mirror of
https://github.com/fluencelabs/musl
synced 2025-06-03 18:11:40 +00:00
zero, one, two, half are replaced by const literals The policy was to use the f suffix for float consts (1.0f), but don't use suffix for long double consts (these consts can be exactly represented as double).
63 lines
1.7 KiB
C
63 lines
1.7 KiB
C
/* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_asinhl.c */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/* asinhl(x)
|
|
* Method :
|
|
* Based on
|
|
* asinhl(x) = signl(x) * logl [ |x| + sqrtl(x*x+1) ]
|
|
* we have
|
|
* asinhl(x) := x if 1+x*x=1,
|
|
* := signl(x)*(logl(x)+ln2)) for large |x|, else
|
|
* := signl(x)*logl(2|x|+1/(|x|+sqrtl(x*x+1))) if|x|>2, else
|
|
* := signl(x)*log1pl(|x| + x^2/(1 + sqrtl(1+x^2)))
|
|
*/
|
|
|
|
#include "libm.h"
|
|
|
|
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
|
long double asinhl(long double x)
|
|
{
|
|
return asinh(x);
|
|
}
|
|
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
|
static const long double
|
|
ln2 = 6.931471805599453094287e-01L, /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */
|
|
huge = 1.000000000000000000e+4900L;
|
|
|
|
long double asinhl(long double x)
|
|
{
|
|
long double t,w;
|
|
int32_t hx,ix;
|
|
|
|
GET_LDOUBLE_EXP(hx, x);
|
|
ix = hx & 0x7fff;
|
|
if (ix == 0x7fff)
|
|
return x + x; /* x is inf or NaN */
|
|
if (ix < 0x3fde) { /* |x| < 2**-34 */
|
|
/* return x, raise inexact if x != 0 */
|
|
if (huge+x > 1.0)
|
|
return x;
|
|
}
|
|
if (ix > 0x4020) { /* |x| > 2**34 */
|
|
w = logl(fabsl(x)) + ln2;
|
|
} else if (ix > 0x4000) { /* 2**34 > |x| > 2.0 */
|
|
t = fabsl(x);
|
|
w = logl(2.0*t + 1.0/(sqrtl(x*x + 1.0) + t));
|
|
} else { /* 2.0 > |x| > 2**-28 */
|
|
t = x*x;
|
|
w =log1pl(fabsl(x) + t/(1.0 + sqrtl(1.0 + t)));
|
|
}
|
|
if (hx & 0x8000)
|
|
return -w;
|
|
return w;
|
|
}
|
|
#endif
|