Files
musl/src/math/rintl.c
Szabolcs Nagy 0ce946cf80 math: use the rounding idiom consistently
the idiomatic rounding of x is

  n = x + toint - toint;

where toint is either 1/EPSILON (x is non-negative) or 1.5/EPSILON
(x may be negative and nearest rounding mode is assumed) and EPSILON is
according to the evaluation precision (the type of toint is not very
important, because single precision float can represent the 1/EPSILON of
ieee binary128).

in case of FLT_EVAL_METHOD!=0 this avoids a useless store to double or
float precision, and the long double code became cleaner with
1/LDBL_EPSILON instead of ifdefs for toint.

__rem_pio2f and __rem_pio2 functions slightly changed semantics:
on i386 a double-rounding is avoided so close to half-way cases may
get evaluated differently eg. as sin(pi/4-eps) instead of cos(pi/4+eps)
2014-10-31 11:35:40 -04:00

30 lines
531 B
C

#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double rintl(long double x)
{
return rint(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
static const long double toint = 1/LDBL_EPSILON;
long double rintl(long double x)
{
union ldshape u = {x};
int e = u.i.se & 0x7fff;
int s = u.i.se >> 15;
long double y;
if (e >= 0x3fff+LDBL_MANT_DIG-1)
return x;
if (s)
y = x - toint + toint;
else
y = x + toint - toint;
if (y == 0)
return 0*x;
return y;
}
#endif