
|
||||
tcache->ev_cnt++;
|
||||
assert(tcache->ev_cnt <= tcache_gc_incr);
|
||||
if (tcache->ev_cnt == tcache_gc_incr) {
|
||||
size_t binind = tcache->next_gc_bin;
|
||||
tcache_bin_t *tbin = &tcache->tbins[binind];
|
||||
tcache_bin_info_t *tbin_info = &tcache_bin_info[binind];
|
||||
|
||||
if (tbin->low_water > 0) {
|
||||
/*
|
||||
* Flush (ceiling) 3/4 of the objects below the low
|
||||
* water mark.
|
||||
*/
|
||||
if (binind < nbins) {
|
||||
tcache_bin_flush_small(tbin, binind,
|
||||
tbin->ncached - tbin->low_water +
|
||||
(tbin->low_water >> 2)
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache
|
||||
#endif
|
||||
);
|
||||
} else {
|
||||
tcache_bin_flush_large(tbin, binind,
|
||||
tbin->ncached - tbin->low_water +
|
||||
(tbin->low_water >> 2)
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache
|
||||
#endif
|
||||
);
|
||||
}
|
||||
/*
|
||||
* Reduce fill count by 2X. Limit lg_fill_div such that
|
||||
* the fill count is always at least 1.
|
||||
*/
|
||||
if ((tbin_info->ncached_max >> (tbin->lg_fill_div+1))
|
||||
>= 1)
|
||||
tbin->lg_fill_div++;
|
||||
} else if (tbin->low_water < 0) {
|
||||
/*
|
||||
* Increase fill count by 2X. Make sure lg_fill_div
|
||||
* stays greater than 0.
|
||||
*/
|
||||
if (tbin->lg_fill_div > 1)
|
||||
tbin->lg_fill_div--;
|
||||
}
|
||||
tbin->low_water = tbin->ncached;
|
||||
|
||||
tcache->next_gc_bin++;
|
||||
if (tcache->next_gc_bin == nhbins)
|
||||
tcache->next_gc_bin = 0;
|
||||
tcache->ev_cnt = 0;
|
||||
}
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
tcache_alloc_easy(tcache_bin_t *tbin)
|
||||
{
|
||||
void *ret;
|
||||
|
||||
if (tbin->ncached == 0) {
|
||||
tbin->low_water = -1;
|
||||
return (NULL);
|
||||
}
|
||||
tbin->ncached--;
|
||||
if ((int)tbin->ncached < tbin->low_water)
|
||||
tbin->low_water = tbin->ncached;
|
||||
ret = tbin->avail[tbin->ncached];
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
tcache_alloc_small(tcache_t *tcache, size_t size, bool zero)
|
||||
{
|
||||
void *ret;
|
||||
size_t binind;
|
||||
tcache_bin_t *tbin;
|
||||
|
||||
binind = SMALL_SIZE2BIN(size);
|
||||
assert(binind < nbins);
|
||||
tbin = &tcache->tbins[binind];
|
||||
ret = tcache_alloc_easy(tbin);
|
||||
if (ret == NULL) {
|
||||
ret = tcache_alloc_small_hard(tcache, tbin, binind);
|
||||
if (ret == NULL)
|
||||
return (NULL);
|
||||
}
|
||||
assert(arena_salloc(ret) == arena_bin_info[binind].reg_size);
|
||||
|
||||
if (zero == false) {
|
||||
#ifdef JEMALLOC_FILL
|
||||
if (opt_junk)
|
||||
memset(ret, 0xa5, size);
|
||||
else if (opt_zero)
|
||||
memset(ret, 0, size);
|
||||
#endif
|
||||
} else
|
||||
memset(ret, 0, size);
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
tbin->tstats.nrequests++;
|
||||
#endif
|
||||
#ifdef JEMALLOC_PROF
|
||||
tcache->prof_accumbytes += arena_bin_info[binind].reg_size;
|
||||
#endif
|
||||
tcache_event(tcache);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void *
|
||||
tcache_alloc_large(tcache_t *tcache, size_t size, bool zero)
|
||||
{
|
||||
void *ret;
|
||||
size_t binind;
|
||||
tcache_bin_t *tbin;
|
||||
|
||||
size = PAGE_CEILING(size);
|
||||
assert(size <= tcache_maxclass);
|
||||
binind = nbins + (size >> PAGE_SHIFT) - 1;
|
||||
assert(binind < nhbins);
|
||||
tbin = &tcache->tbins[binind];
|
||||
ret = tcache_alloc_easy(tbin);
|
||||
if (ret == NULL) {
|
||||
/*
|
||||
* Only allocate one large object at a time, because it's quite
|
||||
* expensive to create one and not use it.
|
||||
*/
|
||||
ret = arena_malloc_large(tcache->arena, size, zero);
|
||||
if (ret == NULL)
|
||||
return (NULL);
|
||||
} else {
|
||||
#ifdef JEMALLOC_PROF
|
||||
arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
|
||||
size_t pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
|
||||
PAGE_SHIFT);
|
||||
chunk->map[pageind-map_bias].bits &= ~CHUNK_MAP_CLASS_MASK;
|
||||
#endif
|
||||
if (zero == false) {
|
||||
#ifdef JEMALLOC_FILL
|
||||
if (opt_junk)
|
||||
memset(ret, 0xa5, size);
|
||||
else if (opt_zero)
|
||||
memset(ret, 0, size);
|
||||
#endif
|
||||
} else
|
||||
memset(ret, 0, size);
|
||||
|
||||
#ifdef JEMALLOC_STATS
|
||||
tbin->tstats.nrequests++;
|
||||
#endif
|
||||
#ifdef JEMALLOC_PROF
|
||||
tcache->prof_accumbytes += size;
|
||||
#endif
|
||||
}
|
||||
|
||||
tcache_event(tcache);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
tcache_dalloc_small(tcache_t *tcache, void *ptr)
|
||||
{
|
||||
arena_t *arena;
|
||||
arena_chunk_t *chunk;
|
||||
arena_run_t *run;
|
||||
arena_bin_t *bin;
|
||||
tcache_bin_t *tbin;
|
||||
tcache_bin_info_t *tbin_info;
|
||||
size_t pageind, binind;
|
||||
arena_chunk_map_t *mapelm;
|
||||
|
||||
assert(arena_salloc(ptr) <= small_maxclass);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
arena = chunk->arena;
|
||||
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
||||
mapelm = &chunk->map[pageind-map_bias];
|
||||
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
|
||||
(mapelm->bits >> PAGE_SHIFT)) << PAGE_SHIFT));
|
||||
dassert(run->magic == ARENA_RUN_MAGIC);
|
||||
bin = run->bin;
|
||||
binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
|
||||
sizeof(arena_bin_t);
|
||||
assert(binind < nbins);
|
||||
|
||||
#ifdef JEMALLOC_FILL
|
||||
if (opt_junk)
|
||||
memset(ptr, 0x5a, arena_bin_info[binind].reg_size);
|
||||
#endif
|
||||
|
||||
tbin = &tcache->tbins[binind];
|
||||
tbin_info = &tcache_bin_info[binind];
|
||||
if (tbin->ncached == tbin_info->ncached_max) {
|
||||
tcache_bin_flush_small(tbin, binind, (tbin_info->ncached_max >>
|
||||
1)
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache
|
||||
#endif
|
||||
);
|
||||
}
|
||||
assert(tbin->ncached < tbin_info->ncached_max);
|
||||
tbin->avail[tbin->ncached] = ptr;
|
||||
tbin->ncached++;
|
||||
|
||||
tcache_event(tcache);
|
||||
}
|
||||
|
||||
JEMALLOC_INLINE void
|
||||
tcache_dalloc_large(tcache_t *tcache, void *ptr, size_t size)
|
||||
{
|
||||
arena_t *arena;
|
||||
arena_chunk_t *chunk;
|
||||
size_t pageind, binind;
|
||||
tcache_bin_t *tbin;
|
||||
tcache_bin_info_t *tbin_info;
|
||||
|
||||
assert((size & PAGE_MASK) == 0);
|
||||
assert(arena_salloc(ptr) > small_maxclass);
|
||||
assert(arena_salloc(ptr) <= tcache_maxclass);
|
||||
|
||||
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
|
||||
arena = chunk->arena;
|
||||
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT;
|
||||
binind = nbins + (size >> PAGE_SHIFT) - 1;
|
||||
|
||||
#ifdef JEMALLOC_FILL
|
||||
if (opt_junk)
|
||||
memset(ptr, 0x5a, size);
|
||||
#endif
|
||||
|
||||
tbin = &tcache->tbins[binind];
|
||||
tbin_info = &tcache_bin_info[binind];
|
||||
if (tbin->ncached == tbin_info->ncached_max) {
|
||||
tcache_bin_flush_large(tbin, binind, (tbin_info->ncached_max >>
|
||||
1)
|
||||
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
|
||||
, tcache
|
||||
#endif
|
||||
);
|
||||
}
|
||||
assert(tbin->ncached < tbin_info->ncached_max);
|
||||
tbin->avail[tbin->ncached] = ptr;
|
||||
tbin->ncached++;
|
||||
|
||||
tcache_event(tcache);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
||||
#endif /* JEMALLOC_TCACHE */
|
23
deps/jemalloc/include/jemalloc/internal/zone.h
vendored
Normal file
23
deps/jemalloc/include/jemalloc/internal/zone.h
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
#ifndef JEMALLOC_ZONE
|
||||
# error "This source file is for zones on Darwin (OS X)."
|
||||
#endif
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_TYPES
|
||||
|
||||
#endif /* JEMALLOC_H_TYPES */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_STRUCTS
|
||||
|
||||
#endif /* JEMALLOC_H_STRUCTS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_EXTERNS
|
||||
|
||||
malloc_zone_t *create_zone(void);
|
||||
void szone2ozone(malloc_zone_t *zone);
|
||||
|
||||
#endif /* JEMALLOC_H_EXTERNS */
|
||||
/******************************************************************************/
|
||||
#ifdef JEMALLOC_H_INLINES
|
||||
|
||||
#endif /* JEMALLOC_H_INLINES */
|
||||
/******************************************************************************/
|
66
deps/jemalloc/include/jemalloc/jemalloc.h.in
vendored
Normal file
66
deps/jemalloc/include/jemalloc/jemalloc.h.in
vendored
Normal file
@ -0,0 +1,66 @@
|
||||
#ifndef JEMALLOC_H_
|
||||
#define JEMALLOC_H_
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
#include <strings.h>
|
||||
|
||||
#define JEMALLOC_VERSION "@jemalloc_version@"
|
||||
#define JEMALLOC_VERSION_MAJOR @jemalloc_version_major@
|
||||
#define JEMALLOC_VERSION_MINOR @jemalloc_version_minor@
|
||||
#define JEMALLOC_VERSION_BUGFIX @jemalloc_version_bugfix@
|
||||
#define JEMALLOC_VERSION_NREV @jemalloc_version_nrev@
|
||||
#define JEMALLOC_VERSION_GID "@jemalloc_version_gid@"
|
||||
|
||||
#include "jemalloc_defs@install_suffix@.h"
|
||||
#ifndef JEMALLOC_P
|
||||
# define JEMALLOC_P(s) s
|
||||
#endif
|
||||
|
||||
#define ALLOCM_LG_ALIGN(la) (la)
|
||||
#if LG_SIZEOF_PTR == 2
|
||||
#define ALLOCM_ALIGN(a) (ffs(a)-1)
|
||||
#else
|
||||
#define ALLOCM_ALIGN(a) ((a < (size_t)INT_MAX) ? ffs(a)-1 : ffs(a>>32)+31)
|
||||
#endif
|
||||
#define ALLOCM_ZERO ((int)0x40)
|
||||
#define ALLOCM_NO_MOVE ((int)0x80)
|
||||
|
||||
#define ALLOCM_SUCCESS 0
|
||||
#define ALLOCM_ERR_OOM 1
|
||||
#define ALLOCM_ERR_NOT_MOVED 2
|
||||
|
||||
extern const char *JEMALLOC_P(malloc_conf);
|
||||
extern void (*JEMALLOC_P(malloc_message))(void *, const char *);
|
||||
|
||||
void *JEMALLOC_P(malloc)(size_t size) JEMALLOC_ATTR(malloc);
|
||||
void *JEMALLOC_P(calloc)(size_t num, size_t size) JEMALLOC_ATTR(malloc);
|
||||
int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
|
||||
JEMALLOC_ATTR(nonnull(1));
|
||||
void *JEMALLOC_P(realloc)(void *ptr, size_t size);
|
||||
void JEMALLOC_P(free)(void *ptr);
|
||||
|
||||
size_t JEMALLOC_P(malloc_usable_size)(const void *ptr);
|
||||
void JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *),
|
||||
void *cbopaque, const char *opts);
|
||||
int JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp,
|
||||
void *newp, size_t newlen);
|
||||
int JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp,
|
||||
size_t *miblenp);
|
||||
int JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp,
|
||||
size_t *oldlenp, void *newp, size_t newlen);
|
||||
|
||||
int JEMALLOC_P(allocm)(void **ptr, size_t *rsize, size_t size, int flags)
|
||||
JEMALLOC_ATTR(nonnull(1));
|
||||
int JEMALLOC_P(rallocm)(void **ptr, size_t *rsize, size_t size,
|
||||
size_t extra, int flags) JEMALLOC_ATTR(nonnull(1));
|
||||
int JEMALLOC_P(sallocm)(const void *ptr, size_t *rsize, int flags)
|
||||
JEMALLOC_ATTR(nonnull(1));
|
||||
int JEMALLOC_P(dallocm)(void *ptr, int flags) JEMALLOC_ATTR(nonnull(1));
|
||||
|
||||
#ifdef __cplusplus
|
||||
};
|
||||
#endif
|
||||
#endif /* JEMALLOC_H_ */
|
158
deps/jemalloc/include/jemalloc/jemalloc_defs.h.in
vendored
Normal file
158
deps/jemalloc/include/jemalloc/jemalloc_defs.h.in
vendored
Normal file
@ -0,0 +1,158 @@
|
||||
#ifndef JEMALLOC_DEFS_H_
|
||||
#define JEMALLOC_DEFS_H_
|
||||
|
||||
/*
|
||||
* If JEMALLOC_PREFIX is defined, it will cause all public APIs to be prefixed.
|
||||
* This makes it possible, with some care, to use multiple allocators
|
||||
* simultaneously.
|
||||
*
|
||||
* In many cases it is more convenient to manually prefix allocator function
|
||||
* calls than to let macros do it automatically, particularly when using
|
||||
* multiple allocators simultaneously. Define JEMALLOC_MANGLE before
|
||||
* #include'ing jemalloc.h in order to cause name mangling that corresponds to
|
||||
* the API prefixing.
|
||||
*/
|
||||
#undef JEMALLOC_PREFIX
|
||||
#undef JEMALLOC_CPREFIX
|
||||
#if (defined(JEMALLOC_PREFIX) && defined(JEMALLOC_MANGLE))
|
||||
#undef JEMALLOC_P
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Hyper-threaded CPUs may need a special instruction inside spin loops in
|
||||
* order to yield to another virtual CPU.
|
||||
*/
|
||||
#undef CPU_SPINWAIT
|
||||
|
||||
/*
|
||||
* Defined if OSAtomic*() functions are available, as provided by Darwin, and
|
||||
* documented in the atomic(3) manual page.
|
||||
*/
|
||||
#undef JEMALLOC_OSATOMIC
|
||||
|
||||
/*
|
||||
* Defined if OSSpin*() functions are available, as provided by Darwin, and
|
||||
* documented in the spinlock(3) manual page.
|
||||
*/
|
||||
#undef JEMALLOC_OSSPIN
|
||||
|
||||
/* Defined if __attribute__((...)) syntax is supported. */
|
||||
#undef JEMALLOC_HAVE_ATTR
|
||||
#ifdef JEMALLOC_HAVE_ATTR
|
||||
# define JEMALLOC_ATTR(s) __attribute__((s))
|
||||
#else
|
||||
# define JEMALLOC_ATTR(s)
|
||||
#endif
|
||||
|
||||
/* JEMALLOC_CC_SILENCE enables code that silences unuseful compiler warnings. */
|
||||
#undef JEMALLOC_CC_SILENCE
|
||||
|
||||
/*
|
||||
* JEMALLOC_DEBUG enables assertions and other sanity checks, and disables
|
||||
* inline functions.
|
||||
*/
|
||||
#undef JEMALLOC_DEBUG
|
||||
|
||||
/* JEMALLOC_STATS enables statistics calculation. */
|
||||
#undef JEMALLOC_STATS
|
||||
|
||||
/* JEMALLOC_PROF enables allocation profiling. */
|
||||
#undef JEMALLOC_PROF
|
||||
|
||||
/* Use libunwind for profile backtracing if defined. */
|
||||
#undef JEMALLOC_PROF_LIBUNWIND
|
||||
|
||||
/* Use libgcc for profile backtracing if defined. */
|
||||
#undef JEMALLOC_PROF_LIBGCC
|
||||
|
||||
/* Use gcc intrinsics for profile backtracing if defined. */
|
||||
#undef JEMALLOC_PROF_GCC
|
||||
|
||||
/*
|
||||
* JEMALLOC_TINY enables support for tiny objects, which are smaller than one
|
||||
* quantum.
|
||||
*/
|
||||
#undef JEMALLOC_TINY
|
||||
|
||||
/*
|
||||
* JEMALLOC_TCACHE enables a thread-specific caching layer for small objects.
|
||||
* This makes it possible to allocate/deallocate objects without any locking
|
||||
* when the cache is in the steady state.
|
||||
*/
|
||||
#undef JEMALLOC_TCACHE
|
||||
|
||||
/*
|
||||
* JEMALLOC_DSS enables use of sbrk(2) to allocate chunks from the data storage
|
||||
* segment (DSS).
|
||||
*/
|
||||
#undef JEMALLOC_DSS
|
||||
|
||||
/* JEMALLOC_SWAP enables mmap()ed swap file support. */
|
||||
#undef JEMALLOC_SWAP
|
||||
|
||||
/* Support memory filling (junk/zero). */
|
||||
#undef JEMALLOC_FILL
|
||||
|
||||
/* Support optional abort() on OOM. */
|
||||
#undef JEMALLOC_XMALLOC
|
||||
|
||||
/* Support SYSV semantics. */
|
||||
#undef JEMALLOC_SYSV
|
||||
|
||||
/* Support lazy locking (avoid locking unless a second thread is launched). */
|
||||
#undef JEMALLOC_LAZY_LOCK
|
||||
|
||||
/* Determine page size at run time if defined. */
|
||||
#undef DYNAMIC_PAGE_SHIFT
|
||||
|
||||
/* One page is 2^STATIC_PAGE_SHIFT bytes. */
|
||||
#undef STATIC_PAGE_SHIFT
|
||||
|
||||
/* TLS is used to map arenas and magazine caches to threads. */
|
||||
#undef NO_TLS
|
||||
|
||||
/*
|
||||
* JEMALLOC_IVSALLOC enables ivsalloc(), which verifies that pointers reside
|
||||
* within jemalloc-owned chunks before dereferencing them.
|
||||
*/
|
||||
#undef JEMALLOC_IVSALLOC
|
||||
|
||||
/*
|
||||
* Define overrides for non-standard allocator-related functions if they
|
||||
* are present on the system.
|
||||
*/
|
||||
#undef JEMALLOC_OVERRIDE_MEMALIGN
|
||||
#undef JEMALLOC_OVERRIDE_VALLOC
|
||||
|
||||
/*
|
||||
* Darwin (OS X) uses zones to work around Mach-O symbol override shortcomings.
|
||||
*/
|
||||
#undef JEMALLOC_ZONE
|
||||
#undef JEMALLOC_ZONE_VERSION
|
||||
|
||||
/* If defined, use mremap(...MREMAP_FIXED...) for huge realloc(). */
|
||||
#undef JEMALLOC_MREMAP_FIXED
|
||||
|
||||
/*
|
||||
* Methods for purging unused pages differ between operating systems.
|
||||
*
|
||||
* madvise(..., MADV_DONTNEED) : On Linux, this immediately discards pages,
|
||||
* such that new pages will be demand-zeroed if
|
||||
* the address region is later touched.
|
||||
* madvise(..., MADV_FREE) : On FreeBSD and Darwin, this marks pages as being
|
||||
* unused, such that they will be discarded rather
|
||||
* than swapped out.
|
||||
*/
|
||||
#undef JEMALLOC_PURGE_MADVISE_DONTNEED
|
||||
#undef JEMALLOC_PURGE_MADVISE_FREE
|
||||
|
||||
/* sizeof(void *) == 2^LG_SIZEOF_PTR. */
|
||||
#undef LG_SIZEOF_PTR
|
||||
|
||||
/* sizeof(int) == 2^LG_SIZEOF_INT. */
|
||||
#undef LG_SIZEOF_INT
|
||||
|
||||
/* sizeof(long) == 2^LG_SIZEOF_LONG. */
|
||||
#undef LG_SIZEOF_LONG
|
||||
|
||||
#endif /* JEMALLOC_DEFS_H_ */
|
Reference in New Issue
Block a user