mirror of
https://github.com/fluencelabs/musl
synced 2025-05-28 23:21:34 +00:00
the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
380 lines
9.2 KiB
C
380 lines
9.2 KiB
C
#include <aio.h>
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <limits.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include "syscall.h"
|
|
#include "atomic.h"
|
|
#include "libc.h"
|
|
#include "pthread_impl.h"
|
|
|
|
/* The following is a threads-based implementation of AIO with minimal
|
|
* dependence on implementation details. Most synchronization is
|
|
* performed with pthread primitives, but atomics and futex operations
|
|
* are used for notification in a couple places where the pthread
|
|
* primitives would be inefficient or impractical.
|
|
*
|
|
* For each fd with outstanding aio operations, an aio_queue structure
|
|
* is maintained. These are reference-counted and destroyed by the last
|
|
* aio worker thread to exit. Accessing any member of the aio_queue
|
|
* structure requires a lock on the aio_queue. Adding and removing aio
|
|
* queues themselves requires a write lock on the global map object,
|
|
* a 4-level table mapping file descriptor numbers to aio queues. A
|
|
* read lock on the map is used to obtain locks on existing queues by
|
|
* excluding destruction of the queue by a different thread while it is
|
|
* being locked.
|
|
*
|
|
* Each aio queue has a list of active threads/operations. Presently there
|
|
* is a one to one relationship between threads and operations. The only
|
|
* members of the aio_thread structure which are accessed by other threads
|
|
* are the linked list pointers, op (which is immutable), running (which
|
|
* is updated atomically), and err (which is synchronized via running),
|
|
* so no locking is necessary. Most of the other other members are used
|
|
* for sharing data between the main flow of execution and cancellation
|
|
* cleanup handler.
|
|
*
|
|
* Taking any aio locks requires having all signals blocked. This is
|
|
* necessary because aio_cancel is needed by close, and close is required
|
|
* to be async-signal safe. All aio worker threads run with all signals
|
|
* blocked permanently.
|
|
*/
|
|
|
|
struct aio_args {
|
|
struct aiocb *cb;
|
|
int op;
|
|
int err;
|
|
sem_t sem;
|
|
};
|
|
|
|
struct aio_thread {
|
|
pthread_t td;
|
|
struct aiocb *cb;
|
|
struct aio_thread *next, *prev;
|
|
struct aio_queue *q;
|
|
volatile int running;
|
|
int err, op;
|
|
ssize_t ret;
|
|
};
|
|
|
|
struct aio_queue {
|
|
int fd, seekable, append, ref, init;
|
|
pthread_mutex_t lock;
|
|
pthread_cond_t cond;
|
|
struct aio_thread *head;
|
|
};
|
|
|
|
static pthread_rwlock_t maplock = PTHREAD_RWLOCK_INITIALIZER;
|
|
static struct aio_queue *****map;
|
|
static volatile int aio_fd_cnt;
|
|
volatile int __aio_fut;
|
|
|
|
static struct aio_queue *__aio_get_queue(int fd, int need)
|
|
{
|
|
if (fd < 0) return 0;
|
|
int a=fd>>24;
|
|
unsigned char b=fd>>16, c=fd>>8, d=fd;
|
|
struct aio_queue *q = 0;
|
|
pthread_rwlock_rdlock(&maplock);
|
|
if ((!map || !map[a] || !map[a][b] || !map[a][b][c] || !(q=map[a][b][c][d])) && need) {
|
|
pthread_rwlock_unlock(&maplock);
|
|
pthread_rwlock_wrlock(&maplock);
|
|
if (!map) map = calloc(sizeof *map, (-1U/2+1)>>24);
|
|
if (!map) goto out;
|
|
if (!map[a]) map[a] = calloc(sizeof **map, 256);
|
|
if (!map[a]) goto out;
|
|
if (!map[a][b]) map[a][b] = calloc(sizeof ***map, 256);
|
|
if (!map[a][b]) goto out;
|
|
if (!map[a][b][c]) map[a][b][c] = calloc(sizeof ****map, 256);
|
|
if (!map[a][b][c]) goto out;
|
|
if (!(q = map[a][b][c][d])) {
|
|
map[a][b][c][d] = q = calloc(sizeof *****map, 1);
|
|
if (q) {
|
|
q->fd = fd;
|
|
pthread_mutex_init(&q->lock, 0);
|
|
pthread_cond_init(&q->cond, 0);
|
|
a_inc(&aio_fd_cnt);
|
|
}
|
|
}
|
|
}
|
|
if (q) pthread_mutex_lock(&q->lock);
|
|
out:
|
|
pthread_rwlock_unlock(&maplock);
|
|
return q;
|
|
}
|
|
|
|
static void __aio_unref_queue(struct aio_queue *q)
|
|
{
|
|
if (q->ref > 1) {
|
|
q->ref--;
|
|
pthread_mutex_unlock(&q->lock);
|
|
return;
|
|
}
|
|
|
|
/* This is potentially the last reference, but a new reference
|
|
* may arrive since we cannot free the queue object without first
|
|
* taking the maplock, which requires releasing the queue lock. */
|
|
pthread_mutex_unlock(&q->lock);
|
|
pthread_rwlock_wrlock(&maplock);
|
|
pthread_mutex_lock(&q->lock);
|
|
if (q->ref == 1) {
|
|
int fd=q->fd;
|
|
int a=fd>>24;
|
|
unsigned char b=fd>>16, c=fd>>8, d=fd;
|
|
map[a][b][c][d] = 0;
|
|
a_dec(&aio_fd_cnt);
|
|
pthread_rwlock_unlock(&maplock);
|
|
pthread_mutex_unlock(&q->lock);
|
|
free(q);
|
|
} else {
|
|
q->ref--;
|
|
pthread_rwlock_unlock(&maplock);
|
|
pthread_mutex_unlock(&q->lock);
|
|
}
|
|
}
|
|
|
|
static void cleanup(void *ctx)
|
|
{
|
|
struct aio_thread *at = ctx;
|
|
struct aio_queue *q = at->q;
|
|
struct aiocb *cb = at->cb;
|
|
struct sigevent sev = cb->aio_sigevent;
|
|
|
|
/* There are four potential types of waiters we could need to wake:
|
|
* 1. Callers of aio_cancel/close.
|
|
* 2. Callers of aio_suspend with a single aiocb.
|
|
* 3. Callers of aio_suspend with a list.
|
|
* 4. AIO worker threads waiting for sequenced operations.
|
|
* Types 1-3 are notified via atomics/futexes, mainly for AS-safety
|
|
* considerations. Type 4 is notified later via a cond var. */
|
|
|
|
cb->__ret = at->ret;
|
|
if (a_swap(&at->running, 0) < 0)
|
|
__wake(&at->running, -1, 1);
|
|
if (a_swap(&cb->__err, at->err) != EINPROGRESS)
|
|
__wake(&cb->__err, -1, 1);
|
|
if (a_swap(&__aio_fut, 0))
|
|
__wake(&__aio_fut, -1, 1);
|
|
|
|
pthread_mutex_lock(&q->lock);
|
|
|
|
if (at->next) at->next->prev = at->prev;
|
|
if (at->prev) at->prev->next = at->next;
|
|
else q->head = at->next;
|
|
|
|
/* Signal aio worker threads waiting for sequenced operations. */
|
|
pthread_cond_broadcast(&q->cond);
|
|
|
|
__aio_unref_queue(q);
|
|
|
|
if (sev.sigev_notify == SIGEV_SIGNAL) {
|
|
siginfo_t si = {
|
|
.si_signo = sev.sigev_signo,
|
|
.si_value = sev.sigev_value,
|
|
.si_code = SI_ASYNCIO,
|
|
.si_pid = getpid(),
|
|
.si_uid = getuid()
|
|
};
|
|
__syscall(SYS_rt_sigqueueinfo, si.si_pid, si.si_signo, &si);
|
|
}
|
|
if (sev.sigev_notify == SIGEV_THREAD) {
|
|
a_store(&__pthread_self()->cancel, 0);
|
|
sev.sigev_notify_function(sev.sigev_value);
|
|
}
|
|
}
|
|
|
|
static void *io_thread_func(void *ctx)
|
|
{
|
|
struct aio_thread at, *p;
|
|
|
|
struct aio_args *args = ctx;
|
|
struct aiocb *cb = args->cb;
|
|
int fd = cb->aio_fildes;
|
|
int op = args->op;
|
|
void *buf = (void *)cb->aio_buf;
|
|
size_t len = cb->aio_nbytes;
|
|
off_t off = cb->aio_offset;
|
|
|
|
struct aio_queue *q = __aio_get_queue(fd, 1);
|
|
ssize_t ret;
|
|
|
|
args->err = q ? 0 : EAGAIN;
|
|
sem_post(&args->sem);
|
|
if (!q) return 0;
|
|
|
|
at.op = op;
|
|
at.running = 1;
|
|
at.ret = -1;
|
|
at.err = ECANCELED;
|
|
at.q = q;
|
|
at.td = __pthread_self();
|
|
at.cb = cb;
|
|
at.prev = 0;
|
|
if ((at.next = q->head)) at.next->prev = &at;
|
|
q->head = &at;
|
|
q->ref++;
|
|
|
|
if (!q->init) {
|
|
int seekable = lseek(fd, 0, SEEK_CUR) >= 0;
|
|
q->seekable = seekable;
|
|
q->append = !seekable || (fcntl(fd, F_GETFL) & O_APPEND);
|
|
q->init = 1;
|
|
}
|
|
|
|
pthread_cleanup_push(cleanup, &at);
|
|
|
|
/* Wait for sequenced operations. */
|
|
if (op!=LIO_READ && (op!=LIO_WRITE || q->append)) {
|
|
for (;;) {
|
|
for (p=at.next; p && p->op!=LIO_WRITE; p=p->next);
|
|
if (!p) break;
|
|
pthread_cond_wait(&q->cond, &q->lock);
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&q->lock);
|
|
|
|
switch (op) {
|
|
case LIO_WRITE:
|
|
ret = q->append ? write(fd, buf, len) : pwrite(fd, buf, len, off);
|
|
break;
|
|
case LIO_READ:
|
|
ret = !q->seekable ? read(fd, buf, len) : pread(fd, buf, len, off);
|
|
break;
|
|
case O_SYNC:
|
|
ret = fsync(fd);
|
|
break;
|
|
case O_DSYNC:
|
|
ret = fdatasync(fd);
|
|
break;
|
|
}
|
|
at.ret = ret;
|
|
at.err = ret<0 ? errno : 0;
|
|
|
|
pthread_cleanup_pop(1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int submit(struct aiocb *cb, int op)
|
|
{
|
|
int ret = 0;
|
|
pthread_attr_t a;
|
|
sigset_t allmask, origmask;
|
|
pthread_t td;
|
|
struct aio_args args = { .cb = cb, .op = op };
|
|
sem_init(&args.sem, 0, 0);
|
|
|
|
if (cb->aio_sigevent.sigev_notify == SIGEV_THREAD) {
|
|
if (cb->aio_sigevent.sigev_notify_attributes)
|
|
a = *cb->aio_sigevent.sigev_notify_attributes;
|
|
else
|
|
pthread_attr_init(&a);
|
|
} else {
|
|
pthread_attr_init(&a);
|
|
pthread_attr_setstacksize(&a, PTHREAD_STACK_MIN);
|
|
pthread_attr_setguardsize(&a, 0);
|
|
}
|
|
pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
|
|
sigfillset(&allmask);
|
|
pthread_sigmask(SIG_BLOCK, &allmask, &origmask);
|
|
cb->__err = EINPROGRESS;
|
|
if (pthread_create(&td, &a, io_thread_func, &args)) {
|
|
errno = EAGAIN;
|
|
ret = -1;
|
|
}
|
|
pthread_sigmask(SIG_SETMASK, &origmask, 0);
|
|
|
|
if (!ret) {
|
|
while (sem_wait(&args.sem));
|
|
if (args.err) {
|
|
errno = args.err;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int aio_read(struct aiocb *cb)
|
|
{
|
|
return submit(cb, LIO_READ);
|
|
}
|
|
|
|
int aio_write(struct aiocb *cb)
|
|
{
|
|
return submit(cb, LIO_WRITE);
|
|
}
|
|
|
|
int aio_fsync(int op, struct aiocb *cb)
|
|
{
|
|
if (op != O_SYNC && op != O_DSYNC) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
return submit(cb, op);
|
|
}
|
|
|
|
ssize_t aio_return(struct aiocb *cb)
|
|
{
|
|
return cb->__ret;
|
|
}
|
|
|
|
int aio_error(const struct aiocb *cb)
|
|
{
|
|
a_barrier();
|
|
return cb->__err & 0x7fffffff;
|
|
}
|
|
|
|
int aio_cancel(int fd, struct aiocb *cb)
|
|
{
|
|
sigset_t allmask, origmask;
|
|
int ret = AIO_ALLDONE;
|
|
struct aio_thread *p;
|
|
struct aio_queue *q;
|
|
|
|
/* Unspecified behavior case. Report an error. */
|
|
if (cb && fd != cb->aio_fildes) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
sigfillset(&allmask);
|
|
pthread_sigmask(SIG_BLOCK, &allmask, &origmask);
|
|
|
|
if (!(q = __aio_get_queue(fd, 0))) {
|
|
if (fcntl(fd, F_GETFD) < 0) ret = -1;
|
|
goto done;
|
|
}
|
|
|
|
for (p = q->head; p; p = p->next) {
|
|
if (cb && cb != p->cb) continue;
|
|
/* Transition target from running to running-with-waiters */
|
|
if (a_cas(&p->running, 1, -1)) {
|
|
pthread_cancel(p->td);
|
|
__wait(&p->running, 0, -1, 1);
|
|
if (p->err == ECANCELED) ret = AIO_CANCELED;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&q->lock);
|
|
done:
|
|
pthread_sigmask(SIG_SETMASK, &origmask, 0);
|
|
return ret;
|
|
}
|
|
|
|
int __aio_close(int fd)
|
|
{
|
|
a_barrier();
|
|
if (aio_fd_cnt) aio_cancel(fd, 0);
|
|
return fd;
|
|
}
|
|
|
|
LFS64(aio_cancel);
|
|
LFS64(aio_error);
|
|
LFS64(aio_fsync);
|
|
LFS64(aio_read);
|
|
LFS64(aio_write);
|
|
LFS64(aio_return);
|