2012-03-13 01:17:53 -04:00
|
|
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
|
|
|
|
/*
|
|
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* ====================================================
|
|
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
|
|
*
|
|
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
|
|
* Permission to use, copy, modify, and distribute this
|
|
|
|
* software is freely granted, provided that this notice
|
|
|
|
* is preserved.
|
|
|
|
* ====================================================
|
|
|
|
*/
|
|
|
|
|
2012-03-16 21:16:32 -04:00
|
|
|
#define _GNU_SOURCE
|
2012-03-13 01:17:53 -04:00
|
|
|
#include "libm.h"
|
|
|
|
|
|
|
|
static const float
|
|
|
|
two = 2.0000000000e+00, /* 0x40000000 */
|
|
|
|
one = 1.0000000000e+00; /* 0x3F800000 */
|
|
|
|
|
|
|
|
static const float zero = 0.0000000000e+00;
|
|
|
|
|
|
|
|
float jnf(int n, float x)
|
|
|
|
{
|
|
|
|
int32_t i,hx,ix, sgn;
|
|
|
|
float a, b, temp, di;
|
|
|
|
float z, w;
|
|
|
|
|
|
|
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
|
|
|
* Thus, J(-n,x) = J(n,-x)
|
|
|
|
*/
|
|
|
|
GET_FLOAT_WORD(hx, x);
|
|
|
|
ix = 0x7fffffff & hx;
|
|
|
|
/* if J(n,NaN) is NaN */
|
|
|
|
if (ix > 0x7f800000)
|
|
|
|
return x+x;
|
|
|
|
if (n < 0) {
|
|
|
|
n = -n;
|
|
|
|
x = -x;
|
|
|
|
hx ^= 0x80000000;
|
|
|
|
}
|
|
|
|
if (n == 0) return j0f(x);
|
|
|
|
if (n == 1) return j1f(x);
|
|
|
|
|
|
|
|
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
|
|
|
x = fabsf(x);
|
|
|
|
if (ix == 0 || ix >= 0x7f800000) /* if x is 0 or inf */
|
|
|
|
b = zero;
|
|
|
|
else if((float)n <= x) {
|
|
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
|
|
|
a = j0f(x);
|
|
|
|
b = j1f(x);
|
|
|
|
for (i=1; i<n; i++){
|
|
|
|
temp = b;
|
|
|
|
b = b*((float)(i+i)/x) - a; /* avoid underflow */
|
|
|
|
a = temp;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (ix < 0x30800000) { /* x < 2**-29 */
|
|
|
|
/* x is tiny, return the first Taylor expansion of J(n,x)
|
|
|
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
|
|
|
*/
|
|
|
|
if (n > 33) /* underflow */
|
|
|
|
b = zero;
|
|
|
|
else {
|
2012-03-13 20:24:23 +01:00
|
|
|
temp = 0.5f * x;
|
2012-03-13 01:17:53 -04:00
|
|
|
b = temp;
|
|
|
|
for (a=one,i=2; i<=n; i++) {
|
|
|
|
a *= (float)i; /* a = n! */
|
|
|
|
b *= temp; /* b = (x/2)^n */
|
|
|
|
}
|
|
|
|
b = b/a;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* use backward recurrence */
|
|
|
|
/* x x^2 x^2
|
|
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
|
|
* 2n - 2(n+1) - 2(n+2)
|
|
|
|
*
|
|
|
|
* 1 1 1
|
|
|
|
* (for large x) = ---- ------ ------ .....
|
|
|
|
* 2n 2(n+1) 2(n+2)
|
|
|
|
* -- - ------ - ------ -
|
|
|
|
* x x x
|
|
|
|
*
|
|
|
|
* Let w = 2n/x and h=2/x, then the above quotient
|
|
|
|
* is equal to the continued fraction:
|
|
|
|
* 1
|
|
|
|
* = -----------------------
|
|
|
|
* 1
|
|
|
|
* w - -----------------
|
|
|
|
* 1
|
|
|
|
* w+h - ---------
|
|
|
|
* w+2h - ...
|
|
|
|
*
|
|
|
|
* To determine how many terms needed, let
|
|
|
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
|
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
|
|
* When Q(k) > 1e4 good for single
|
|
|
|
* When Q(k) > 1e9 good for double
|
|
|
|
* When Q(k) > 1e17 good for quadruple
|
|
|
|
*/
|
|
|
|
/* determine k */
|
|
|
|
float t,v;
|
|
|
|
float q0,q1,h,tmp;
|
|
|
|
int32_t k,m;
|
|
|
|
|
2012-03-13 20:24:23 +01:00
|
|
|
w = (n+n)/x;
|
|
|
|
h = 2.0f/x;
|
2012-03-13 01:17:53 -04:00
|
|
|
z = w+h;
|
|
|
|
q0 = w;
|
2012-03-13 20:24:23 +01:00
|
|
|
q1 = w*z - 1.0f;
|
2012-03-13 01:17:53 -04:00
|
|
|
k = 1;
|
2012-03-13 20:24:23 +01:00
|
|
|
while (q1 < 1.0e9f) {
|
2012-03-13 01:17:53 -04:00
|
|
|
k += 1;
|
|
|
|
z += h;
|
|
|
|
tmp = z*q1 - q0;
|
|
|
|
q0 = q1;
|
|
|
|
q1 = tmp;
|
|
|
|
}
|
|
|
|
m = n+n;
|
|
|
|
for (t=zero, i = 2*(n+k); i>=m; i -= 2)
|
|
|
|
t = one/(i/x-t);
|
|
|
|
a = t;
|
|
|
|
b = one;
|
|
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
|
|
|
* Hence, if n*(log(2n/x)) > ...
|
|
|
|
* single 8.8722839355e+01
|
|
|
|
* double 7.09782712893383973096e+02
|
|
|
|
* long double 1.1356523406294143949491931077970765006170e+04
|
|
|
|
* then recurrent value may overflow and the result is
|
|
|
|
* likely underflow to zero
|
|
|
|
*/
|
|
|
|
tmp = n;
|
|
|
|
v = two/x;
|
|
|
|
tmp = tmp*logf(fabsf(v*tmp));
|
2012-03-13 20:24:23 +01:00
|
|
|
if (tmp < 88.721679688f) {
|
2012-03-13 01:17:53 -04:00
|
|
|
for (i=n-1,di=(float)(i+i); i>0; i--) {
|
|
|
|
temp = b;
|
|
|
|
b *= di;
|
|
|
|
b = b/x - a;
|
|
|
|
a = temp;
|
|
|
|
di -= two;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (i=n-1,di=(float)(i+i); i>0; i--){
|
|
|
|
temp = b;
|
|
|
|
b *= di;
|
|
|
|
b = b/x - a;
|
|
|
|
a = temp;
|
|
|
|
di -= two;
|
|
|
|
/* scale b to avoid spurious overflow */
|
2012-03-13 20:24:23 +01:00
|
|
|
if (b > 1e10f) {
|
2012-03-13 01:17:53 -04:00
|
|
|
a /= b;
|
|
|
|
t /= b;
|
|
|
|
b = one;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
z = j0f(x);
|
|
|
|
w = j1f(x);
|
|
|
|
if (fabsf(z) >= fabsf(w))
|
|
|
|
b = t*z/b;
|
|
|
|
else
|
|
|
|
b = t*w/a;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (sgn == 1) return -b;
|
|
|
|
return b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float ynf(int n, float x)
|
|
|
|
{
|
|
|
|
int32_t i,hx,ix,ib;
|
|
|
|
int32_t sign;
|
|
|
|
float a, b, temp;
|
|
|
|
|
|
|
|
GET_FLOAT_WORD(hx, x);
|
|
|
|
ix = 0x7fffffff & hx;
|
|
|
|
/* if Y(n,NaN) is NaN */
|
|
|
|
if (ix > 0x7f800000)
|
|
|
|
return x+x;
|
|
|
|
if (ix == 0)
|
|
|
|
return -one/zero;
|
|
|
|
if (hx < 0)
|
|
|
|
return zero/zero;
|
|
|
|
sign = 1;
|
|
|
|
if (n < 0) {
|
|
|
|
n = -n;
|
|
|
|
sign = 1 - ((n&1)<<1);
|
|
|
|
}
|
|
|
|
if (n == 0)
|
|
|
|
return y0f(x);
|
|
|
|
if (n == 1)
|
|
|
|
return sign*y1f(x);
|
|
|
|
if (ix == 0x7f800000)
|
|
|
|
return zero;
|
|
|
|
|
|
|
|
a = y0f(x);
|
|
|
|
b = y1f(x);
|
|
|
|
/* quit if b is -inf */
|
|
|
|
GET_FLOAT_WORD(ib,b);
|
|
|
|
for (i = 1; i < n && ib != 0xff800000; i++){
|
|
|
|
temp = b;
|
|
|
|
b = ((float)(i+i)/x)*b - a;
|
|
|
|
GET_FLOAT_WORD(ib, b);
|
|
|
|
a = temp;
|
|
|
|
}
|
|
|
|
if (sign > 0)
|
|
|
|
return b;
|
|
|
|
return -b;
|
|
|
|
}
|