assemblyscript/std/assembly.d.ts

539 lines
24 KiB
TypeScript

/**
* Environment definitions for compiling AssemblyScript to WebAssembly using asc.
* @module std/assembly
*//***/
// Types
/** An 8-bit signed integer. */
declare type i8 = number;
/** A 16-bit signed integer. */
declare type i16 = number;
/** A 32-bit signed integer. */
declare type i32 = number;
/** A 64-bit signed integer. */
declare type i64 = number;
/** A 32-bit signed integer when targeting 32-bit WebAssembly or a 64-bit signed integer when targeting 64-bit WebAssembly. */
declare type isize = number;
/** An 8-bit unsigned integer. */
declare type u8 = number;
/** A 16-bit unsigned integer. */
declare type u16 = number;
/** A 32-bit unsigned integer. */
declare type u32 = number;
/** A 64-bit unsigned integer. */
declare type u64 = number;
/** A 32-bit unsigned integer when targeting 32-bit WebAssembly or a 64-bit unsigned integer when targeting 64-bit WebAssembly. */
declare type usize = number;
/** A 1-bit unsigned integer. */
declare type bool = any; // sic
/** A 32-bit float. */
declare type f32 = number;
/** A 64-bit float. */
declare type f64 = number;
/** Converts any other numeric value to an 8-bit signed integer. */
declare function i8(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i8;
declare namespace i8 {
/** Smallest representable value. */
export const MIN_VALUE: i8;
/** Largest representable value. */
export const MAX_VALUE: i8;
}
/** Converts any other numeric value to a 16-bit signed integer. */
declare function i16(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i8;
declare namespace i16 {
/** Smallest representable value. */
export const MIN_VALUE: i16;
/** Largest representable value. */
export const MAX_VALUE: i16;
}
/** Converts any other numeric value to a 32-bit signed integer. */
declare function i32(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i32;
declare namespace i32 {
/** Smallest representable value. */
export const MIN_VALUE: i32;
/** Largest representable value. */
export const MAX_VALUE: i32;
}
/** Converts any other numeric value to a 64-bit signed integer. */
declare function i64(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i64;
declare namespace i64 {
/** Smallest representable value. */
export const MIN_VALUE: i64;
/** Largest representable value. */
export const MAX_VALUE: i64;
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) signed integer. */
declare function isize(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): isize;
declare namespace isize {
/** Smallest representable value. */
export const MIN_VALUE: isize;
/** Largest representable value. */
export const MAX_VALUE: isize;
}
/** Converts any other numeric value to an 8-bit unsigned integer. */
declare function u8(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i8;
declare namespace u8 {
/** Smallest representable value. */
export const MIN_VALUE: u8;
/** Largest representable value. */
export const MAX_VALUE: u8;
}
/** Converts any other numeric value to a 16-bit unsigned integer. */
declare function u16(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i8;
declare namespace u16 {
/** Smallest representable value. */
export const MIN_VALUE: u16;
/** Largest representable value. */
export const MAX_VALUE: u16;
}
/** Converts any other numeric value to a 32-bit unsigned integer. */
declare function u32(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i32;
declare namespace u32 {
/** Smallest representable value. */
export const MIN_VALUE: u32;
/** Largest representable value. */
export const MAX_VALUE: u32;
}
/** Converts any other numeric value to a 64-bit unsigned integer. */
declare function u64(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): i64;
declare namespace u64 {
/** Smallest representable value. */
export const MIN_VALUE: u64;
/** Largest representable value. */
export const MAX_VALUE: u64;
}
/** Converts any other numeric value to a 32-bit (in WASM32) respectivel 64-bit (in WASM64) unsigned integer. */
declare function usize(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): isize;
declare namespace usize {
/** Smallest representable value. */
export const MIN_VALUE: usize;
/** Largesst representable value. */
export const MAX_VALUE: usize;
}
/** Converts any other numeric value to a 1-bit unsigned integer. */
declare function bool(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): bool;
declare namespace bool {
/** Smallest representable value. */
export const MIN_VALUE: bool;
/** Largest representable value. */
export const MAX_VALUE: bool;
}
/** Converts any other numeric value to a 32-bit float. */
declare function f32(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): f32;
declare namespace f32 {
/** Smallest representable value. */
export const MIN_VALUE: f32;
/** Largest representable value. */
export const MAX_VALUE: f32;
/** Smallest normalized positive value. */
export const MIN_POSITIVE_VALUE: f32;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f32;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f32;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f32;
/** Returns the floating-point remainder of `x / y` (rounded towards zero). */
export function mod(x: f32, y: f32): f32;
/** Returns the floating-point remainder of `x / y` (rounded to nearest). */
export function rem(x: f32, y: f32): f32;
}
/** Converts any other numeric value to a 64-bit float. */
declare function f64(value: i8 | i16 | i32 | i64 | isize | u8 | u16 | u32 | u64 | usize | bool | f32 | f64): f64;
declare namespace f64 {
/** Smallest representable value. */
export const MIN_VALUE: f64;
/** Largest representable value. */
export const MAX_VALUE: f64;
/** Smallest normalized positive value. */
export const MIN_POSITIVE_VALUE: f64;
/** Smallest safely representable integer value. */
export const MIN_SAFE_INTEGER: f64;
/** Largest safely representable integer value. */
export const MAX_SAFE_INTEGER: f64;
/** Difference between 1 and the smallest representable value greater than 1. */
export const EPSILON: f64;
}
// Built-ins
/** Performs the sign-agnostic count leading zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered leading if the value is zero. */
declare function clz<T = i32 | i64>(value: T): T;
/** Performs the sign-agnostic count tailing zero bits operation on a 32-bit or 64-bit integer. All zero bits are considered trailing if the value is zero. */
declare function ctz<T = i32 | i64>(value: T): T;
/** Performs the sign-agnostic count number of one bits operation on a 32-bit or 64-bit integer. */
declare function popcnt<T = i32 | i64>(value: T): T;
/** Performs the sign-agnostic rotate left operation on a 32-bit or 64-bit integer. */
declare function rotl<T = i32 | i64>(value: T, shift: T): T;
/** Performs the sign-agnostic rotate right operation on a 32-bit or 64-bit integer. */
declare function rotr<T = i32 | i64>(value: T, shift: T): T;
/** Computes the absolute value of an integer or float. */
declare function abs<T = i32 | i64 | f32 | f64>(value: T): T;
/** Determines the maximum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function max<T = i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Determines the minimum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function min<T = i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Performs the ceiling operation on a 32-bit or 64-bit float. */
declare function ceil<T = f32 | f64>(value: T): T;
/** Composes a 32-bit or 64-bit float from the magnitude of `x` and the sign of `y`. */
declare function copysign<T = f32 | f64>(x: T, y: T): T;
/** Performs the floor operation on a 32-bit or 64-bit float. */
declare function floor<T = f32 | f64>(value: T): T;
/** Rounds to the nearest integer tied to even of a 32-bit or 64-bit float. */
declare function nearest<T = f32 | f64>(value: T): T;
/** Reinterprets the bits of the specified value as type `T`. Valid reinterpretations are u32/i32 to/from f32 and u64/i64 to/from f64. */
declare function reinterpret<T = i32 | i64 | f32 | f64>(value: number): T;
/** Selects one of two pre-evaluated values depending on the condition. */
declare function select<T>(ifTrue: T, ifFalse: T, condition: bool): T;
/** Calculates the square root of a 32-bit or 64-bit float. */
declare function sqrt<T = f32 | f64>(value: T): T;
/** Rounds to the nearest integer towards zero of a 32-bit or 64-bit float. */
declare function trunc<T = f32 | f64>(value: T): T;
/** Loads a value of the specified type from memory. Equivalent to dereferncing a pointer in other languages. */
declare function load<T>(ptr: usize, constantOffset?: usize): T;
/** Stores a value of the specified type to memory. Equivalent to dereferencing a pointer in other languages when assigning a value. */
declare function store<T>(ptr: usize, value: any, constantOffset?: usize): void;
/** Returns the current memory size in units of pages. One page is 64kb. */
declare function current_memory(): i32;
/** Grows linear memory by a given unsigned delta of pages. One page is 64kb. Returns the previous memory size in units of pages or `-1` on failure. */
declare function grow_memory(value: i32): i32;
/** Copies n bytes from the specified source to the specified destination in memory. These regions may overlap. */
declare function move_memory(destination: usize, source: usize, n: usize): void;
/** Sets n bytes beginning at the specified destination in memory to the specified byte value. */
declare function set_memory(destination: usize, value: u8, count: usize): void;
/** Compares two chunks of memory. Returns `0` if equal, otherwise the difference of the first differing bytes. */
declare function compare_memory(vl: usize, vr: usize, n: usize): i32;
/** Allocates a chunk of memory of the specified size and returns a pointer to it. */
declare function allocate_memory(size: usize): usize;
/** Disposes a chunk of memory by its pointer. */
declare function free_memory(ptr: usize): void;
/** Emits an unreachable operation that results in a runtime error when executed. Both a statement and an expression of any type. */
declare function unreachable(): any; // sic
/** [Polyfill] Performs the sign-agnostic reverse bytes **/
declare function bswap<T = i8 | u8 | i16 | u16 | i32 | u32 | i64 | u64 | isize | usize>(value: T): T;
/** [Polyfill] Performs the sign-agnostic reverse bytes only for last 16-bit **/
declare function bswap16<T = i8 | u8 | i16 | u16 | i32 | u32>(value: T): T;
/** NaN (not a number) as a 32-bit or 64-bit float depending on context. */
declare const NaN: f32 | f64;
/** Positive infinity as a 32-bit or 64-bit float depending on context. */
declare const Infinity: f32 | f64;
/** Heap base offset. */
declare const HEAP_BASE: usize;
/** Determines the byte size of the specified underlying core type. Compiles to a constant. */
declare function sizeof<T>(): usize;
/** Determines the alignment (log2) of the specified underlying core type. Compiles to a constant. */
declare function alignof<T>(): usize;
/** Determines the offset of the specified field within the given class type. Returns the class type's end offset if field name has been omitted. Compiles to a constant. */
declare function offsetof<T>(fieldName?: string): usize;
/** Changes the type of any value of `usize` kind to another one of `usize` kind. Useful for casting class instances to their pointer values and vice-versa. Beware that this is unsafe.*/
declare function changetype<T>(value: any): T;
/** Tests if a 32-bit or 64-bit float is `NaN`. */
declare function isNaN<T = f32 | f64>(value: T): bool;
/** Tests if a 32-bit or 64-bit float is finite, that is not `NaN` or +/-`Infinity`. */
declare function isFinite<T = f32 | f64>(value: T): bool;
/** Tests if the specified expression is of an integer type and not a reference. Compiles to a constant. */
declare function isInteger<T>(value?: any): value is number;
/** Tests if the specified expression is of a float type. Compiles to a constant. */
declare function isFloat<T>(value?: any): value is number;
/** Tests if the specified expression is of a reference type. Compiles to a constant. */
declare function isReference<T>(value?: any): value is object | string;
/** Tests if the specified expression can be used ass a string. Compiles to a constant. */
declare function isString<T>(value?: any): value is string | String;
/** Tests if the specified expression can be used as an array. Compiles to a constant. */
declare function isArray<T>(value?: any): value is Array<any>;
/** Traps if the specified value is not true-ish, otherwise returns the (non-nullable) value. */
declare function assert<T>(isTrueish: T, message?: string): T & object; // any better way to model `: T != null`?
/** Parses an integer string to a 64-bit float. */
declare function parseInt(str: string, radix?: i32): f64;
/** Parses an integer string to a 32-bit integer. */
declare function parseI32(str: string, radix?: i32): i32;
/** Parses an integer string to a 64-bit integer. */
declare function parseI64(str: string, radix?: i32): i64;
/** Parses a string to a 64-bit float. */
declare function parseFloat(str: string): f64;
/** Returns the 64-bit floating-point remainder of `x/y`. */
declare function fmod(x: f64, y: f64): f64;
/** Returns the 32-bit floating-point remainder of `x/y`. */
declare function fmodf(x: f32, y: f32): f32;
// Standard library
/** Class representing a generic, fixed-length raw binary data buffer. */
declare class ArrayBuffer {
/** The size, in bytes, of the array. */
readonly byteLength: i32;
/** Constructs a new array buffer of the given length in bytes. */
constructor(length: i32);
/** Returns a copy of this array buffer's bytes from begin, inclusive, up to end, exclusive. */
slice(begin?: i32, end?: i32): ArrayBuffer;
}
/** Interface for a typed view on an array buffer. */
interface ArrayBufferView<T> {
[key: number]: T;
/** The {@link ArrayBuffer} referenced by this view. */
readonly buffer: ArrayBuffer;
/** The offset in bytes from the start of the referenced {@link ArrayBuffer}. */
readonly byteOffset: i32;
/** The length in bytes from the start of the referenced {@link ArrayBuffer}. */
readonly byteLength: i32;
}
/* @internal */
declare abstract class TypedArray<T> implements ArrayBufferView<T> {
[key: number]: T;
/** Number of bytes per element. */
static readonly BYTES_PER_ELEMENT: usize;
/** Constructs a new typed array. */
constructor(length: i32);
/** The {@link ArrayBuffer} referenced by this view. */
readonly buffer: ArrayBuffer;
/** The offset in bytes from the start of the referenced {@link ArrayBuffer}. */
readonly byteOffset: i32;
/** The length in bytes from the start of the referenced {@link ArrayBuffer}. */
readonly byteLength: i32;
/** The length (in elements). */
readonly length: i32;
}
/** An array of twos-complement 8-bit signed integers. */
declare class Int8Array extends TypedArray<i8> {}
/** An array of 8-bit unsigned integers. */
declare class Uint8Array extends TypedArray<u8> {}
/** An array of twos-complement 16-bit signed integers. */
declare class Int16Array extends TypedArray<i16> {}
/** An array of 16-bit unsigned integers. */
declare class Uint16Array extends TypedArray<u16> {}
/** An array of twos-complement 32-bit signed integers. */
declare class Int32Array extends TypedArray<i32> {}
/** An array of 32-bit unsigned integers. */
declare class Uint32Array extends TypedArray<u32> {}
/** An array of twos-complement 64-bit signed integers. */
declare class Int64Array extends TypedArray<i64> {}
/** An array of 64-bit unsigned integers. */
declare class Uint64Array extends TypedArray<u64> {}
/** An array of 32-bit floating point numbers. */
declare class Float32Array extends TypedArray<f32> {}
/** An array of 64-bit floating point numbers. */
declare class Float64Array extends TypedArray<f64> {}
/** Class representing a sequence of values of type `T`. */
declare class Array<T> {
[key: number]: T;
/** Current length of the array. */
length: i32;
/** Constructs a new array. */
constructor(capacity?: i32);
every(callbackfn: (element: T, index: i32, array?: Array<T>) => bool): bool;
findIndex(predicate: (element: T, index: i32, array?: Array<T>) => bool): i32;
includes(searchElement: T, fromIndex?: i32): bool;
indexOf(searchElement: T, fromIndex?: i32): i32;
lastIndexOf(searchElement: T, fromIndex?: i32): i32;
push(element: T): void;
pop(): T;
reduce<U>(callbackfn: (previousValue: U, currentValue: T, currentIndex: i32, array: Array<T>) => U, initialValue: U): U;
shift(): T;
some(callbackfn: (element: T, index: i32, array?: Array<T>) => bool): bool;
unshift(element: T): i32;
slice(from: i32, to?: i32): T[];
splice(start: i32, deleteCount?: i32): void;
reverse(): T[];
sort(comparator?: (a: T, b: T) => i32): T[];
}
/** Class representing a C-like array of values of type `T` with limited capabilities. */
declare class CArray<T> {
[key: number]: T;
private constructor();
}
/** Class representing a sequence of characters. */
declare class String {
static fromCharCode(ls: i32, hs?: i32): string;
static fromCharCodes(arr: u16[]): string;
static fromCodePoint(cp: i32): string;
static fromCodePoints(arr: i32[]): string;
readonly length: u32;
charAt(index: u32): string;
charCodeAt(index: u32): u16;
concat(other: string): string;
endsWith(other: string): bool;
indexOf(other: string): u32;
includes(other: string): bool;
startsWith(other: string): bool;
substr(start: u32, length?: u32): string;
substring(start: u32, end?: u32): string;
trim(): string;
trimLeft(): string;
trimRight(): string;
repeat(count?: i32): string;
toString(): string;
}
/** Class for representing a runtime error. Base class of all errors. */
declare class Error {
/** Error name. */
name: string;
/** Message provided on construction. */
message: string;
/** Stack trace. */
stack: string;
/** Constructs a new error, optionally with a message. */
constructor(message?: string);
}
/** Class for indicating an error when a value is not in the set or range of allowed values. */
declare class RangeError extends Error { }
interface Boolean {}
interface Function {}
interface IArguments {}
interface Number {}
interface Object {}
interface RegExp {}
declare class Set<T> {
readonly size: i32;
has(value: T): bool;
add(value: T): void;
delete(value: T): bool;
clear(): void;
}
interface IMath<T> {
/** The base of natural logarithms, e, approximately 2.718. */
readonly E: T;
/** The natural logarithm of 2, approximately 0.693. */
readonly LN2: T;
/** The natural logarithm of 10, approximately 2.302. */
readonly LN10: T;
/** The base 2 logarithm of e, approximately 1.442. */
readonly LOG2E: T;
/** The base 10 logarithm of e, approximately 0.434. */
readonly LOG10E: T;
/** The ratio of the circumference of a circle to its diameter, approximately 3.14159. */
readonly PI: T;
/** The square root of 1/2, approximately 0.707. */
readonly SQRT1_2: T;
/** The square root of 2, approximately 1.414. */
readonly SQRT2: T;
/** Returns the absolute value of `x`. */
abs(x: T): T;
/** Returns the arccosine (in radians) of `x`. */
acos(x: T): T;
/** Returns the hyperbolic arc-cosine of `x`. */
acosh(x: T): T;
/** Returns the arcsine (in radians) of `x` */
asin(x: T): T;
/** Returns the hyperbolic arcsine of `x`. */
asinh(x: T): T;
/** Returns the arctangent (in radians) of `x`. */
atan(x: T): T;
/** Returns the arctangent of the quotient of its arguments. */
atan2(y: T, x: T): T;
/** Returns the hyperbolic arctangent of `x`. */
atanh(x: T): T;
/** Returns the cube root of `x`. */
cbrt(x: T): T;
/** Returns the smallest integer greater than or equal to `x`. */
ceil(x: T): T;
/** Returns the number of leading zero bits in the 32-bit binary representation of `x`. */
clz32(x: T): T;
/** Returns the cosine (in radians) of `x`. */
cos(x: T): T;
/** Returns the hyperbolic cosine of `x`. */
cosh(x: T): T;
/** Returns e to the power of `x`. */
exp(x: T): T;
/** Returns e to the power of `x`, minus 1. */
expm1(x: T): T;
/** Returns the largest integer less than or equal to `x`. */
floor(x: T): T;
/** Returns the nearest 32-bit single precision float representation of `x`. */
fround(x: T): f32;
/** Returns the square root of the sum of squares of its arguments. */
hypot(value1: T, value2: T): T; // TODO: rest
/** Returns the result of the C-like 32-bit multiplication of `a` and `b`. */
imul(a: T, b: T): T;
/** Returns the natural logarithm (base e) of `x`. */
log(x: T): T;
/** Returns the base 10 logarithm of `x`. */
log10(x: T): T;
/** Returns the natural logarithm (base e) of 1 + `x`. */
log1p(x: T): T;
/** Returns the base 2 logarithm of `x`. */
log2(x: T): T;
/** Returns the largest-valued number of its arguments. */
max(value1: T, value2: T): T; // TODO: rest
/** Returns the lowest-valued number of its arguments. */
min(value1: T, value2: T): T; // TODO: rest
/** Returns `base` to the power of `exponent`. */
pow(base: T, exponent: T): T;
/** Returns a pseudo-random number in the range from 0.0 inclusive up to but not including 1.0. */
random(): T;
/** Returns the value of `x` rounded to the nearest integer. */
round(x: T): T;
/** Returns the sign of `x`, indicating whether the number is positive, negative or zero. */
sign(x: T): T;
/** Returns the sine of `x`. */
sin(x: T): T;
/** Returns the hyperbolic sine of `x`. */
sinh(x: T): T;
/** Returns the square root of `x`. */
sqrt(x: T): T;
/** Returns the tangent of `x`. */
tan(x: T): T;
/** Returns the hyperbolic tangent of `x`. */
tanh(x: T): T;
/** Returns the integer part of `x` by removing any fractional digits. */
trunc(x: T): T;
}
interface INativeMath<T> extends IMath<T> {
/** Seeds the random number generator. */
seedRandom(value: i64): void;
/** Returns the floating-point remainder of `x / y` (rounded towards zero). */
mod(x: T, y: T): T;
/** Returns the floating-point remainder of `x / y` (rounded to nearest). */
rem(x: T, y: T): T;
}
/** Double precision math imported from JavaScript. */
declare const JSMath: IMath<f64>;
/** Double precision math implemented natively. */
declare const NativeMath: INativeMath<f64>;
/** Single precision math implemented natively. */
declare const NativeMathf: INativeMath<f32>;
/** Alias of {@link NativeMath} or {@link JSMath} respectively. Defaults to `NativeMath`. */
declare const Math: IMath<f64>;
/** Alias of {@link NativeMathf} or {@link JSMath} respectively. Defaults to `NativeMathf`. */
declare const Mathf: IMath<f32>;
// Internal decorators
/** Annotates an element as a program global. */
declare function global(target: Function, propertyKey: string, descriptor: any): void;
/** Annotates a method as an operator overload. */
declare function operator(token: string): (target: any, propertyKey: string, descriptor: any) => void;
/** Annotates a class as being unmanaged with limited capabilities. */
declare function unmanaged(target: Function): any;
/** Annotates a class as being sealed / non-derivable. */
declare function sealed(target: Function): any;
/** Annotates a class field with an explicit offset. */
declare function offset(offset: usize): any;