mirror of
https://github.com/fluencelabs/musl
synced 2025-06-01 17:11:53 +00:00
both jn and yn functions had integer overflow issues for large and small n to handle these issues nm1 (== |n|-1) is used instead of n and -n in the code and some loops are changed to make sure the iteration counter does not overflow (another solution could be to use larger integer type or even double but that has more size and runtime cost, on x87 loading int64_t or even uint32_t into an fpu register is more than two times slower than loading int32_t, and using double for n slows down iteration logic) yn(-1,0) now returns inf posix2008 specifies that on overflow and at +-0 all y0,y1,yn functions return -inf, this is not consistent with math when n<0 odd integer in yn (eg. when x->0, yn(-1,x)->inf, but historically yn(-1,0) seems to be special cased and returned -inf) some threshold values in jnf and ynf were fixed that seems to be incorrectly copy-pasted from the double version
203 lines
4.4 KiB
C
203 lines
4.4 KiB
C
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
|
|
/*
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include "libm.h"
|
|
|
|
float jnf(int n, float x)
|
|
{
|
|
uint32_t ix;
|
|
int nm1, sign, i;
|
|
float a, b, temp;
|
|
|
|
GET_FLOAT_WORD(ix, x);
|
|
sign = ix>>31;
|
|
ix &= 0x7fffffff;
|
|
if (ix > 0x7f800000) /* nan */
|
|
return x;
|
|
|
|
/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
|
|
if (n == 0)
|
|
return j0f(x);
|
|
if (n < 0) {
|
|
nm1 = -(n+1);
|
|
x = -x;
|
|
sign ^= 1;
|
|
} else
|
|
nm1 = n-1;
|
|
if (nm1 == 0)
|
|
return j1f(x);
|
|
|
|
sign &= n; /* even n: 0, odd n: signbit(x) */
|
|
x = fabsf(x);
|
|
if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
|
|
b = 0.0f;
|
|
else if (nm1 < x) {
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
|
a = j0f(x);
|
|
b = j1f(x);
|
|
for (i=0; i<nm1; ){
|
|
i++;
|
|
temp = b;
|
|
b = b*(2.0f*i/x) - a;
|
|
a = temp;
|
|
}
|
|
} else {
|
|
if (ix < 0x35800000) { /* x < 2**-20 */
|
|
/* x is tiny, return the first Taylor expansion of J(n,x)
|
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
|
*/
|
|
if (nm1 > 8) /* underflow */
|
|
nm1 = 8;
|
|
temp = 0.5f * x;
|
|
b = temp;
|
|
a = 1.0f;
|
|
for (i=2; i<=nm1+1; i++) {
|
|
a *= (float)i; /* a = n! */
|
|
b *= temp; /* b = (x/2)^n */
|
|
}
|
|
b = b/a;
|
|
} else {
|
|
/* use backward recurrence */
|
|
/* x x^2 x^2
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
* 2n - 2(n+1) - 2(n+2)
|
|
*
|
|
* 1 1 1
|
|
* (for large x) = ---- ------ ------ .....
|
|
* 2n 2(n+1) 2(n+2)
|
|
* -- - ------ - ------ -
|
|
* x x x
|
|
*
|
|
* Let w = 2n/x and h=2/x, then the above quotient
|
|
* is equal to the continued fraction:
|
|
* 1
|
|
* = -----------------------
|
|
* 1
|
|
* w - -----------------
|
|
* 1
|
|
* w+h - ---------
|
|
* w+2h - ...
|
|
*
|
|
* To determine how many terms needed, let
|
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
* When Q(k) > 1e4 good for single
|
|
* When Q(k) > 1e9 good for double
|
|
* When Q(k) > 1e17 good for quadruple
|
|
*/
|
|
/* determine k */
|
|
float t,q0,q1,w,h,z,tmp,nf;
|
|
int k;
|
|
|
|
nf = nm1+1.0f;
|
|
w = 2*nf/x;
|
|
h = 2/x;
|
|
z = w+h;
|
|
q0 = w;
|
|
q1 = w*z - 1.0f;
|
|
k = 1;
|
|
while (q1 < 1.0e4f) {
|
|
k += 1;
|
|
z += h;
|
|
tmp = z*q1 - q0;
|
|
q0 = q1;
|
|
q1 = tmp;
|
|
}
|
|
for (t=0.0f, i=k; i>=0; i--)
|
|
t = 1.0f/(2*(i+nf)/x-t);
|
|
a = t;
|
|
b = 1.0f;
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
|
* Hence, if n*(log(2n/x)) > ...
|
|
* single 8.8722839355e+01
|
|
* double 7.09782712893383973096e+02
|
|
* long double 1.1356523406294143949491931077970765006170e+04
|
|
* then recurrent value may overflow and the result is
|
|
* likely underflow to zero
|
|
*/
|
|
tmp = nf*logf(fabsf(w));
|
|
if (tmp < 88.721679688f) {
|
|
for (i=nm1; i>0; i--) {
|
|
temp = b;
|
|
b = 2.0f*i*b/x - a;
|
|
a = temp;
|
|
}
|
|
} else {
|
|
for (i=nm1; i>0; i--){
|
|
temp = b;
|
|
b = 2.0f*i*b/x - a;
|
|
a = temp;
|
|
/* scale b to avoid spurious overflow */
|
|
if (b > 0x1p60f) {
|
|
a /= b;
|
|
t /= b;
|
|
b = 1.0f;
|
|
}
|
|
}
|
|
}
|
|
z = j0f(x);
|
|
w = j1f(x);
|
|
if (fabsf(z) >= fabsf(w))
|
|
b = t*z/b;
|
|
else
|
|
b = t*w/a;
|
|
}
|
|
}
|
|
return sign ? -b : b;
|
|
}
|
|
|
|
float ynf(int n, float x)
|
|
{
|
|
uint32_t ix, ib;
|
|
int nm1, sign, i;
|
|
float a, b, temp;
|
|
|
|
GET_FLOAT_WORD(ix, x);
|
|
sign = ix>>31;
|
|
ix &= 0x7fffffff;
|
|
if (ix > 0x7f800000) /* nan */
|
|
return x;
|
|
if (sign && ix != 0) /* x < 0 */
|
|
return 0/0.0f;
|
|
if (ix == 0x7f800000)
|
|
return 0.0f;
|
|
|
|
if (n == 0)
|
|
return y0f(x);
|
|
if (n < 0) {
|
|
nm1 = -(n+1);
|
|
sign = n&1;
|
|
} else {
|
|
nm1 = n-1;
|
|
sign = 0;
|
|
}
|
|
if (nm1 == 0)
|
|
return sign ? -y1f(x) : y1f(x);
|
|
|
|
a = y0f(x);
|
|
b = y1f(x);
|
|
/* quit if b is -inf */
|
|
GET_FLOAT_WORD(ib,b);
|
|
for (i = 0; i < nm1 && ib != 0xff800000; ) {
|
|
i++;
|
|
temp = b;
|
|
b = (2.0f*i/x)*b - a;
|
|
GET_FLOAT_WORD(ib, b);
|
|
a = temp;
|
|
}
|
|
return sign ? -b : b;
|
|
}
|