mirror of
https://github.com/fluencelabs/redis
synced 2025-06-29 08:51:33 +00:00
LOLWUT: refactoring + skeleton of LOLWUT 6.
This commit is contained in:
121
src/lolwut.c
121
src/lolwut.c
@ -34,8 +34,11 @@
|
||||
*/
|
||||
|
||||
#include "server.h"
|
||||
#include "lolwut.h"
|
||||
#include <math.h>
|
||||
|
||||
void lolwut5Command(client *c);
|
||||
void lolwut6Command(client *c);
|
||||
|
||||
/* The default target for LOLWUT if no matching version was found.
|
||||
* This is what unstable versions of Redis will display. */
|
||||
@ -47,11 +50,127 @@ void lolwutUnstableCommand(client *c) {
|
||||
sdsfree(rendered);
|
||||
}
|
||||
|
||||
/* LOLWUT [<version>] */
|
||||
void lolwutCommand(client *c) {
|
||||
char *v = REDIS_VERSION;
|
||||
if ((v[0] == '5' && v[1] == '.') ||
|
||||
char verstr[64];
|
||||
|
||||
if (c->argc == 2) {
|
||||
long ver;
|
||||
if (getLongFromObjectOrReply(c,c->argv[1],&ver,NULL) != C_OK) return;
|
||||
snprintf(verstr,sizeof(verstr),"%u.0.0",(unsigned int)ver);
|
||||
v = verstr;
|
||||
}
|
||||
|
||||
if ((v[0] == '5' && v[1] == '.' && v[2] != '9') ||
|
||||
(v[0] == '4' && v[1] == '.' && v[2] == '9'))
|
||||
lolwut5Command(c);
|
||||
else if ((v[0] == '6' && v[1] == '.' && v[2] != '9') ||
|
||||
(v[0] == '5' && v[1] == '.' && v[2] == '9'))
|
||||
lolwut6Command(c);
|
||||
else
|
||||
lolwutUnstableCommand(c);
|
||||
}
|
||||
|
||||
/* ========================== LOLWUT Canvase ===============================
|
||||
* Many LOWUT versions will likely print some computer art to the screen.
|
||||
* This is the case with LOLWUT 5 and LOLWUT 6, so here there is a generic
|
||||
* canvas implementation that can be reused. */
|
||||
|
||||
/* Allocate and return a new canvas of the specified size. */
|
||||
lwCanvas *lwCreateCanvas(int width, int height) {
|
||||
lwCanvas *canvas = zmalloc(sizeof(*canvas));
|
||||
canvas->width = width;
|
||||
canvas->height = height;
|
||||
canvas->pixels = zmalloc(width*height);
|
||||
memset(canvas->pixels,0,width*height);
|
||||
return canvas;
|
||||
}
|
||||
|
||||
/* Free the canvas created by lwCreateCanvas(). */
|
||||
void lwFreeCanvas(lwCanvas *canvas) {
|
||||
zfree(canvas->pixels);
|
||||
zfree(canvas);
|
||||
}
|
||||
|
||||
/* Set a pixel to the specified color. Color is 0 or 1, where zero means no
|
||||
* dot will be displyed, and 1 means dot will be displayed.
|
||||
* Coordinates are arranged so that left-top corner is 0,0. You can write
|
||||
* out of the size of the canvas without issues. */
|
||||
void lwDrawPixel(lwCanvas *canvas, int x, int y, int color) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return;
|
||||
canvas->pixels[x+y*canvas->width] = color;
|
||||
}
|
||||
|
||||
/* Return the value of the specified pixel on the canvas. */
|
||||
int lwGetPixel(lwCanvas *canvas, int x, int y) {
|
||||
if (x < 0 || x >= canvas->width ||
|
||||
y < 0 || y >= canvas->height) return 0;
|
||||
return canvas->pixels[x+y*canvas->width];
|
||||
}
|
||||
|
||||
/* Draw a line from x1,y1 to x2,y2 using the Bresenham algorithm. */
|
||||
void lwDrawLine(lwCanvas *canvas, int x1, int y1, int x2, int y2, int color) {
|
||||
int dx = abs(x2-x1);
|
||||
int dy = abs(y2-y1);
|
||||
int sx = (x1 < x2) ? 1 : -1;
|
||||
int sy = (y1 < y2) ? 1 : -1;
|
||||
int err = dx-dy, e2;
|
||||
|
||||
while(1) {
|
||||
lwDrawPixel(canvas,x1,y1,color);
|
||||
if (x1 == x2 && y1 == y2) break;
|
||||
e2 = err*2;
|
||||
if (e2 > -dy) {
|
||||
err -= dy;
|
||||
x1 += sx;
|
||||
}
|
||||
if (e2 < dx) {
|
||||
err += dx;
|
||||
y1 += sy;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Draw a square centered at the specified x,y coordinates, with the specified
|
||||
* rotation angle and size. In order to write a rotated square, we use the
|
||||
* trivial fact that the parametric equation:
|
||||
*
|
||||
* x = sin(k)
|
||||
* y = cos(k)
|
||||
*
|
||||
* Describes a circle for values going from 0 to 2*PI. So basically if we start
|
||||
* at 45 degrees, that is k = PI/4, with the first point, and then we find
|
||||
* the other three points incrementing K by PI/2 (90 degrees), we'll have the
|
||||
* points of the square. In order to rotate the square, we just start with
|
||||
* k = PI/4 + rotation_angle, and we are done.
|
||||
*
|
||||
* Of course the vanilla equations above will describe the square inside a
|
||||
* circle of radius 1, so in order to draw larger squares we'll have to
|
||||
* multiply the obtained coordinates, and then translate them. However this
|
||||
* is much simpler than implementing the abstract concept of 2D shape and then
|
||||
* performing the rotation/translation transformation, so for LOLWUT it's
|
||||
* a good approach. */
|
||||
void lwDrawSquare(lwCanvas *canvas, int x, int y, float size, float angle, int color) {
|
||||
int px[4], py[4];
|
||||
|
||||
/* Adjust the desired size according to the fact that the square inscribed
|
||||
* into a circle of radius 1 has the side of length SQRT(2). This way
|
||||
* size becomes a simple multiplication factor we can use with our
|
||||
* coordinates to magnify them. */
|
||||
size /= 1.4142135623;
|
||||
size = round(size);
|
||||
|
||||
/* Compute the four points. */
|
||||
float k = M_PI/4 + angle;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
px[j] = round(sin(k) * size + x);
|
||||
py[j] = round(cos(k) * size + y);
|
||||
k += M_PI/2;
|
||||
}
|
||||
|
||||
/* Draw the square. */
|
||||
for (int j = 0; j < 4; j++)
|
||||
lwDrawLine(canvas,px[j],py[j],px[(j+1)%4],py[(j+1)%4],color);
|
||||
}
|
||||
|
Reference in New Issue
Block a user