mirror of
https://github.com/fluencelabs/musl
synced 2025-07-02 16:12:02 +00:00
math: tanh.c cleanup similar to sinh, cosh
comments are kept in the double version of the function compared to fdlibm/freebsd we partition the domain into one more part and select different threshold points: now the [log(5/3)/2,log(3)/2] and [log(3)/2,inf] domains should have <1.5ulp error (so only the last bit may be wrong, assuming good exp, expm1) (note that log(3)/2 and log(5/3)/2 are the points where tanh changes resolution: tanh(log(3)/2)=0.5, tanh(log(5/3)/2)=0.25) for some x < log(5/3)/2 (~=0.2554) the error can be >1.5ulp but it should be <2ulp (the freebsd code had some >2ulp errors in [0.255,1]) even with the extra logic the new code produces smaller object files
This commit is contained in:
@ -1,73 +1,41 @@
|
||||
/* origin: FreeBSD /usr/src/lib/msun/src/s_tanh.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* Tanh(x)
|
||||
* Return the Hyperbolic Tangent of x
|
||||
*
|
||||
* Method :
|
||||
* x -x
|
||||
* e - e
|
||||
* 0. tanh(x) is defined to be -----------
|
||||
* x -x
|
||||
* e + e
|
||||
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
||||
* 2. 0 <= x < 2**-28 : tanh(x) := x with inexact if x != 0
|
||||
* -t
|
||||
* 2**-28 <= x < 1 : tanh(x) := -----; t = expm1(-2x)
|
||||
* t + 2
|
||||
* 2
|
||||
* 1 <= x < 22 : tanh(x) := 1 - -----; t = expm1(2x)
|
||||
* t + 2
|
||||
* 22 <= x <= INF : tanh(x) := 1.
|
||||
*
|
||||
* Special cases:
|
||||
* tanh(NaN) is NaN;
|
||||
* only tanh(0)=0 is exact for finite argument.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double tiny = 1.0e-300, huge = 1.0e300;
|
||||
|
||||
/* tanh(x) = (exp(x) - exp(-x))/(exp(x) + exp(-x))
|
||||
* = (exp(2*x) - 1)/(exp(2*x) - 1 + 2)
|
||||
* = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2)
|
||||
*/
|
||||
double tanh(double x)
|
||||
{
|
||||
double t,z;
|
||||
int32_t jx,ix;
|
||||
union {double f; uint64_t i;} u = {.f = x};
|
||||
uint32_t w;
|
||||
int sign;
|
||||
double t;
|
||||
|
||||
GET_HIGH_WORD(jx, x);
|
||||
ix = jx & 0x7fffffff;
|
||||
/* x = |x| */
|
||||
sign = u.i >> 63;
|
||||
u.i &= (uint64_t)-1/2;
|
||||
x = u.f;
|
||||
w = u.i >> 32;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if (ix >= 0x7ff00000) {
|
||||
if (jx >= 0)
|
||||
return 1.0f/x + 1.0f; /* tanh(+-inf)=+-1 */
|
||||
else
|
||||
return 1.0f/x - 1.0f; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
if (ix < 0x40360000) { /* |x| < 22 */
|
||||
if (ix < 0x3e300000) { /* |x| < 2**-28 */
|
||||
/* tanh(tiny) = tiny with inexact */
|
||||
if (huge+x > 1.0f)
|
||||
return x;
|
||||
}
|
||||
if (ix >= 0x3ff00000) { /* |x| >= 1 */
|
||||
t = expm1(2.0f*fabs(x));
|
||||
z = 1.0f - 2.0f/(t+2.0f);
|
||||
if (w > 0x3fe193ea) {
|
||||
/* |x| > log(3)/2 ~= 0.5493 or nan */
|
||||
if (w > 0x40340000) {
|
||||
/* |x| > 20 or nan */
|
||||
/* note: this branch avoids raising overflow */
|
||||
/* raise inexact if x!=+-inf and handle nan */
|
||||
t = 1 + 0/(x + 0x1p-120f);
|
||||
} else {
|
||||
t = expm1(-2.0f*fabs(x));
|
||||
z= -t/(t+2.0f);
|
||||
t = expm1(2*x);
|
||||
t = 1 - 2/(t+2);
|
||||
}
|
||||
} else { /* |x| >= 22, return +-1 */
|
||||
z = 1.0f - tiny; /* raise inexact */
|
||||
} else if (w > 0x3fd058ae) {
|
||||
/* |x| > log(5/3)/2 ~= 0.2554 */
|
||||
t = expm1(2*x);
|
||||
t = t/(t+2);
|
||||
} else {
|
||||
/* |x| is small, up to 2ulp error in [0.1,0.2554] */
|
||||
t = expm1(-2*x);
|
||||
t = -t/(t+2);
|
||||
}
|
||||
return jx >= 0 ? z : -z;
|
||||
return sign ? -t : t;
|
||||
}
|
||||
|
Reference in New Issue
Block a user