mirror of
https://github.com/fluencelabs/musl
synced 2025-06-05 02:51:40 +00:00
92 lines
2.4 KiB
C
92 lines
2.4 KiB
C
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */
|
||
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
/*
|
||
|
* See comments in atan.c.
|
||
|
* Converted to long double by David Schultz <das@FreeBSD.ORG>.
|
||
|
*/
|
||
|
|
||
|
#include "libm.h"
|
||
|
|
||
|
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||
|
long double atanl(long double x)
|
||
|
{
|
||
|
return atan(x);
|
||
|
}
|
||
|
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||
|
#include "__invtrigl.h"
|
||
|
static const long double
|
||
|
one = 1.0,
|
||
|
huge = 1.0e300;
|
||
|
|
||
|
long double atanl(long double x)
|
||
|
{
|
||
|
union IEEEl2bits u;
|
||
|
long double w,s1,s2,z;
|
||
|
int id;
|
||
|
int16_t expsign, expt;
|
||
|
int32_t expman;
|
||
|
|
||
|
u.e = x;
|
||
|
expsign = u.xbits.expsign;
|
||
|
expt = expsign & 0x7fff;
|
||
|
if (expt >= ATAN_CONST) { /* if |x| is large, atan(x)~=pi/2 */
|
||
|
if (expt == BIAS + LDBL_MAX_EXP &&
|
||
|
((u.bits.manh&~LDBL_NBIT)|u.bits.manl)!=0) /* NaN */
|
||
|
return x+x;
|
||
|
if (expsign > 0)
|
||
|
return atanhi[3]+atanlo[3];
|
||
|
else
|
||
|
return -atanhi[3]-atanlo[3];
|
||
|
}
|
||
|
/* Extract the exponent and the first few bits of the mantissa. */
|
||
|
/* XXX There should be a more convenient way to do this. */
|
||
|
expman = (expt << 8) | ((u.bits.manh >> (MANH_SIZE - 9)) & 0xff);
|
||
|
if (expman < ((BIAS - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
|
||
|
if (expt < ATAN_LINEAR) { /* if |x| is small, atanl(x)~=x */
|
||
|
/* raise inexact */
|
||
|
if (huge+x > one)
|
||
|
return x;
|
||
|
}
|
||
|
id = -1;
|
||
|
} else {
|
||
|
x = fabsl(x);
|
||
|
if (expman < (BIAS << 8) + 0x30) { /* |x| < 1.1875 */
|
||
|
if (expman < ((BIAS - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */
|
||
|
id = 0;
|
||
|
x = (2.0*x-one)/(2.0+x);
|
||
|
} else { /* 11/16 <= |x| < 19/16 */
|
||
|
id = 1;
|
||
|
x = (x-one)/(x+one);
|
||
|
}
|
||
|
} else {
|
||
|
if (expman < ((BIAS + 1) << 8) + 0x38) { /* |x| < 2.4375 */
|
||
|
id = 2;
|
||
|
x = (x-1.5)/(one+1.5*x);
|
||
|
} else { /* 2.4375 <= |x| < 2^ATAN_CONST */
|
||
|
id = 3;
|
||
|
x = -1.0/x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* end of argument reduction */
|
||
|
z = x*x;
|
||
|
w = z*z;
|
||
|
/* break sum aT[i]z**(i+1) into odd and even poly */
|
||
|
s1 = z*T_even(w);
|
||
|
s2 = w*T_odd(w);
|
||
|
if (id < 0)
|
||
|
return x - x*(s1+s2);
|
||
|
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||
|
return expsign < 0 ? -z : z;
|
||
|
}
|
||
|
#endif
|