Files
musl/src/internal/libc.h

71 lines
1.4 KiB
C
Raw Normal View History

2011-02-12 00:22:29 -05:00
#ifndef LIBC_H
#define LIBC_H
#include <stdlib.h>
#include <stdio.h>
#include <limits.h>
2011-02-12 00:22:29 -05:00
struct __locale_map;
struct __locale_struct {
make all objects used with atomic operations volatile the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
2015-03-03 22:50:02 -05:00
volatile int ctype_utf8;
char *messages_name;
make all objects used with atomic operations volatile the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
2015-03-03 22:50:02 -05:00
struct __locale_map *volatile cat[4];
};
struct __libc {
always initialize thread pointer at program start this is the first step in an overhaul aimed at greatly simplifying and optimizing everything dealing with thread-local state. previously, the thread pointer was initialized lazily on first access, or at program startup if stack protector was in use, or at certain random places where inconsistent state could be reached if it were not initialized early. while believed to be fully correct, the logic was fragile and non-obvious. in the first phase of the thread pointer overhaul, support is retained (and in some cases improved) for systems/situation where loading the thread pointer fails, e.g. old kernels. some notes on specific changes: - the confusing use of libc.main_thread as an indicator that the thread pointer is initialized is eliminated in favor of an explicit has_thread_pointer predicate. - sigaction no longer needs to ensure that the thread pointer is initialized before installing a signal handler (this was needed to prevent a situation where the signal handler caused the thread pointer to be initialized and the subsequent sigreturn cleared it again) but it still needs to ensure that implementation-internal thread-related signals are not blocked. - pthread tsd initialization for the main thread is deferred in a new manner to minimize bloat in the static-linked __init_tp code. - pthread_setcancelstate no longer needs special handling for the situation before the thread pointer is initialized. it simply fails on systems that cannot support a thread pointer, which are non-conforming anyway. - pthread_cleanup_push/pop now check for missing thread pointer and nop themselves out in this case, so stdio no longer needs to avoid the cancellable path when the thread pointer is not available. a number of cases remain where certain interfaces may crash if the system does not support a thread pointer. at this point, these should be limited to pthread interfaces, and the number of such cases should be fewer than before.
2014-03-24 16:57:11 -04:00
int can_do_threads;
int threaded;
int secure;
2011-02-12 00:22:29 -05:00
volatile int threads_minus_1;
size_t *auxv;
FILE *ofl_head;
make all objects used with atomic operations volatile the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
2015-03-03 22:50:02 -05:00
volatile int ofl_lock[2];
size_t tls_size;
size_t page_size;
volatile int uselocale_cnt;
volatile int bytelocale_cnt_minus_1;
struct __locale_struct global_locale;
};
extern size_t __hwcap;
#ifndef PAGE_SIZE
#define PAGE_SIZE libc.page_size
#endif
#ifdef __PIC__
#define ATTR_LIBC_VISIBILITY __attribute__((visibility("hidden")))
#else
#define ATTR_LIBC_VISIBILITY
#endif
extern struct __libc __libc ATTR_LIBC_VISIBILITY;
#define libc __libc
2011-02-12 00:22:29 -05:00
/* Designed to avoid any overhead in non-threaded processes */
void __lock(volatile int *) ATTR_LIBC_VISIBILITY;
void __unlock(volatile int *) ATTR_LIBC_VISIBILITY;
int __lockfile(FILE *) ATTR_LIBC_VISIBILITY;
void __unlockfile(FILE *) ATTR_LIBC_VISIBILITY;
#define LOCK(x) __lock(x)
#define UNLOCK(x) __unlock(x)
2011-02-12 00:22:29 -05:00
new attempt at making set*id() safe and robust changing credentials in a multi-threaded program is extremely difficult on linux because it requires synchronizing the change between all threads, which have their own thread-local credentials on the kernel side. this is further complicated by the fact that changing the real uid can fail due to exceeding RLIMIT_NPROC, making it possible that the syscall will succeed in some threads but fail in others. the old __rsyscall approach being replaced was robust in that it would report failure if any one thread failed, but in this case, the program would be left in an inconsistent state where individual threads might have different uid. (this was not as bad as glibc, which would sometimes even fail to report the failure entirely!) the new approach being committed refuses to change real user id when it cannot temporarily set the rlimit to infinity. this is completely POSIX conformant since POSIX does not require an implementation to allow real-user-id changes for non-privileged processes whatsoever. still, setting the real uid can fail due to memory allocation in the kernel, but this can only happen if there is not already a cached object for the target user. thus, we forcibly serialize the syscalls attempts, and fail the entire operation on the first failure. this *should* lead to an all-or-nothing success/failure result, but it's still fragile and highly dependent on kernel developers not breaking things worse than they're already broken. ideally linux will eventually add a CLONE_USERCRED flag that would give POSIX conformant credential changes without any hacks from userspace, and all of this code would become redundant and could be removed ~10 years down the line when everyone has abandoned the old broken kernels. i'm not holding my breath...
2011-07-29 22:59:44 -04:00
void __synccall(void (*)(void *), void *);
int __setxid(int, int, int, int);
2011-02-12 00:22:29 -05:00
extern char **__environ;
#undef weak_alias
#define weak_alias(old, new) \
extern __typeof(old) new __attribute__((weak, alias(#old)))
#undef LFS64_2
#define LFS64_2(x, y) weak_alias(x, y)
2011-02-12 00:22:29 -05:00
#undef LFS64
#define LFS64(x) LFS64_2(x, x##64)
#endif