mirror of
https://github.com/fluencelabs/musl
synced 2025-06-06 19:41:34 +00:00
70 lines
1.8 KiB
C
70 lines
1.8 KiB
C
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
|
||
|
/*
|
||
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||
|
* Debugged and optimized by Bruce D. Evans.
|
||
|
*/
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
/* cbrtf(x)
|
||
|
* Return cube root of x
|
||
|
*/
|
||
|
|
||
|
#include "libm.h"
|
||
|
|
||
|
static const unsigned
|
||
|
B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
||
|
B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
|
||
|
|
||
|
float cbrtf(float x)
|
||
|
{
|
||
|
double r,T;
|
||
|
float t;
|
||
|
int32_t hx;
|
||
|
uint32_t sign;
|
||
|
uint32_t high;
|
||
|
|
||
|
GET_FLOAT_WORD(hx, x);
|
||
|
sign = hx & 0x80000000;
|
||
|
hx ^= sign;
|
||
|
if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
|
||
|
return x + x;
|
||
|
|
||
|
/* rough cbrt to 5 bits */
|
||
|
if (hx < 0x00800000) { /* zero or subnormal? */
|
||
|
if (hx == 0)
|
||
|
return x; /* cbrt(+-0) is itself */
|
||
|
SET_FLOAT_WORD(t, 0x4b800000); /* set t = 2**24 */
|
||
|
t *= x;
|
||
|
GET_FLOAT_WORD(high, t);
|
||
|
SET_FLOAT_WORD(t, sign|((high&0x7fffffff)/3+B2));
|
||
|
} else
|
||
|
SET_FLOAT_WORD(t, sign|(hx/3+B1));
|
||
|
|
||
|
/*
|
||
|
* First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
|
||
|
* double precision so that its terms can be arranged for efficiency
|
||
|
* without causing overflow or underflow.
|
||
|
*/
|
||
|
T = t;
|
||
|
r = T*T*T;
|
||
|
T = T*((double)x+x+r)/(x+r+r);
|
||
|
|
||
|
/*
|
||
|
* Second step Newton iteration to 47 bits. In double precision for
|
||
|
* efficiency and accuracy.
|
||
|
*/
|
||
|
r = T*T*T;
|
||
|
T = T*((double)x+x+r)/(x+r+r);
|
||
|
|
||
|
/* rounding to 24 bits is perfect in round-to-nearest mode */
|
||
|
return T;
|
||
|
}
|