Jemalloc upgraded to version 5.0.1.

This commit is contained in:
antirez
2018-05-24 17:17:37 +02:00
parent 8f4e2075a7
commit 08e1c8e820
300 changed files with 40996 additions and 35024 deletions

View File

@ -33,7 +33,7 @@
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
/**
* @file SFMT.c
* @brief SIMD oriented Fast Mersenne Twister(SFMT)
*
@ -45,7 +45,7 @@
*
* The new BSD License is applied to this software, see LICENSE.txt
*/
#define SFMT_C_
#define SFMT_C_
#include "test/jemalloc_test.h"
#include "test/SFMT-params.h"
@ -108,7 +108,7 @@ struct sfmt_s {
/*--------------------------------------
FILE GLOBAL VARIABLES
internal state, index counter and flag
internal state, index counter and flag
--------------------------------------*/
/** a parity check vector which certificate the period of 2^{MEXP} */
@ -117,18 +117,18 @@ static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
/*----------------
STATIC FUNCTIONS
----------------*/
JEMALLOC_INLINE_C int idxof(int i);
static inline int idxof(int i);
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift);
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift);
static inline void rshift128(w128_t *out, w128_t const *in, int shift);
static inline void lshift128(w128_t *out, w128_t const *in, int shift);
#endif
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx);
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
JEMALLOC_INLINE_C uint32_t func1(uint32_t x);
JEMALLOC_INLINE_C uint32_t func2(uint32_t x);
static inline void gen_rand_all(sfmt_t *ctx);
static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size);
static inline uint32_t func1(uint32_t x);
static inline uint32_t func2(uint32_t x);
static void period_certification(sfmt_t *ctx);
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
JEMALLOC_INLINE_C void swap(w128_t *array, int size);
static inline void swap(w128_t *array, int size);
#endif
#if defined(HAVE_ALTIVEC)
@ -138,15 +138,15 @@ JEMALLOC_INLINE_C void swap(w128_t *array, int size);
#endif
/**
* This function simulate a 64-bit index of LITTLE ENDIAN
* This function simulate a 64-bit index of LITTLE ENDIAN
* in BIG ENDIAN machine.
*/
#ifdef ONLY64
JEMALLOC_INLINE_C int idxof(int i) {
static inline int idxof(int i) {
return i ^ 1;
}
#else
JEMALLOC_INLINE_C int idxof(int i) {
static inline int idxof(int i) {
return i;
}
#endif
@ -160,7 +160,7 @@ JEMALLOC_INLINE_C int idxof(int i) {
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
@ -175,7 +175,7 @@ JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
static inline void rshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
@ -199,7 +199,7 @@ JEMALLOC_INLINE_C void rshift128(w128_t *out, w128_t const *in, int shift) {
* @param shift the shift value
*/
#ifdef ONLY64
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
@ -214,7 +214,7 @@ JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
out->u[3] = (uint32_t)oh;
}
#else
JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
static inline void lshift128(w128_t *out, w128_t const *in, int shift) {
uint64_t th, tl, oh, ol;
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
@ -241,37 +241,37 @@ JEMALLOC_INLINE_C void lshift128(w128_t *out, w128_t const *in, int shift) {
*/
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
#ifdef ONLY64
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
^ (d->u[3] << SL1);
}
#else
JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
static inline void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
w128_t *d) {
w128_t x;
w128_t y;
lshift128(&x, a, SL2);
rshift128(&y, c, SR2);
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
^ (d->u[0] << SL1);
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
^ (d->u[1] << SL1);
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
^ (d->u[2] << SL1);
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
^ (d->u[3] << SL1);
}
#endif
@ -282,7 +282,7 @@ JEMALLOC_INLINE_C void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
* This function fills the internal state array with pseudorandom
* integers.
*/
JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) {
static inline void gen_rand_all(sfmt_t *ctx) {
int i;
w128_t *r1, *r2;
@ -306,10 +306,10 @@ JEMALLOC_INLINE_C void gen_rand_all(sfmt_t *ctx) {
* This function fills the user-specified array with pseudorandom
* integers.
*
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param array an 128-bit array to be filled by pseudorandom numbers.
* @param size number of 128-bit pseudorandom numbers to be generated.
*/
JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
static inline void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
int i, j;
w128_t *r1, *r2;
@ -343,7 +343,7 @@ JEMALLOC_INLINE_C void gen_rand_array(sfmt_t *ctx, w128_t *array, int size) {
#endif
#if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC)
JEMALLOC_INLINE_C void swap(w128_t *array, int size) {
static inline void swap(w128_t *array, int size) {
int i;
uint32_t x, y;
@ -476,7 +476,7 @@ uint32_t gen_rand32_range(sfmt_t *ctx, uint32_t limit) {
* This function generates and returns 64-bit pseudorandom number.
* init_gen_rand or init_by_array must be called before this function.
* The function gen_rand64 should not be called after gen_rand32,
* unless an initialization is again executed.
* unless an initialization is again executed.
* @return 64-bit pseudorandom number
*/
uint64_t gen_rand64(sfmt_t *ctx) {
@ -618,7 +618,7 @@ sfmt_t *init_gen_rand(uint32_t seed) {
psfmt32[idxof(0)] = seed;
for (i = 1; i < N32; i++) {
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
^ (psfmt32[idxof(i - 1)] >> 30))
+ i;
}
@ -668,7 +668,7 @@ sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
} else {
count = N32;
}
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
^ psfmt32[idxof(N32 - 1)]);
psfmt32[idxof(mid)] += r;
r += key_length;
@ -677,7 +677,7 @@ sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
count--;
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += init_key[j] + i;
@ -686,7 +686,7 @@ sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
i = (i + 1) % N32;
}
for (; j < count; j++) {
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
^ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] += r;
r += i;
@ -695,7 +695,7 @@ sfmt_t *init_by_array(uint32_t *init_key, int key_length) {
i = (i + 1) % N32;
}
for (j = 0; j < N32; j++) {
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
+ psfmt32[idxof((i + N32 - 1) % N32)]);
psfmt32[idxof((i + mid) % N32)] ^= r;
r -= i;

View File

@ -1,8 +1,6 @@
#include "test/jemalloc_test.h"
void *
btalloc(size_t size, unsigned bits)
{
return (btalloc_0(size, bits));
btalloc(size_t size, unsigned bits) {
return btalloc_0(size, bits);
}

View File

@ -1,2 +1,2 @@
#define MATH_C_
#define MATH_C_
#include "test/jemalloc_test.h"

View File

@ -5,9 +5,7 @@
* time is guaranteed.
*/
void
mq_nanosleep(unsigned ns)
{
mq_nanosleep(unsigned ns) {
assert(ns <= 1000*1000*1000);
#ifdef _WIN32

View File

@ -1,38 +1,40 @@
#include "test/jemalloc_test.h"
#ifndef _CRT_SPINCOUNT
#define _CRT_SPINCOUNT 4000
#define _CRT_SPINCOUNT 4000
#endif
bool
mtx_init(mtx_t *mtx)
{
mtx_init(mtx_t *mtx) {
#ifdef _WIN32
if (!InitializeCriticalSectionAndSpinCount(&mtx->lock, _CRT_SPINCOUNT))
return (true);
if (!InitializeCriticalSectionAndSpinCount(&mtx->lock,
_CRT_SPINCOUNT)) {
return true;
}
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
mtx->lock = OS_UNFAIR_LOCK_INIT;
#elif (defined(JEMALLOC_OSSPIN))
mtx->lock = 0;
#else
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
if (pthread_mutexattr_init(&attr) != 0) {
return true;
}
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_DEFAULT);
if (pthread_mutex_init(&mtx->lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
return true;
}
pthread_mutexattr_destroy(&attr);
#endif
return (false);
return false;
}
void
mtx_fini(mtx_t *mtx)
{
mtx_fini(mtx_t *mtx) {
#ifdef _WIN32
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
#elif (defined(JEMALLOC_OSSPIN))
#else
pthread_mutex_destroy(&mtx->lock);
@ -40,11 +42,11 @@ mtx_fini(mtx_t *mtx)
}
void
mtx_lock(mtx_t *mtx)
{
mtx_lock(mtx_t *mtx) {
#ifdef _WIN32
EnterCriticalSection(&mtx->lock);
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock_lock(&mtx->lock);
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLockLock(&mtx->lock);
#else
@ -53,11 +55,11 @@ mtx_lock(mtx_t *mtx)
}
void
mtx_unlock(mtx_t *mtx)
{
mtx_unlock(mtx_t *mtx) {
#ifdef _WIN32
LeaveCriticalSection(&mtx->lock);
#elif (defined(JEMALLOC_OS_UNFAIR_LOCK))
os_unfair_lock_unlock(&mtx->lock);
#elif (defined(JEMALLOC_OSSPIN))
OSSpinLockUnlock(&mtx->lock);
#else

View File

@ -1,14 +1,70 @@
#include "test/jemalloc_test.h"
/* Test status state. */
static unsigned test_count = 0;
static test_status_t test_counts[test_status_count] = {0, 0, 0};
static test_status_t test_status = test_status_pass;
static const char * test_name = "";
/* Reentrancy testing helpers. */
#define NUM_REENTRANT_ALLOCS 20
typedef enum {
non_reentrant = 0,
libc_reentrant = 1,
arena_new_reentrant = 2
} reentrancy_t;
static reentrancy_t reentrancy;
static bool libc_hook_ran = false;
static bool arena_new_hook_ran = false;
static const char *
reentrancy_t_str(reentrancy_t r) {
switch (r) {
case non_reentrant:
return "non-reentrant";
case libc_reentrant:
return "libc-reentrant";
case arena_new_reentrant:
return "arena_new-reentrant";
default:
unreachable();
}
}
static void
do_hook(bool *hook_ran, void (**hook)()) {
*hook_ran = true;
*hook = NULL;
size_t alloc_size = 1;
for (int i = 0; i < NUM_REENTRANT_ALLOCS; i++) {
free(malloc(alloc_size));
alloc_size *= 2;
}
}
static void
libc_reentrancy_hook() {
do_hook(&libc_hook_ran, &hooks_libc_hook);
}
static void
arena_new_reentrancy_hook() {
do_hook(&arena_new_hook_ran, &hooks_arena_new_hook);
}
/* Actual test infrastructure. */
bool
test_is_reentrant() {
return reentrancy != non_reentrant;
}
JEMALLOC_FORMAT_PRINTF(1, 2)
void
test_skip(const char *format, ...)
{
test_skip(const char *format, ...) {
va_list ap;
va_start(ap, format);
@ -20,8 +76,7 @@ test_skip(const char *format, ...)
JEMALLOC_FORMAT_PRINTF(1, 2)
void
test_fail(const char *format, ...)
{
test_fail(const char *format, ...) {
va_list ap;
va_start(ap, format);
@ -32,9 +87,7 @@ test_fail(const char *format, ...)
}
static const char *
test_status_string(test_status_t test_status)
{
test_status_string(test_status_t test_status) {
switch (test_status) {
case test_status_pass: return "pass";
case test_status_skip: return "skip";
@ -44,48 +97,64 @@ test_status_string(test_status_t test_status)
}
void
p_test_init(const char *name)
{
p_test_init(const char *name) {
test_count++;
test_status = test_status_pass;
test_name = name;
}
void
p_test_fini(void)
{
p_test_fini(void) {
test_counts[test_status]++;
malloc_printf("%s: %s\n", test_name, test_status_string(test_status));
malloc_printf("%s (%s): %s\n", test_name, reentrancy_t_str(reentrancy),
test_status_string(test_status));
}
test_status_t
p_test(test_t *t, ...)
{
static test_status_t
p_test_impl(bool do_malloc_init, bool do_reentrant, test_t *t, va_list ap) {
test_status_t ret;
va_list ap;
/*
* Make sure initialization occurs prior to running tests. Tests are
* special because they may use internal facilities prior to triggering
* initialization as a side effect of calling into the public API. This
* is a final safety that works even if jemalloc_constructor() doesn't
* run, as for MSVC builds.
*/
if (nallocx(1, 0) == 0) {
malloc_printf("Initialization error");
return (test_status_fail);
if (do_malloc_init) {
/*
* Make sure initialization occurs prior to running tests.
* Tests are special because they may use internal facilities
* prior to triggering initialization as a side effect of
* calling into the public API.
*/
if (nallocx(1, 0) == 0) {
malloc_printf("Initialization error");
return test_status_fail;
}
}
ret = test_status_pass;
va_start(ap, t);
for (; t != NULL; t = va_arg(ap, test_t *)) {
/* Non-reentrant run. */
reentrancy = non_reentrant;
hooks_arena_new_hook = hooks_libc_hook = NULL;
t();
if (test_status > ret)
if (test_status > ret) {
ret = test_status;
}
/* Reentrant run. */
if (do_reentrant) {
reentrancy = libc_reentrant;
hooks_arena_new_hook = NULL;
hooks_libc_hook = &libc_reentrancy_hook;
t();
if (test_status > ret) {
ret = test_status;
}
reentrancy = arena_new_reentrant;
hooks_libc_hook = NULL;
hooks_arena_new_hook = &arena_new_reentrancy_hook;
t();
if (test_status > ret) {
ret = test_status;
}
}
}
va_end(ap);
malloc_printf("--- %s: %u/%u, %s: %u/%u, %s: %u/%u ---\n",
test_status_string(test_status_pass),
@ -95,13 +164,54 @@ p_test(test_t *t, ...)
test_status_string(test_status_fail),
test_counts[test_status_fail], test_count);
return (ret);
return ret;
}
test_status_t
p_test(test_t *t, ...) {
test_status_t ret;
va_list ap;
ret = test_status_pass;
va_start(ap, t);
ret = p_test_impl(true, true, t, ap);
va_end(ap);
return ret;
}
test_status_t
p_test_no_reentrancy(test_t *t, ...) {
test_status_t ret;
va_list ap;
ret = test_status_pass;
va_start(ap, t);
ret = p_test_impl(true, false, t, ap);
va_end(ap);
return ret;
}
test_status_t
p_test_no_malloc_init(test_t *t, ...) {
test_status_t ret;
va_list ap;
ret = test_status_pass;
va_start(ap, t);
/*
* We also omit reentrancy from bootstrapping tests, since we don't
* (yet) care about general reentrancy during bootstrapping.
*/
ret = p_test_impl(false, false, t, ap);
va_end(ap);
return ret;
}
void
p_test_fail(const char *prefix, const char *message)
{
p_test_fail(const char *prefix, const char *message) {
malloc_cprintf(NULL, NULL, "%s%s\n", prefix, message);
test_status = test_status_fail;
}

View File

@ -2,18 +2,16 @@
#ifdef _WIN32
void
thd_create(thd_t *thd, void *(*proc)(void *), void *arg)
{
thd_create(thd_t *thd, void *(*proc)(void *), void *arg) {
LPTHREAD_START_ROUTINE routine = (LPTHREAD_START_ROUTINE)proc;
*thd = CreateThread(NULL, 0, routine, arg, 0, NULL);
if (*thd == NULL)
if (*thd == NULL) {
test_fail("Error in CreateThread()\n");
}
}
void
thd_join(thd_t thd, void **ret)
{
thd_join(thd_t thd, void **ret) {
if (WaitForSingleObject(thd, INFINITE) == WAIT_OBJECT_0 && ret) {
DWORD exit_code;
GetExitCodeThread(thd, (LPDWORD) &exit_code);
@ -23,17 +21,14 @@ thd_join(thd_t thd, void **ret)
#else
void
thd_create(thd_t *thd, void *(*proc)(void *), void *arg)
{
if (pthread_create(thd, NULL, proc, arg) != 0)
thd_create(thd_t *thd, void *(*proc)(void *), void *arg) {
if (pthread_create(thd, NULL, proc, arg) != 0) {
test_fail("Error in pthread_create()\n");
}
}
void
thd_join(thd_t thd, void **ret)
{
thd_join(thd_t thd, void **ret) {
pthread_join(thd, ret);
}
#endif

View File

@ -1,73 +1,44 @@
#include "test/jemalloc_test.h"
void
timer_start(timedelta_t *timer)
{
#ifdef _WIN32
GetSystemTimeAsFileTime(&timer->ft0);
#elif JEMALLOC_CLOCK_GETTIME
if (sysconf(_SC_MONOTONIC_CLOCK) <= 0)
timer->clock_id = CLOCK_REALTIME;
else
timer->clock_id = CLOCK_MONOTONIC;
clock_gettime(timer->clock_id, &timer->ts0);
#else
gettimeofday(&timer->tv0, NULL);
#endif
timer_start(timedelta_t *timer) {
nstime_init(&timer->t0, 0);
nstime_update(&timer->t0);
}
void
timer_stop(timedelta_t *timer)
{
#ifdef _WIN32
GetSystemTimeAsFileTime(&timer->ft0);
#elif JEMALLOC_CLOCK_GETTIME
clock_gettime(timer->clock_id, &timer->ts1);
#else
gettimeofday(&timer->tv1, NULL);
#endif
timer_stop(timedelta_t *timer) {
nstime_copy(&timer->t1, &timer->t0);
nstime_update(&timer->t1);
}
uint64_t
timer_usec(const timedelta_t *timer)
{
timer_usec(const timedelta_t *timer) {
nstime_t delta;
#ifdef _WIN32
uint64_t t0, t1;
t0 = (((uint64_t)timer->ft0.dwHighDateTime) << 32) |
timer->ft0.dwLowDateTime;
t1 = (((uint64_t)timer->ft1.dwHighDateTime) << 32) |
timer->ft1.dwLowDateTime;
return ((t1 - t0) / 10);
#elif JEMALLOC_CLOCK_GETTIME
return (((timer->ts1.tv_sec - timer->ts0.tv_sec) * 1000000) +
(timer->ts1.tv_nsec - timer->ts0.tv_nsec) / 1000);
#else
return (((timer->tv1.tv_sec - timer->tv0.tv_sec) * 1000000) +
timer->tv1.tv_usec - timer->tv0.tv_usec);
#endif
nstime_copy(&delta, &timer->t1);
nstime_subtract(&delta, &timer->t0);
return nstime_ns(&delta) / 1000;
}
void
timer_ratio(timedelta_t *a, timedelta_t *b, char *buf, size_t buflen)
{
timer_ratio(timedelta_t *a, timedelta_t *b, char *buf, size_t buflen) {
uint64_t t0 = timer_usec(a);
uint64_t t1 = timer_usec(b);
uint64_t mult;
unsigned i = 0;
unsigned j;
int n;
size_t i = 0;
size_t j, n;
/* Whole. */
n = malloc_snprintf(&buf[i], buflen-i, "%"FMTu64, t0 / t1);
i += n;
if (i >= buflen)
if (i >= buflen) {
return;
}
mult = 1;
for (j = 0; j < n; j++)
for (j = 0; j < n; j++) {
mult *= 10;
}
/* Decimal. */
n = malloc_snprintf(&buf[i], buflen-i, ".");