assemblyscript/src/compiler.ts
dcodeIO 29935948f2 Precompute extensions of inlined constants
Besides eliminating unnecessary extensions, this also allows the use of enum values in long int contexts
2018-01-23 16:40:47 +01:00

3402 lines
134 KiB
TypeScript

import {
compileCall as compileBuiltinCall,
compileGetConstant as compileBuiltinGetConstant,
compileAllocate as compileBuiltinAllocate
} from "./builtins";
import {
DiagnosticCode,
DiagnosticEmitter
} from "./diagnostics";
import {
Module,
MemorySegment,
ExpressionRef,
UnaryOp,
BinaryOp,
NativeType,
FunctionTypeRef,
FunctionRef,
ExpressionId,
readString
} from "./module";
import {
Program,
ClassPrototype,
Class,
Element,
ElementKind,
Enum,
FieldPrototype,
Field,
FunctionPrototype,
Function,
Global,
Local,
Namespace,
Parameter,
EnumValue,
Property,
VariableLikeElement,
Flow,
FlowFlags,
ElementFlags,
PATH_DELIMITER
} from "./program";
import {
Token
} from "./tokenizer";
import {
Node,
NodeKind,
TypeNode,
Source,
SourceKind,
Statement,
BlockStatement,
BreakStatement,
ClassDeclaration,
ContinueStatement,
DeclarationStatement,
DoStatement,
EmptyStatement,
EnumDeclaration,
EnumValueDeclaration,
ExportMember,
ExportStatement,
ExpressionStatement,
FunctionDeclaration,
ForStatement,
IfStatement,
ImportStatement,
InterfaceDeclaration,
ModifierKind,
NamespaceDeclaration,
ReturnStatement,
SwitchCase,
SwitchStatement,
ThrowStatement,
TryStatement,
VariableLikeDeclarationStatement,
VariableDeclaration,
VariableStatement,
WhileStatement,
Expression,
AssertionExpression,
BinaryExpression,
CallExpression,
CommaExpression,
ElementAccessExpression,
FloatLiteralExpression,
IdentifierExpression,
IntegerLiteralExpression,
LiteralExpression,
LiteralKind,
NewExpression,
ParenthesizedExpression,
PropertyAccessExpression,
TernaryExpression,
StringLiteralExpression,
UnaryPostfixExpression,
UnaryPrefixExpression,
hasModifier
} from "./ast";
import {
Type,
TypeKind,
TypeFlags,
typesToNativeTypes
} from "./types";
import {
I64,
U64
} from "./util/i64";
import {
sb
} from "./util/sb";
/** Compilation target. */
export enum Target {
/** WebAssembly with 32-bit pointers. */
WASM32,
/** WebAssembly with 64-bit pointers. Experimental and not supported by any runtime yet. */
WASM64
}
/** Compiler options. */
export class Options {
/** WebAssembly target. Defaults to {@link Target.WASM32}. */
target: Target = Target.WASM32;
/** If true, compiles everything instead of just reachable code. */
noTreeShaking: bool = false;
/** If true, replaces assertions with nops. */
noAssert: bool = false;
/** If true, does not set up a memory. */
noMemory: bool = false;
/** Memory allocation implementation to use. */
allocateImpl: string = "allocate_memory";
/** Memory freeing implementation to use. */
freeImpl: string = "free_memory";
/** Tests if the target is WASM64 or, otherwise, WASM32. */
get isWasm64(): bool { return this.target == Target.WASM64; }
/** Gets the unsigned size type matching the target. */
get usizeType(): Type { return this.target == Target.WASM64 ? Type.usize64 : Type.usize32; }
/** Gets the signed size type matching the target. */
get isizeType(): Type { return this.target == Target.WASM64 ? Type.isize64 : Type.isize32; }
/** Gets the native size type matching the target. */
get nativeSizeType(): NativeType { return this.target == Target.WASM64 ? NativeType.I64 : NativeType.I32; }
}
/** Indicates the desired kind of a conversion. */
export const enum ConversionKind {
/** No conversion. */
NONE,
/** Implicit conversion. */
IMPLICIT,
/** Explicit conversion. */
EXPLICIT
}
/** Compiler interface. */
export class Compiler extends DiagnosticEmitter {
/** Program reference. */
program: Program;
/** Provided options. */
options: Options;
/** Module instance being compiled. */
module: Module;
/** Start function being compiled. */
startFunction: Function;
/** Start function statements. */
startFunctionBody: ExpressionRef[] = new Array();
/** Current function in compilation. */
currentFunction: Function;
/** Current type in compilation. */
currentType: Type = Type.void;
/** Counting memory offset. */
memoryOffset: U64 = new U64(8, 0); // leave space for (any size of) NULL
/** Memory segments being compiled. */
memorySegments: MemorySegment[] = new Array();
/** Already processed file names. */
files: Set<string> = new Set();
/** Compiles a {@link Program} to a {@link Module} using the specified options. */
static compile(program: Program, options: Options | null = null): Module {
return new Compiler(program, options).compile();
}
/** Constructs a new compiler for a {@link Program} using the specified options. */
constructor(program: Program, options: Options | null = null) {
super(program.diagnostics);
this.program = program;
this.options = options ? options : new Options();
this.memoryOffset = new U64(this.options.usizeType.byteSize); // leave space for `null`
this.module = Module.create();
// set up start function
var startFunctionTemplate = new FunctionPrototype(program, "start", "start", null);
var startFunctionInstance = new Function(startFunctionTemplate, startFunctionTemplate.internalName, [], [], Type.void, null);
this.currentFunction = this.startFunction = startFunctionInstance;
}
/** Performs compilation of the underlying {@link Program} to a {@link Module}. */
compile(): Module {
// initialize lookup maps, built-ins, imports, exports, etc.
this.program.initialize(this.options);
// compile entry file (exactly one, usually)
var sources = this.program.sources;
for (var i = 0, k = sources.length; i < k; ++i)
if (sources[i].isEntry)
this.compileSource(sources[i]);
// make start function if not empty
if (this.startFunctionBody.length) {
var typeRef = this.module.getFunctionTypeBySignature(NativeType.None, []);
if (!typeRef)
typeRef = this.module.addFunctionType("v", NativeType.None, []);
this.module.setStart(
this.module.addFunction(this.startFunction.prototype.internalName, typeRef, typesToNativeTypes(this.startFunction.additionalLocals),
this.module.createBlock(null, this.startFunctionBody)
)
);
}
// set up memory
if (!this.options.noMemory) {
var initial = this.memoryOffset.clone();
if (this.options.target == Target.WASM64)
this.module.addGlobal("HEAP_BASE", NativeType.I64, false, this.module.createI64(initial.lo, initial.hi));
else
this.module.addGlobal("HEAP_BASE", NativeType.I32, false, this.module.createI32(initial.lo));
// determine initial page size
var initialOverlaps = initial.clone();
initialOverlaps.and32(0xffff);
if (!initialOverlaps.isZero) {
initial.or32(0xffff);
initial.add32(1);
}
initial.shru32(16); // now is initial size in 64k pages
this.module.setMemory(initial.toI32(), Module.MAX_MEMORY_WASM32 /* TODO: not WASM64 compatible yet */, this.memorySegments, this.options.target, "memory");
}
return this.module;
}
// sources
compileSourceByPath(normalizedPath: string, reportNode: Node): void {
for (var i = 0, k = this.program.sources.length; i < k; ++i) {
var importedSource = this.program.sources[i];
if (importedSource.normalizedPath == normalizedPath) {
this.compileSource(importedSource);
return;
}
}
this.error(DiagnosticCode.File_0_not_found, reportNode.range, normalizedPath);
}
compileSource(source: Source): void {
if (this.files.has(source.normalizedPath))
return;
this.files.add(source.normalizedPath);
var noTreeShaking = this.options.noTreeShaking;
for (var i = 0, k = source.statements.length; i < k; ++i) {
var statement = source.statements[i];
switch (statement.kind) {
case NodeKind.CLASSDECLARATION:
if ((noTreeShaking || source.isEntry && hasModifier(ModifierKind.EXPORT, (<ClassDeclaration>statement).modifiers)) && !(<ClassDeclaration>statement).typeParameters.length)
this.compileClassDeclaration(<ClassDeclaration>statement, []);
break;
case NodeKind.ENUMDECLARATION:
if (noTreeShaking || source.isEntry && hasModifier(ModifierKind.EXPORT, (<EnumDeclaration>statement).modifiers))
this.compileEnumDeclaration(<EnumDeclaration>statement);
break;
case NodeKind.FUNCTIONDECLARATION:
if ((noTreeShaking || source.isEntry && hasModifier(ModifierKind.EXPORT, (<FunctionDeclaration>statement).modifiers)) && !(<FunctionDeclaration>statement).typeParameters.length)
this.compileFunctionDeclaration(<FunctionDeclaration>statement, []);
break;
case NodeKind.IMPORT:
this.compileSourceByPath((<ImportStatement>statement).normalizedPath, (<ImportStatement>statement).path);
break;
case NodeKind.NAMESPACEDECLARATION:
if (noTreeShaking || source.isEntry && hasModifier(ModifierKind.EXPORT, (<NamespaceDeclaration>statement).modifiers))
this.compileNamespaceDeclaration(<NamespaceDeclaration>statement);
break;
case NodeKind.VARIABLE: // global, always compiled because initializers might have side effects
var variableInit = this.compileVariableStatement(<VariableStatement>statement);
if (variableInit)
this.startFunctionBody.push(variableInit);
break;
case NodeKind.EXPORT:
if ((<ExportStatement>statement).normalizedPath != null)
this.compileSourceByPath(<string>(<ExportStatement>statement).normalizedPath, <StringLiteralExpression>(<ExportStatement>statement).path);
if (noTreeShaking || source.isEntry)
this.compileExportStatement(<ExportStatement>statement);
break;
// otherwise a top-level statement that is part of the start function's body
default:
var previousFunction = this.currentFunction;
this.currentFunction = this.startFunction;
var expr = this.compileStatement(statement);
this.startFunctionBody.push(expr);
this.currentFunction = previousFunction;
break;
}
}
}
// globals
compileGlobalDeclaration(declaration: VariableDeclaration): Global | null {
var element = this.program.elements.get(declaration.fileLevelInternalName);
if (!element || element.kind != ElementKind.GLOBAL)
throw new Error("global expected");
if (!this.compileGlobal(<Global>element)) // reports
return null;
return <Global>element;
}
compileGlobal(global: Global): bool {
if (global.is(ElementFlags.COMPILED) || global.is(ElementFlags.BUILTIN))
return true;
var declaration = global.declaration;
var initExpr: ExpressionRef = 0;
if (global.type == Type.void) { // infer type
if (declaration) {
if (declaration.type) {
var resolvedType = this.program.resolveType(declaration.type); // reports
if (!resolvedType)
return false;
if (resolvedType == Type.void) {
this.error(DiagnosticCode.Type_0_is_not_assignable_to_type_1, declaration.range, "*", resolvedType.toString());
return false;
}
global.type = resolvedType;
} else if (declaration.initializer) { // infer type using void/NONE for proper literal inference
initExpr = this.compileExpression(declaration.initializer, Type.void, ConversionKind.NONE); // reports
if (this.currentType == Type.void) {
this.error(DiagnosticCode.Type_0_is_not_assignable_to_type_1, declaration.range, this.currentType.toString(), "<auto>");
return false;
}
global.type = this.currentType;
} else {
this.error(DiagnosticCode.Type_expected, declaration.name.range.atEnd);
return false;
}
} else
throw new Error("declaration expected");
}
var nativeType = global.type.toNativeType();
if (global.is(ElementFlags.DECLARED)) {
if (global.is(ElementFlags.CONSTANT)) {
this.module.addGlobalImport(global.internalName, global.namespace ? global.namespace.simpleName : "env", global.simpleName, nativeType);
global.set(ElementFlags.COMPILED);
return true;
} else if (declaration) {
this.error(DiagnosticCode.Operation_not_supported, declaration.range);
}
return false;
}
var initializeInStart = false;
if (global.is(ElementFlags.INLINED)) {
initExpr = this.compileInlineConstant(global, global.type);
} else if (declaration) {
if (declaration.initializer) {
if (!initExpr)
initExpr = this.compileExpression(declaration.initializer, global.type);
if (_BinaryenExpressionGetId(initExpr) != ExpressionId.Const) {
if (global.is(ElementFlags.CONSTANT)) {
initExpr = this.precomputeExpressionRef(initExpr);
if (_BinaryenExpressionGetId(initExpr) != ExpressionId.Const) {
this.warning(DiagnosticCode.Compiling_constant_with_non_constant_initializer_as_mutable, declaration.range);
initializeInStart = true;
}
} else
initializeInStart = true;
}
} else
initExpr = global.type.toNativeZero(this.module);
} else
throw new Error("declaration expected");
var internalName = global.internalName;
if (initializeInStart) {
this.module.addGlobal(internalName, nativeType, true, global.type.toNativeZero(this.module));
var setExpr = this.module.createSetGlobal(internalName, initExpr);
this.startFunctionBody.push(setExpr);
} else {
if (global.is(ElementFlags.CONSTANT)) {
var exprType = _BinaryenExpressionGetType(initExpr);
switch (exprType) {
case NativeType.I32:
global.constantIntegerValue = new I64(_BinaryenConstGetValueI32(initExpr), 0);
break;
case NativeType.I64:
global.constantIntegerValue = new I64(_BinaryenConstGetValueI64Low(initExpr), _BinaryenConstGetValueI64High(initExpr));
break;
case NativeType.F32:
global.constantFloatValue = _BinaryenConstGetValueF32(initExpr);
break;
case NativeType.F64:
global.constantFloatValue = _BinaryenConstGetValueF64(initExpr);
break;
default:
throw new Error("concrete type expected");
}
global.set(ElementFlags.INLINED);
if (!declaration || declaration.isTopLevel) { // might be re-exported
this.module.addGlobal(internalName, nativeType, !global.is(ElementFlags.CONSTANT), initExpr);
}
if (declaration && declaration.range.source.isEntry && declaration.isTopLevelExport)
this.module.addGlobalExport(global.internalName, declaration.programLevelInternalName);
} else
this.module.addGlobal(internalName, nativeType, !global.is(ElementFlags.CONSTANT), initExpr);
}
global.set(ElementFlags.COMPILED);
return true;
}
// enums
compileEnumDeclaration(declaration: EnumDeclaration): Enum | null {
var element = this.program.elements.get(declaration.fileLevelInternalName);
if (!element || element.kind != ElementKind.ENUM)
throw new Error("enum expected");
return this.compileEnum(<Enum>element) ? <Enum>element : null;
}
compileEnum(element: Enum): bool {
if (element.is(ElementFlags.COMPILED))
return true;
// members might reference each other, triggering another compile
element.set(ElementFlags.COMPILED);
var previousValue: EnumValue | null = null;
if (element.members)
for (var member of element.members.values()) {
if (member.kind != ElementKind.ENUMVALUE) // happens if an enum is also a namespace
continue;
var initInStart = false;
var val = <EnumValue>member;
var valueDeclaration = val.declaration;
if (val.is(ElementFlags.INLINED)) {
if (!element.declaration || element.declaration.isTopLevelExport)
this.module.addGlobal(val.internalName, NativeType.I32, false, this.module.createI32(val.constantValue));
} else if (valueDeclaration) {
var initExpr: ExpressionRef;
if (valueDeclaration.value) {
initExpr = this.compileExpression(<Expression>valueDeclaration.value, Type.i32);
if (_BinaryenExpressionGetId(initExpr) != ExpressionId.Const) {
initExpr = this.precomputeExpressionRef(initExpr);
if (_BinaryenExpressionGetId(initExpr) != ExpressionId.Const) {
if (element.is(ElementFlags.CONSTANT))
this.warning(DiagnosticCode.Compiling_constant_with_non_constant_initializer_as_mutable, valueDeclaration.range);
initInStart = true;
}
}
} else if (previousValue == null) {
initExpr = this.module.createI32(0);
} else if (previousValue.is(ElementFlags.INLINED)) {
initExpr = this.module.createI32(previousValue.constantValue + 1);
} else {
// in TypeScript this errors with TS1061, but actually we can do:
initExpr = this.module.createBinary(BinaryOp.AddI32,
this.module.createGetGlobal(previousValue.internalName, NativeType.I32),
this.module.createI32(1)
);
if (element.is(ElementFlags.CONSTANT))
this.warning(DiagnosticCode.Compiling_constant_with_non_constant_initializer_as_mutable, valueDeclaration.range);
initInStart = true;
}
if (initInStart) {
this.module.addGlobal(val.internalName, NativeType.I32, true, this.module.createI32(0));
var setExpr = this.module.createSetGlobal(val.internalName, initExpr);
this.startFunctionBody.push(setExpr);
} else {
this.module.addGlobal(val.internalName, NativeType.I32, false, initExpr);
if (_BinaryenExpressionGetType(initExpr) == NativeType.I32) {
val.constantValue = _BinaryenConstGetValueI32(initExpr);
val.set(ElementFlags.INLINED);
} else
throw new Error("i32 expected");
}
} else
throw new Error("declaration expected");
previousValue = <EnumValue>val;
// export values if the enum is exported
if (element.declaration && element.declaration.range.source.isEntry && element.declaration.isTopLevelExport) {
if (member.is(ElementFlags.INLINED))
this.module.addGlobalExport(member.internalName, member.internalName);
else if (valueDeclaration)
this.warning(DiagnosticCode.Cannot_export_a_mutable_global, valueDeclaration.range);
}
}
return true;
}
// functions
compileFunctionDeclaration(declaration: FunctionDeclaration, typeArguments: TypeNode[], contextualTypeArguments: Map<string,Type> | null = null, alternativeReportNode: Node | null = null): Function | null {
var element = this.program.elements.get(declaration.fileLevelInternalName);
if (!element || element.kind != ElementKind.FUNCTION_PROTOTYPE)
throw new Error("function expected");
return this.compileFunctionUsingTypeArguments(<FunctionPrototype>element, typeArguments, contextualTypeArguments, alternativeReportNode); // reports
}
compileFunctionUsingTypeArguments(prototype: FunctionPrototype, typeArguments: TypeNode[], contextualTypeArguments: Map<string,Type> | null = null, alternativeReportNode: Node | null = null): Function | null {
var instance = prototype.resolveInclTypeArguments(typeArguments, contextualTypeArguments, alternativeReportNode); // reports
if (!instance)
return null;
return this.compileFunction(instance) ? instance : null;
}
compileFunction(instance: Function): bool {
if (instance.is(ElementFlags.COMPILED))
return true;
var declaration = instance.prototype.declaration;
if (instance.is(ElementFlags.DECLARED)) {
if (declaration && declaration.statements) {
this.error(DiagnosticCode.An_implementation_cannot_be_declared_in_ambient_contexts, declaration.name.range);
return false;
}
} else {
if (!declaration)
throw new Error("declaration expected"); // built-ins are not compiled here
if (!declaration.statements) {
this.error(DiagnosticCode.Function_implementation_is_missing_or_not_immediately_following_the_declaration, declaration.name.range);
return false;
}
}
// might trigger compilation of other functions referring to this one
instance.set(ElementFlags.COMPILED);
// compile statements
var stmts: ExpressionRef[] | null = null;
if (!instance.is(ElementFlags.DECLARED)) {
declaration = assert(declaration, "declaration expected");
var previousFunction = this.currentFunction;
this.currentFunction = instance;
var statements = assert(declaration.statements, "implementation expected");
stmts = this.compileStatements(statements);
// make sure the top-level branch or all child branches return
var allBranchesReturn = this.currentFunction.flow.finalize();
if (instance.returnType != Type.void && !allBranchesReturn)
this.error(DiagnosticCode.A_function_whose_declared_type_is_not_void_must_return_a_value, assert(declaration.returnType, "return type expected").range);
this.currentFunction = previousFunction;
}
// create the function type
var numParameters = instance.parameters.length;
var numParametersInclThis = instance.instanceMethodOf ? numParameters + 1 : numParameters;
var paramIndex = 0;
var nativeResultType = instance.returnType.toNativeType();
var nativeParamTypes = new Array<NativeType>(numParametersInclThis);
var signatureNameParts = new Array<string>(numParametersInclThis + 1);
if (instance.instanceMethodOf) {
nativeParamTypes[paramIndex] = this.options.target == Target.WASM64 ? NativeType.I64 : NativeType.I32;
signatureNameParts[paramIndex++] = instance.instanceMethodOf.type.toSignatureString();
}
for (var i = 0; i < numParameters; ++i) {
nativeParamTypes[paramIndex] = instance.parameters[i].type.toNativeType();
signatureNameParts[paramIndex++] = instance.parameters[i].type.toSignatureString();
}
signatureNameParts[paramIndex] = instance.returnType.toSignatureString();
var typeRef = this.module.getFunctionTypeBySignature(nativeResultType, nativeParamTypes);
if (!typeRef)
typeRef = this.module.addFunctionType(signatureNameParts.join(""), nativeResultType, nativeParamTypes);
// create the function
if (instance.is(ElementFlags.DECLARED)) {
this.module.addFunctionImport(instance.internalName, instance.prototype.namespace ? instance.prototype.namespace.simpleName : "env", instance.simpleName, typeRef);
} else {
this.module.addFunction(instance.internalName, typeRef, typesToNativeTypes(instance.additionalLocals), this.module.createBlock(null, <ExpressionRef[]>stmts, NativeType.None));
}
instance.finalize();
if (declaration && declaration.range.source.isEntry && declaration.isTopLevelExport) {
this.module.addFunctionExport(instance.internalName, declaration.name.name);
}
return true;
}
// namespaces
compileNamespaceDeclaration(declaration: NamespaceDeclaration): void {
var members = declaration.members;
var noTreeShaking = this.options.noTreeShaking;
for (var i = 0, k = members.length; i < k; ++i) {
var member = members[i];
switch (member.kind) {
case NodeKind.CLASSDECLARATION:
if ((noTreeShaking || hasModifier(ModifierKind.EXPORT, (<ClassDeclaration>member).modifiers)) && !(<ClassDeclaration>member).typeParameters.length)
this.compileClassDeclaration(<ClassDeclaration>member, []);
break;
case NodeKind.INTERFACEDECLARATION:
if ((noTreeShaking || hasModifier(ModifierKind.EXPORT, (<InterfaceDeclaration>member).modifiers)) && !(<InterfaceDeclaration>member).typeParameters.length)
this.compileInterfaceDeclaration(<InterfaceDeclaration>member, []);
break;
case NodeKind.ENUMDECLARATION:
if (noTreeShaking || hasModifier(ModifierKind.EXPORT, (<EnumDeclaration>member).modifiers))
this.compileEnumDeclaration(<EnumDeclaration>member);
break;
case NodeKind.FUNCTIONDECLARATION:
if ((noTreeShaking || hasModifier(ModifierKind.EXPORT, (<FunctionDeclaration>member).modifiers)) && !(<FunctionDeclaration>member).typeParameters.length)
this.compileFunctionDeclaration(<FunctionDeclaration>member, []);
break;
case NodeKind.NAMESPACEDECLARATION:
if (noTreeShaking || hasModifier(ModifierKind.EXPORT, (<NamespaceDeclaration>member).modifiers))
this.compileNamespaceDeclaration(<NamespaceDeclaration>member);
break;
case NodeKind.VARIABLE:
if (noTreeShaking || hasModifier(ModifierKind.EXPORT, (<VariableStatement>member).modifiers)) {
var variableInit = this.compileVariableStatement(<VariableStatement>member, true);
if (variableInit)
this.startFunctionBody.push(variableInit);
}
break;
default:
throw new Error("namespace member expected");
}
}
}
compileNamespace(ns: Namespace): void {
if (!ns.members)
return;
var noTreeShaking = this.options.noTreeShaking;
for (var element of ns.members.values()) {
switch (element.kind) {
case ElementKind.CLASS_PROTOTYPE:
if ((noTreeShaking || (<ClassPrototype>element).is(ElementFlags.EXPORTED)) && !(<ClassPrototype>element).is(ElementFlags.GENERIC))
this.compileClassUsingTypeArguments(<ClassPrototype>element, []);
break;
case ElementKind.ENUM:
this.compileEnum(<Enum>element);
break;
case ElementKind.FUNCTION_PROTOTYPE:
if ((noTreeShaking || (<FunctionPrototype>element).is(ElementFlags.EXPORTED)) && !(<FunctionPrototype>element).is(ElementFlags.GENERIC))
this.compileFunctionUsingTypeArguments(<FunctionPrototype>element, []);
break;
case ElementKind.GLOBAL:
this.compileGlobal(<Global>element);
break;
case ElementKind.NAMESPACE:
this.compileNamespace(<Namespace>element);
break;
}
}
}
// exports
compileExportStatement(statement: ExportStatement): void {
var members = statement.members;
for (var i = 0, k = members.length; i < k; ++i) {
var member = members[i];
var internalExportName = statement.range.source.internalPath + PATH_DELIMITER + member.externalIdentifier.name;
var element = this.program.exports.get(internalExportName);
if (!element) // reported in Program#initialize
continue;
switch (element.kind) {
case ElementKind.CLASS_PROTOTYPE:
if (!(<ClassPrototype>element).is(ElementFlags.GENERIC))
this.compileClassUsingTypeArguments(<ClassPrototype>element, []);
break;
case ElementKind.ENUM:
this.compileEnum(<Enum>element);
break;
case ElementKind.FUNCTION_PROTOTYPE:
if (!(<FunctionPrototype>element).is(ElementFlags.GENERIC) && statement.range.source.isEntry) {
var functionInstance = this.compileFunctionUsingTypeArguments(<FunctionPrototype>element, []);
if (functionInstance) {
var functionDeclaration = functionInstance.prototype.declaration;
if (functionDeclaration && functionDeclaration.needsExplicitExport(member))
this.module.addFunctionExport(functionInstance.internalName, member.externalIdentifier.name);
}
}
break;
case ElementKind.GLOBAL:
if (this.compileGlobal(<Global>element) && statement.range.source.isEntry) {
var globalDeclaration = (<Global>element).declaration;
if (globalDeclaration && globalDeclaration.needsExplicitExport(member)) {
if ((<Global>element).is(ElementFlags.INLINED))
this.module.addGlobalExport(element.internalName, member.externalIdentifier.name);
else
this.warning(DiagnosticCode.Cannot_export_a_mutable_global, member.range);
}
}
break;
case ElementKind.NAMESPACE:
this.compileNamespace(<Namespace>element);
break;
}
}
}
// classes
compileClassDeclaration(declaration: ClassDeclaration, typeArguments: TypeNode[], contextualTypeArguments: Map<string,Type> | null = null, alternativeReportNode: Node | null = null): void {
var element = this.program.elements.get(declaration.fileLevelInternalName);
if (!element || element.kind != ElementKind.CLASS_PROTOTYPE)
throw new Error("class expected");
this.compileClassUsingTypeArguments(<ClassPrototype>element, typeArguments, contextualTypeArguments, alternativeReportNode);
}
compileClassUsingTypeArguments(prototype: ClassPrototype, typeArguments: TypeNode[], contextualTypeArguments: Map<string,Type> | null = null, alternativeReportNode: Node | null = null): void {
var instance = prototype.resolveInclTypeArguments(typeArguments, contextualTypeArguments, alternativeReportNode);
if (!instance)
return;
this.compileClass(instance);
}
compileClass(instance: Class): bool {
if (instance.is(ElementFlags.COMPILED))
return true;
instance.set(ElementFlags.COMPILED);
return true;
}
compileInterfaceDeclaration(declaration: InterfaceDeclaration, typeArguments: TypeNode[], contextualTypeArguments: Map<string,Type> | null = null, alternativeReportNode: Node | null = null): void {
throw new Error("not implemented");
}
// memory
/** Adds a static memory segment with the specified data. */
addMemorySegment(buffer: Uint8Array): MemorySegment {
if (this.memoryOffset.lo & 7) { // align to 8 bytes so any native data type is aligned here
this.memoryOffset.or32(7);
this.memoryOffset.add32(1);
}
var segment = MemorySegment.create(buffer, this.memoryOffset.clone());
this.memorySegments.push(segment);
this.memoryOffset.add32(buffer.length);
return segment;
}
// statements
compileStatement(statement: Statement): ExpressionRef {
switch (statement.kind) {
case NodeKind.BLOCK:
return this.compileBlockStatement(<BlockStatement>statement);
case NodeKind.BREAK:
return this.compileBreakStatement(<BreakStatement>statement);
case NodeKind.CONTINUE:
return this.compileContinueStatement(<ContinueStatement>statement);
case NodeKind.DO:
return this.compileDoStatement(<DoStatement>statement);
case NodeKind.EMPTY:
return this.compileEmptyStatement(<EmptyStatement>statement);
case NodeKind.EXPRESSION:
return this.compileExpressionStatement(<ExpressionStatement>statement);
case NodeKind.FOR:
return this.compileForStatement(<ForStatement>statement);
case NodeKind.IF:
return this.compileIfStatement(<IfStatement>statement);
case NodeKind.RETURN:
return this.compileReturnStatement(<ReturnStatement>statement);
case NodeKind.SWITCH:
return this.compileSwitchStatement(<SwitchStatement>statement);
case NodeKind.THROW:
return this.compileThrowStatement(<ThrowStatement>statement);
case NodeKind.TRY:
return this.compileTryStatement(<TryStatement>statement);
case NodeKind.VARIABLE:
var variableInit = this.compileVariableStatement(<VariableStatement>statement);
return variableInit ? variableInit : this.module.createNop();
case NodeKind.WHILE:
return this.compileWhileStatement(<WhileStatement>statement);
case NodeKind.TYPEDECLARATION:
if (this.currentFunction == this.startFunction)
return this.module.createNop();
// fall-through: must be top-level; function bodies are not guaranteed to be evaluated
default:
throw new Error("statement expected");
}
}
compileStatements(statements: Statement[]): ExpressionRef[] {
var k = statements.length;
var stmts = new Array<ExpressionRef>(k);
for (var i = 0; i < k; ++i)
stmts[i] = this.compileStatement(statements[i]);
return stmts; // array of 0-es in noEmit-mode
}
compileBlockStatement(statement: BlockStatement): ExpressionRef {
var statements = statement.statements;
// NOTE that we could optimize this to a NOP if empty or unwrap a single
// statement, but that's not what the source told us to do and left to the
// optimizer.
// Not actually a branch, but can contain its own scoped variables.
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
var stmt = this.module.createBlock(null, this.compileStatements(statements), NativeType.None);
var stmtReturns = this.currentFunction.flow.is(FlowFlags.RETURNS);
// Switch back to the parent flow
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
if (stmtReturns)
this.currentFunction.flow.set(FlowFlags.RETURNS);
return stmt;
}
compileBreakStatement(statement: BreakStatement): ExpressionRef {
if (statement.label) {
this.error(DiagnosticCode.Operation_not_supported, statement.label.range);
return this.module.createUnreachable();
}
var breakLabel = this.currentFunction.flow.breakLabel;
if (breakLabel == null) {
this.error(DiagnosticCode.A_break_statement_can_only_be_used_within_an_enclosing_iteration_or_switch_statement, statement.range);
return this.module.createUnreachable();
}
this.currentFunction.flow.set(FlowFlags.POSSIBLY_BREAKS);
return this.module.createBreak(breakLabel);
}
compileContinueStatement(statement: ContinueStatement): ExpressionRef {
if (statement.label) {
this.error(DiagnosticCode.Operation_not_supported, statement.label.range);
return this.module.createUnreachable();
}
// Check if 'continue' is allowed here
var continueLabel = this.currentFunction.flow.continueLabel;
if (continueLabel == null) {
this.error(DiagnosticCode.A_continue_statement_can_only_be_used_within_an_enclosing_iteration_statement, statement.range);
return this.module.createUnreachable();
}
this.currentFunction.flow.set(FlowFlags.POSSIBLY_CONTINUES);
return this.module.createBreak(continueLabel);
}
compileDoStatement(statement: DoStatement): ExpressionRef {
// A do statement does not initiate a new branch because it is executed at
// least once, but has its own break and continue labels.
var label = this.currentFunction.enterBreakContext();
var previousBreakLabel = this.currentFunction.flow.breakLabel;
var previousContinueLabel = this.currentFunction.flow.continueLabel;
var breakLabel = this.currentFunction.flow.breakLabel = "break|" + label;
var continueLabel = this.currentFunction.flow.continueLabel = "continue|" + label;
var body = this.compileStatement(statement.statement);
// Reset to the previous break and continue labels, if any.
this.currentFunction.flow.breakLabel = previousBreakLabel;
this.currentFunction.flow.continueLabel = previousContinueLabel;
var condition = this.compileExpression(statement.condition, Type.i32);
this.currentFunction.leaveBreakContext();
return this.module.createBlock(breakLabel, [
this.module.createLoop(continueLabel,
this.module.createBlock(null, [
body,
this.module.createBreak(continueLabel, condition)
], NativeType.None))
], NativeType.None);
}
compileEmptyStatement(statement: EmptyStatement): ExpressionRef {
return this.module.createNop();
}
compileExpressionStatement(statement: ExpressionStatement): ExpressionRef {
var expr = this.compileExpression(statement.expression, Type.void, ConversionKind.NONE);
if (this.currentType != Type.void) {
expr = this.module.createDrop(expr);
this.currentType = Type.void;
}
return expr;
}
compileForStatement(statement: ForStatement): ExpressionRef {
// A for statement initiates a new branch with its own scoped variables
// possibly declared in its initializer, and break context.
var context = this.currentFunction.enterBreakContext();
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
var breakLabel = this.currentFunction.flow.breakLabel = "break|" + context;
var continueLabel = this.currentFunction.flow.continueLabel = "continue|" + context;
// Compile in correct order
var initializer = statement.initializer ? this.compileStatement(<Statement>statement.initializer) : this.module.createNop();
var condition = statement.condition ? this.compileExpression(<Expression>statement.condition, Type.i32) : this.module.createI32(1);
var incrementor = statement.incrementor ? this.compileExpression(<Expression>statement.incrementor, Type.void) : this.module.createNop();
var body = this.compileStatement(statement.statement);
var alwaysReturns = !statement.condition && this.currentFunction.flow.is(FlowFlags.RETURNS);
// TODO: check other always-true conditions as well, not just omitted
// Switch back to the parent flow
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
this.currentFunction.leaveBreakContext();
var expr = this.module.createBlock(breakLabel, [
initializer,
this.module.createLoop(continueLabel, this.module.createBlock(null, [
this.module.createIf(condition, this.module.createBlock(null, [
body,
incrementor,
this.module.createBreak(continueLabel)
], NativeType.None))
], NativeType.None))
], NativeType.None);
// If the loop is guaranteed to run and return, propagate that and append a hint
if (alwaysReturns) {
this.currentFunction.flow.set(FlowFlags.RETURNS);
expr = this.module.createBlock(null, [
expr,
this.module.createUnreachable()
]);
}
return expr;
}
compileIfStatement(statement: IfStatement): ExpressionRef {
// The condition doesn't initiate a branch yet
var condition = this.compileExpression(statement.condition, Type.i32);
// Each arm initiates a branch
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
var ifTrue = this.compileStatement(statement.ifTrue);
var ifTrueReturns = this.currentFunction.flow.is(FlowFlags.RETURNS);
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
var ifFalse: ExpressionRef = 0;
var ifFalseReturns = false;
if (statement.ifFalse) {
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
ifFalse = this.compileStatement(statement.ifFalse);
ifFalseReturns = this.currentFunction.flow.is(FlowFlags.RETURNS);
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
}
if (ifTrueReturns && ifFalseReturns) // not necessary to append a hint
this.currentFunction.flow.set(FlowFlags.RETURNS);
return this.module.createIf(condition, ifTrue, ifFalse);
}
compileReturnStatement(statement: ReturnStatement): ExpressionRef {
var expression: ExpressionRef = 0;
if (statement.value)
expression = this.compileExpression(<Expression>statement.value, this.currentFunction.returnType);
// Remember that this flow returns
this.currentFunction.flow.set(FlowFlags.RETURNS);
return this.module.createReturn(expression);
}
compileSwitchStatement(statement: SwitchStatement): ExpressionRef {
// Everything within a switch uses the same break context
var context = this.currentFunction.enterBreakContext();
// introduce a local for evaluating the condition (exactly once)
var tempLocal = this.currentFunction.getTempLocal(Type.i32);
var k = statement.cases.length;
// Prepend initializer to inner block. Does not initiate a new branch, yet.
var breaks = new Array<ExpressionRef>(1 + k);
breaks[0] = this.module.createSetLocal(tempLocal.index, this.compileExpression(statement.condition, Type.i32)); // initializer
// make one br_if per (possibly dynamic) labeled case (binaryen optimizes to br_table where possible)
var breakIndex = 1;
var defaultIndex = -1;
for (var i = 0; i < k; ++i) {
var case_ = statement.cases[i];
if (case_.label) {
breaks[breakIndex++] = this.module.createBreak("case" + i.toString(10) + "|" + context,
this.module.createBinary(BinaryOp.EqI32,
this.module.createGetLocal(tempLocal.index, NativeType.I32),
this.compileExpression(case_.label, Type.i32)
)
);
} else
defaultIndex = i;
}
this.currentFunction.freeTempLocal(tempLocal);
// otherwise br to default respectively out of the switch if there is no default case
breaks[breakIndex] = this.module.createBreak((defaultIndex >= 0
? "case" + defaultIndex.toString(10)
: "break"
) + "|" + context);
// nest blocks in order
var currentBlock = this.module.createBlock("case0|" + context, breaks, NativeType.None);
var alwaysReturns = true;
for (i = 0; i < k; ++i) {
case_ = statement.cases[i];
var l = case_.statements.length;
var body = new Array<ExpressionRef>(1 + l);
body[0] = currentBlock;
// Each switch case initiates a new branch
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
var breakLabel = this.currentFunction.flow.breakLabel = "break|" + context;
var fallsThrough = i != k - 1;
var nextLabel = !fallsThrough ? breakLabel : "case" + (i + 1).toString(10) + "|" + context;
for (var j = 0; j < l; ++j)
body[j + 1] = this.compileStatement(case_.statements[j]);
if (!(fallsThrough || this.currentFunction.flow.is(FlowFlags.RETURNS)))
alwaysReturns = false; // ignore fall-throughs
// Switch back to the parent flow
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
currentBlock = this.module.createBlock(nextLabel, body, NativeType.None);
}
this.currentFunction.leaveBreakContext();
// If the switch has a default and always returns, propagate that
if (defaultIndex >= 0 && alwaysReturns) {
this.currentFunction.flow.set(FlowFlags.RETURNS);
// Binaryen understands that so we don't need a hint
}
return currentBlock;
}
compileThrowStatement(statement: ThrowStatement): ExpressionRef {
// Remember that this branch possibly throws
this.currentFunction.flow.set(FlowFlags.POSSIBLY_THROWS);
// FIXME: without try-catch it is safe to assume RETURNS as well for now
this.currentFunction.flow.set(FlowFlags.RETURNS);
// TODO: requires exception-handling spec.
return this.module.createUnreachable();
}
compileTryStatement(statement: TryStatement): ExpressionRef {
throw new Error("not implemented");
// can't yet support something like: try { return ... } finally { ... }
// worthwhile to investigate lowering returns to block results (here)?
}
/**
* Compiles a variable statement. Returns `0` if an initializer is not
* necessary.
*/
compileVariableStatement(statement: VariableStatement, isKnownGlobal: bool = false): ExpressionRef {
var declarations = statement.declarations;
// top-level variables and constants become globals
if (isKnownGlobal || (
this.currentFunction == this.startFunction &&
statement.parent && statement.parent.kind == NodeKind.SOURCE
)) {
// NOTE that the above condition also covers top-level variables declared with 'let', even
// though such variables could also become start function locals if, and only if, not used
// within any function declared in the same source, which is unknown at this point. the only
// efficient way to deal with this would be to keep track of all occasions it is used and
// replace these instructions afterwards, dynamically. (TOOD: what about a Binaryen pass?)
for (var i = 0, k = declarations.length; i < k; ++i)
this.compileGlobalDeclaration(declarations[i]);
return 0;
}
// other variables become locals
var initializers = new Array<ExpressionRef>();
for (i = 0, k = declarations.length; i < k; ++i) {
var declaration = declarations[i];
var name = declaration.name.name;
var type: Type | null = null;
var init: ExpressionRef = 0;
if (declaration.type) {
type = this.program.resolveType(<TypeNode>declaration.type, this.currentFunction.contextualTypeArguments, true); // reports
if (!type)
continue;
if (declaration.initializer)
init = this.compileExpression(declaration.initializer, type); // reports
} else if (declaration.initializer) { // infer type using void/NONE for proper literal inference
init = this.compileExpression(declaration.initializer, Type.void, ConversionKind.NONE); // reports
if (this.currentType == Type.void) {
this.error(DiagnosticCode.Type_0_is_not_assignable_to_type_1, declaration.range, this.currentType.toString(), "<auto>");
continue;
}
type = this.currentType;
} else {
this.error(DiagnosticCode.Type_expected, declaration.name.range.atEnd);
continue;
}
if (hasModifier(ModifierKind.CONST, declaration.modifiers)) {
if (init) {
init = this.precomputeExpressionRef(init);
if (_BinaryenExpressionGetId(init) == ExpressionId.Const) {
var local = new Local(this.program, name, -1, type);
switch (_BinaryenExpressionGetType(init)) {
case NativeType.I32:
local = local.withConstantIntegerValue(_BinaryenConstGetValueI32(init), 0);
break;
case NativeType.I64:
local = local.withConstantIntegerValue(_BinaryenConstGetValueI64Low(init), _BinaryenConstGetValueI64High(init));
break;
case NativeType.F32:
local = local.withConstantFloatValue(<f64>_BinaryenConstGetValueF32(init));
break;
case NativeType.F64:
local = local.withConstantFloatValue(_BinaryenConstGetValueF64(init));
break;
default:
throw new Error("concrete type expected");
}
// Create a virtual local that doesn't actually exist in WebAssembly
var scopedLocals = this.currentFunction.flow.scopedLocals;
if (!scopedLocals)
scopedLocals = this.currentFunction.flow.scopedLocals = new Map();
else if (scopedLocals.has(name)) {
this.error(DiagnosticCode.Duplicate_identifier_0, declaration.name.range, name);
return 0;
}
scopedLocals.set(name, local);
return 0;
} else
this.warning(DiagnosticCode.Compiling_constant_with_non_constant_initializer_as_mutable, declaration.range);
} else
this.error(DiagnosticCode._const_declarations_must_be_initialized, declaration.range);
}
if (hasModifier(ModifierKind.LET, declaration.modifiers)) // here: not top-level
this.currentFunction.flow.addScopedLocal(name, type, declaration.name); // reports
else
this.currentFunction.addLocal(type, name); // reports
if (init)
initializers.push(this.compileAssignmentWithValue(declaration.name, init));
}
return initializers.length // we can unwrap these here because the
? initializers.length == 1 // source didn't tell us exactly what to do
? initializers[0]
: this.module.createBlock(null, initializers, NativeType.None)
: 0;
}
compileWhileStatement(statement: WhileStatement): ExpressionRef {
// The condition does not yet initialize a branch
var condition = this.compileExpression(statement.condition, Type.i32);
// Statements initiate a new branch with its own break context
var label = this.currentFunction.enterBreakContext();
this.currentFunction.flow = this.currentFunction.flow.enterBranchOrScope();
var breakLabel = this.currentFunction.flow.breakLabel = "break|" + label;
var continueLabel = this.currentFunction.flow.continueLabel = "continue|" + label;
var body = this.compileStatement(statement.statement);
var alwaysReturns = false && this.currentFunction.flow.is(FlowFlags.RETURNS);
// TODO: evaluate possible always-true conditions
// Switch back to the parent flow
this.currentFunction.flow = this.currentFunction.flow.leaveBranchOrScope();
this.currentFunction.leaveBreakContext();
var expr = this.module.createBlock(breakLabel, [
this.module.createLoop(continueLabel,
this.module.createIf(condition, this.module.createBlock(null, [
body,
this.module.createBreak(continueLabel)
], NativeType.None))
)
], NativeType.None);
// If the loop is guaranteed to run and return, propagate that and append a hint
if (alwaysReturns) {
expr = this.module.createBlock(null, [
expr,
this.module.createUnreachable()
]);
}
return expr;
}
// expressions
/** Compiles an inlined constant value of a variable-like element. */
compileInlineConstant(element: VariableLikeElement, contextualType: Type): ExpressionRef {
assert(element.is(ElementFlags.INLINED));
switch (element.type.is(TypeFlags.INTEGER) && contextualType.is(TypeFlags.INTEGER) && element.type.size <= contextualType.size
? (this.currentType = contextualType).kind // essentially precomputes a (sign-)extension
: (this.currentType = element.type).kind
) {
case TypeKind.I8:
case TypeKind.I16:
var shift = element.type.computeSmallIntegerShift(Type.i32);
return this.module.createI32(element.constantIntegerValue ? element.constantIntegerValue.toI32() << shift >> shift : 0);
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
var mask = element.type.computeSmallIntegerMask(Type.i32);
return this.module.createI32(element.constantIntegerValue ? element.constantIntegerValue.toI32() & mask : 0);
case TypeKind.I32:
case TypeKind.U32:
return this.module.createI32(element.constantIntegerValue ? element.constantIntegerValue.lo : 0)
case TypeKind.ISIZE:
case TypeKind.USIZE:
if (!element.program.options.isWasm64)
return this.module.createI32(element.constantIntegerValue ? element.constantIntegerValue.lo : 0)
// fall-through
case TypeKind.I64:
case TypeKind.U64:
return element.constantIntegerValue
? this.module.createI64(element.constantIntegerValue.lo, element.constantIntegerValue.hi)
: this.module.createI64(0);
case TypeKind.F32:
return this.module.createF32((<VariableLikeElement>element).constantFloatValue);
case TypeKind.F64:
return this.module.createF64((<VariableLikeElement>element).constantFloatValue);
default:
throw new Error("concrete type expected");
}
}
compileExpression(expression: Expression, contextualType: Type, conversionKind: ConversionKind = ConversionKind.IMPLICIT, wrapSmallIntegers: bool = true): ExpressionRef {
this.currentType = contextualType;
var expr: ExpressionRef;
switch (expression.kind) {
case NodeKind.ASSERTION:
expr = this.compileAssertionExpression(<AssertionExpression>expression, contextualType);
break;
case NodeKind.BINARY:
expr = this.compileBinaryExpression(<BinaryExpression>expression, contextualType, wrapSmallIntegers);
break;
case NodeKind.CALL:
expr = this.compileCallExpression(<CallExpression>expression, contextualType);
break;
case NodeKind.COMMA:
expr = this.compileCommaExpression(<CommaExpression>expression, contextualType);
break;
case NodeKind.ELEMENTACCESS:
expr = this.compileElementAccessExpression(<ElementAccessExpression>expression, contextualType);
break;
case NodeKind.IDENTIFIER:
case NodeKind.FALSE:
case NodeKind.NULL:
case NodeKind.THIS:
case NodeKind.TRUE:
expr = this.compileIdentifierExpression(<IdentifierExpression>expression, contextualType);
break;
case NodeKind.LITERAL:
expr = this.compileLiteralExpression(<LiteralExpression>expression, contextualType);
break;
case NodeKind.NEW:
expr = this.compileNewExpression(<NewExpression>expression, contextualType);
break;
case NodeKind.PARENTHESIZED:
expr = this.compileParenthesizedExpression(<ParenthesizedExpression>expression, contextualType);
break;
case NodeKind.PROPERTYACCESS:
expr = this.compilePropertyAccessExpression(<PropertyAccessExpression>expression, contextualType);
break;
case NodeKind.TERNARY:
expr = this.compileTernaryExpression(<TernaryExpression>expression, contextualType);
break;
case NodeKind.UNARYPOSTFIX:
expr = this.compileUnaryPostfixExpression(<UnaryPostfixExpression>expression, contextualType);
break;
case NodeKind.UNARYPREFIX:
expr = this.compileUnaryPrefixExpression(<UnaryPrefixExpression>expression, contextualType, wrapSmallIntegers);
break;
default:
throw new Error("expression expected");
}
if (conversionKind != ConversionKind.NONE && this.currentType != contextualType) {
expr = this.convertExpression(expr, this.currentType, contextualType, conversionKind, expression);
this.currentType = contextualType;
}
return expr;
}
precomputeExpression(expression: Expression, contextualType: Type, conversionKind: ConversionKind = ConversionKind.IMPLICIT): ExpressionRef {
return this.precomputeExpressionRef(this.compileExpression(expression, contextualType, conversionKind));
}
precomputeExpressionRef(expr: ExpressionRef): ExpressionRef {
var nativeType = this.currentType.toNativeType();
var typeRef = this.module.getFunctionTypeBySignature(nativeType, []);
if (!typeRef)
typeRef = this.module.addFunctionType(this.currentType.toSignatureString(), nativeType, []);
var funcRef = this.module.addFunction("__precompute", typeRef, [], expr);
this.module.runPasses([ "precompute" ], funcRef);
var ret = _BinaryenFunctionGetBody(funcRef);
this.module.removeFunction("__precompute");
// TODO: also remove the function type somehow if no longer used or make the C-API accept
// a `null` typeRef, using an implicit type.
return ret;
}
convertExpression(expr: ExpressionRef, fromType: Type, toType: Type, conversionKind: ConversionKind, reportNode: Node): ExpressionRef {
if (conversionKind == ConversionKind.NONE) {
assert(false, "concrete type expected");
return expr;
}
// void to any
if (fromType.kind == TypeKind.VOID) {
this.error(DiagnosticCode.Type_0_is_not_assignable_to_type_1, reportNode.range, fromType.toString(), toType.toString());
return this.module.createUnreachable();
}
// any to void
if (toType.kind == TypeKind.VOID)
return this.module.createDrop(expr);
var mod = this.module;
var losesInformation = false;
if (fromType.is(TypeFlags.FLOAT)) {
// float to float
if (toType.is(TypeFlags.FLOAT)) {
if (fromType.kind == TypeKind.F32) {
// f32 to f64
if (toType.kind == TypeKind.F64)
expr = mod.createUnary(UnaryOp.PromoteF32, expr);
// otherwise f32 to f32
// f64 to f32
} else if (toType.kind == TypeKind.F32) {
losesInformation = true;
expr = mod.createUnary(UnaryOp.DemoteF64, expr);
}
// otherwise f64 to f64
// float to int
} else if (toType.is(TypeFlags.INTEGER)) {
losesInformation = true;
// f32 to int
if (fromType.kind == TypeKind.F32) {
if (toType.is(TypeFlags.SIGNED)) {
if (toType.is(TypeFlags.LONG))
expr = mod.createUnary(UnaryOp.TruncF32ToI64, expr);
else {
expr = mod.createUnary(UnaryOp.TruncF32ToI32, expr);
if (toType.is(TypeFlags.SMALL))
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
} else {
if (toType.is(TypeFlags.LONG))
expr = mod.createUnary(UnaryOp.TruncF32ToU64, expr);
else {
expr = mod.createUnary(UnaryOp.TruncF32ToU32, expr);
if (toType.is(TypeFlags.SMALL))
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
}
// f64 to int
} else {
if (toType.is(TypeFlags.SIGNED)) {
if (toType.is(TypeFlags.LONG))
expr = mod.createUnary(UnaryOp.TruncF64ToI64, expr);
else {
expr = mod.createUnary(UnaryOp.TruncF64ToI32, expr);
if (toType.is(TypeFlags.SMALL))
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
} else {
if (toType.is(TypeFlags.LONG))
expr = mod.createUnary(UnaryOp.TruncF64ToU64, expr);
else {
expr = mod.createUnary(UnaryOp.TruncF64ToU32, expr);
if (toType.is(TypeFlags.SMALL))
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
}
}
// float to void
} else {
assert(toType.flags == TypeFlags.NONE, "void type expected");
expr = this.module.createDrop(expr);
}
// int to float
} else if (fromType.is(TypeFlags.INTEGER) && toType.is(TypeFlags.FLOAT)) {
// int to f32
if (toType.kind == TypeKind.F32) {
if (fromType.is(TypeFlags.LONG)) {
losesInformation = true;
expr = mod.createUnary(fromType.is(TypeFlags.SIGNED) ? UnaryOp.ConvertI64ToF32 : UnaryOp.ConvertU64ToF32, expr);
} else {
losesInformation = !fromType.is(TypeFlags.SMALL);
expr = mod.createUnary(fromType.is(TypeFlags.SIGNED) ? UnaryOp.ConvertI32ToF32 : UnaryOp.ConvertU32ToF32, expr);
}
// int to f64
} else {
if (fromType.is(TypeFlags.LONG)) {
losesInformation = true;
expr = mod.createUnary(fromType.is(TypeFlags.SIGNED) ? UnaryOp.ConvertI64ToF64 : UnaryOp.ConvertU64ToF64, expr);
} else
expr = mod.createUnary(fromType.is(TypeFlags.SIGNED) ? UnaryOp.ConvertI32ToF64 : UnaryOp.ConvertU32ToF64, expr);
}
// int to int
} else {
if (fromType.is(TypeFlags.LONG)) {
// i64 to i32
if (!toType.is(TypeFlags.LONG)) {
losesInformation = true;
expr = mod.createUnary(UnaryOp.WrapI64, expr); // discards upper bits
if (toType.is(TypeFlags.SMALL))
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
// i32 to i64
} else if (toType.is(TypeFlags.LONG)) {
expr = mod.createUnary(toType.is(TypeFlags.SIGNED) ? UnaryOp.ExtendI32 : UnaryOp.ExtendU32, expr);
// i32 or smaller to even smaller or same size int with change of sign
} else if (toType.is(TypeFlags.SMALL) && (fromType.size > toType.size || (fromType.size == toType.size && fromType.is(TypeFlags.SIGNED) != toType.is(TypeFlags.SIGNED)))) {
losesInformation = true;
expr = makeSmallIntegerWrap(expr, toType, this.module);
}
// otherwise (smaller) i32/u32 to (same size) i32/u32
}
if (losesInformation && conversionKind == ConversionKind.IMPLICIT)
this.error(DiagnosticCode.Conversion_from_type_0_to_1_possibly_loses_information_and_thus_requires_an_explicit_cast, reportNode.range, fromType.toString(), toType.toString());
return expr;
}
compileAssertionExpression(expression: AssertionExpression, contextualType: Type): ExpressionRef {
var toType = this.program.resolveType(expression.toType, this.currentFunction.contextualTypeArguments); // reports
if (!toType)
return this.module.createUnreachable();
return this.compileExpression(expression.expression, toType, ConversionKind.EXPLICIT);
}
compileBinaryExpression(expression: BinaryExpression, contextualType: Type, wrapSmallIntegers: bool = true): ExpressionRef {
var left: ExpressionRef;
var right: ExpressionRef;
var condition: ExpressionRef;
var expr: ExpressionRef;
var compound = false;
var possiblyOverflows = false;
var tempLocal: Local | null = null
switch (expression.operator) {
case Token.LESSTHAN:
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.LtI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.LtI64, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.LtI64 : BinaryOp.LtI32, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.LtU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.LtU64 : BinaryOp.LtU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.LtU64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.LtF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.LtF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.GREATERTHAN:
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.GtI32, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.GtI64 : BinaryOp.GtI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.GtI64, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.GtU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.GtU64 : BinaryOp.GtU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.GtU64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.GtF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.GtF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.LESSTHAN_EQUALS:
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.LeI32, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.LeI64 : BinaryOp.LeI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.LeI64, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.LeU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.LeU64 : BinaryOp.LeU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.LeU64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.LeF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.LeF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.GREATERTHAN_EQUALS:
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.GeI32, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.GeI64 : BinaryOp.GeI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.GeI64, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.GeU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.GeU64 : BinaryOp.GeU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.GeU64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.GeF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.GeF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.EQUALS_EQUALS_EQUALS:
// TODO?
case Token.EQUALS_EQUALS:
// NOTE that this favors correctness, in terms of emitting a binary expression, over
// checking for a possible use of unary EQZ. while the most classic of all optimizations,
// that's not what the source told us to do. for reference, `!left` emits unary EQZ.
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.EqI32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.EqI64 : BinaryOp.EqI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.EqI64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.EqF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.EqF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.EXCLAMATION_EQUALS_EQUALS:
// TODO?
case Token.EXCLAMATION_EQUALS:
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.NeI32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.NeI64 : BinaryOp.NeI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.NeI64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.NeF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.NeF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
this.currentType = Type.bool;
break;
case Token.EQUALS:
return this.compileAssignment(expression.left, expression.right, contextualType);
case Token.PLUS_EQUALS:
compound = true;
case Token.PLUS: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
case TypeKind.I32:
case TypeKind.U32:
expr = this.module.createBinary(BinaryOp.AddI32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.AddI64 : BinaryOp.AddI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.AddI64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.AddF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.AddF64, left, right);
break;
default:
throw new Error("concrete type expected");
}
break;
case Token.MINUS_EQUALS:
compound = true;
case Token.MINUS: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
case TypeKind.I32:
case TypeKind.U32:
expr = this.module.createBinary(BinaryOp.SubI32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.SubI64 : BinaryOp.SubI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.SubI64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.SubF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.SubF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.ASTERISK_EQUALS:
compound = true;
case Token.ASTERISK: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
// fall-through
case TypeKind.I32:
case TypeKind.U32:
expr = this.module.createBinary(BinaryOp.MulI32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.MulI64 : BinaryOp.MulI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.MulI64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.MulF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.MulF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.SLASH_EQUALS:
compound = true;
case Token.SLASH: // TODO: when can division remain unwrapped? does it overflow?
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
possiblyOverflows = true;
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.DivI32, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.DivI64 : BinaryOp.DivI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.DivI64, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
case TypeKind.U32:
expr = this.module.createBinary(BinaryOp.DivU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.DivU64 : BinaryOp.DivU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.DivU64, left, right);
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.DivF32, left, right);
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.DivF64, left, right);
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.PERCENT_EQUALS:
compound = true;
case Token.PERCENT: // TODO: when can remainder remain unwrapped? may it overflow?
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.I32:
expr = this.module.createBinary(BinaryOp.RemI32, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.RemI64 : BinaryOp.RemI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.RemI64, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.U32:
case TypeKind.BOOL:
expr = this.module.createBinary(BinaryOp.RemU32, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.RemU64 : BinaryOp.RemU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.RemU64, left, right);
break;
case TypeKind.F32:
case TypeKind.F64:
// TODO: internal fmod, possibly simply imported from JS
this.error(DiagnosticCode.Operation_not_supported, expression.range);
expr = this.module.createUnreachable();
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.LESSTHAN_LESSTHAN_EQUALS:
compound = true;
case Token.LESSTHAN_LESSTHAN: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
default:
expr = this.module.createBinary(BinaryOp.ShlI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.ShlI64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.ShlI64 : BinaryOp.ShlI32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.GREATERTHAN_GREATERTHAN_EQUALS:
compound = true;
case Token.GREATERTHAN_GREATERTHAN: // must wrap small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT);
switch (this.currentType.kind) {
default:
// assumes signed shr on signed small integers does not overflow
expr = this.module.createBinary(BinaryOp.ShrI32, left, right);
break;
case TypeKind.I64:
expr = this.module.createBinary(BinaryOp.ShrI64, left, right);
break;
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.ShrI64 : BinaryOp.ShrI32, left, right);
break;
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
// assumes unsigned shr on unsigned small integers does not overflow
case TypeKind.U32:
expr = this.module.createBinary(BinaryOp.ShrU32, left, right);
break;
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.ShrU64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.ShrU64 : BinaryOp.ShrU32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.GREATERTHAN_GREATERTHAN_GREATERTHAN_EQUALS:
compound = true;
case Token.GREATERTHAN_GREATERTHAN_GREATERTHAN: // modifies low bits of small integers if unsigned
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType == Type.void ? Type.u64 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
possiblyOverflows = true;
// fall-through
default:
// assumes that unsigned shr on unsigned small integers does not overflow
expr = this.module.createBinary(BinaryOp.ShrU32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.ShrU64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.ShrU64 : BinaryOp.ShrU32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.AMPERSAND_EQUALS:
compound = true;
case Token.AMPERSAND: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // if left or right already did
default:
expr = this.module.createBinary(BinaryOp.AndI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.AndI64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.AndI64 : BinaryOp.AndI32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.BAR_EQUALS:
compound = true;
case Token.BAR: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // if left or right already did
default:
expr = this.module.createBinary(BinaryOp.OrI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.OrI64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.OrI64 : BinaryOp.OrI32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.CARET_EQUALS:
compound = true;
case Token.CARET: // retains low bits of small integers
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, ConversionKind.NONE, false);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // if left or right already did
default:
expr = this.module.createBinary(BinaryOp.XorI32, left, right);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.XorI64, left, right);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.XorI64 : BinaryOp.XorI32, left, right);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
// logical (no overloading)
case Token.AMPERSAND_AMPERSAND: // left && right
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
// clone left if free of side effects while tolerating one level of nesting
expr = this.module.cloneExpression(left, true, 1);
// if not possible, tee left to a temp. local
if (!expr) {
tempLocal = this.currentFunction.getAndFreeTempLocal(this.currentType);
left = this.module.createTeeLocal(tempLocal.index, left);
}
possiblyOverflows = this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER);
condition = makeIsTrueish(left, this.currentType, this.module);
// simplify when cloning left without side effects was successful
if (expr)
expr = this.module.createIf(
condition, // left
right, // ? right
expr // : cloned left
);
// otherwise make use of the temp. local
else {
expr = this.module.createIf(
condition,
right,
this.module.createGetLocal(assert(tempLocal, "tempLocal must be set").index, this.currentType.toNativeType())
);
}
break;
case Token.BAR_BAR: // left || right
left = this.compileExpression(expression.left, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
right = this.compileExpression(expression.right, this.currentType, ConversionKind.IMPLICIT, false);
// clone left if free of side effects while tolerating one level of nesting
expr = this.module.cloneExpression(left, true, 1);
// if not possible, tee left to a temp. local
if (!expr) {
tempLocal = this.currentFunction.getAndFreeTempLocal(this.currentType);
left = this.module.createTeeLocal(tempLocal.index, left);
}
possiblyOverflows = this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER); // if right already did
condition = makeIsTrueish(left, this.currentType, this.module);
// simplify when cloning left without side effects was successful
if (expr)
expr = this.module.createIf(
condition, // left
expr, // ? cloned left
right // : right
);
// otherwise make use of the temp. local
else {
expr = this.module.createIf(
condition,
this.module.createGetLocal(assert(tempLocal, "tempLocal must be set").index, this.currentType.toNativeType()),
right
);
}
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("not implemented");
}
if (possiblyOverflows && wrapSmallIntegers) {
assert(this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER)), "small integer type expected";
expr = makeSmallIntegerWrap(expr, this.currentType, this.module);
}
return compound
? this.compileAssignmentWithValue(expression.left, expr, contextualType != Type.void)
: expr;
}
compileAssignment(expression: Expression, valueExpression: Expression, contextualType: Type): ExpressionRef {
var resolved = this.program.resolveExpression(expression, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
// to compile just the value, we need to know the target's type
var element = resolved.element;
var elementType: Type;
switch (element.kind) {
case ElementKind.GLOBAL:
if (!this.compileGlobal(<Global>element)) // reports; not yet compiled if a static field compiled as a global
return this.module.createUnreachable();
assert((<Global>element).type != Type.void, "concrete type expected");
// fall-through
case ElementKind.LOCAL:
case ElementKind.FIELD:
elementType = (<VariableLikeElement>element).type;
break;
case ElementKind.PROPERTY:
var setterPrototype = (<Property>element).setterPrototype;
if (setterPrototype) {
var setterInstance = setterPrototype.resolve(); // reports
if (!setterInstance)
return this.module.createUnreachable();
elementType = setterInstance.parameters[0].type;
break;
}
this.error(DiagnosticCode.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, expression.range, (<Property>element).internalName);
return this.module.createUnreachable();
case ElementKind.FUNCTION_PROTOTYPE:
if (expression.kind == NodeKind.ELEMENTACCESS) { // @operator("[]")
assert(resolved.target && resolved.target.kind == ElementKind.CLASS && element.simpleName == (<Class>resolved.target).prototype.fnIndexedGet)
var resolvedIndexedSet = (<FunctionPrototype>element).resolve(null);
if (resolvedIndexedSet) {
elementType = resolvedIndexedSet.returnType;
break;
}
}
// fall-through
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
// now compile the value and do the assignment
this.currentType = elementType;
return this.compileAssignmentWithValue(expression, this.compileExpression(valueExpression, elementType), contextualType != Type.void);
}
compileAssignmentWithValue(expression: Expression, valueWithCorrectType: ExpressionRef, tee: bool = false): ExpressionRef {
var resolved = this.program.resolveExpression(expression, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
var element = resolved.element;
var tempLocal: Local;
var targetExpr: ExpressionRef;
switch (element.kind) {
case ElementKind.LOCAL:
this.currentType = tee ? (<Local>element).type : Type.void;
if ((<Local>element).is(ElementFlags.CONSTANT)) {
this.error(DiagnosticCode.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, expression.range, (<Local>element).internalName);
return this.module.createUnreachable();
}
return tee
? this.module.createTeeLocal((<Local>element).index, valueWithCorrectType)
: this.module.createSetLocal((<Local>element).index, valueWithCorrectType);
case ElementKind.GLOBAL:
if (!this.compileGlobal(<Global>element)) // reports; not yet compiled if a static field compiled as a global
return this.module.createUnreachable();
assert((<Global>element).type != Type.void, "concrete type expected");
this.currentType = tee ? (<Global>element).type : Type.void;
if ((<Local>element).is(ElementFlags.CONSTANT)) {
this.error(DiagnosticCode.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, expression.range, (<Local>element).internalName);
return this.module.createUnreachable();
}
if (!tee)
return this.module.createSetGlobal((<Global>element).internalName, valueWithCorrectType);
var globalNativeType = (<Global>element).type.toNativeType();
return this.module.createBlock(null, [ // emulated teeGlobal
this.module.createSetGlobal((<Global>element).internalName, valueWithCorrectType),
this.module.createGetGlobal((<Global>element).internalName, globalNativeType)
], globalNativeType);
case ElementKind.FIELD:
if ((<Field>element).prototype.isReadonly) {
this.error(DiagnosticCode.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, expression.range, (<Field>element).internalName);
return this.module.createUnreachable();
}
assert(resolved.targetExpression != null, "target expression expected");
targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32, ConversionKind.NONE);
assert(this.currentType.classType, "class type expected");
this.currentType = tee ? (<Field>element).type : Type.void;
var elementNativeType = (<Field>element).type.toNativeType();
if (!tee)
return this.module.createStore((<Field>element).type.size >> 3, targetExpr, valueWithCorrectType, elementNativeType, (<Field>element).memoryOffset);
tempLocal = this.currentFunction.getAndFreeTempLocal((<Field>element).type);
return this.module.createBlock(null, [ // TODO: simplify if valueWithCorrectType has no side effects
this.module.createSetLocal(tempLocal.index, valueWithCorrectType),
this.module.createStore((<Field>element).type.size >> 3, targetExpr, this.module.createGetLocal(tempLocal.index, elementNativeType), elementNativeType, (<Field>element).memoryOffset),
this.module.createGetLocal(tempLocal.index, elementNativeType)
], elementNativeType);
case ElementKind.PROPERTY:
var setterPrototype = (<Property>element).setterPrototype;
if (setterPrototype) {
var setterInstance = setterPrototype.resolve(); // reports
if (setterInstance) {
assert(setterInstance.parameters.length == 1);
if (!tee) {
if (setterInstance.is(ElementFlags.INSTANCE)) {
assert(resolved.targetExpression != null);
targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32, ConversionKind.NONE);
assert(this.currentType.classType);
this.currentType = Type.void;
return this.makeCall(setterInstance, [ targetExpr, valueWithCorrectType ]);
} else {
this.currentType = Type.void;
return this.makeCall(setterInstance, [ valueWithCorrectType ]);
}
}
var getterPrototype = (<Property>element).getterPrototype;
assert(getterPrototype != null);
var getterInstance = (<FunctionPrototype>getterPrototype).resolve(); // reports
if (getterInstance) {
assert(getterInstance.parameters.length == 0);
if (setterInstance.is(ElementFlags.INSTANCE)) {
assert(resolved.targetExpression != null);
targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32, ConversionKind.NONE);
assert(this.currentType.classType);
tempLocal = this.currentFunction.getAndFreeTempLocal(getterInstance.returnType);
return this.module.createBlock(null, [
this.makeCall(setterInstance, [ this.module.createTeeLocal(tempLocal.index, targetExpr), valueWithCorrectType ]),
this.makeCall(getterInstance, [ this.module.createGetLocal(tempLocal.index, tempLocal.type.toNativeType()) ])
], (this.currentType = getterInstance.returnType).toNativeType());
} else
return this.module.createBlock(null, [
this.makeCall(setterInstance, [ valueWithCorrectType ]),
this.makeCall(getterInstance)
], (this.currentType = getterInstance.returnType).toNativeType());
}
}
} else
this.error(DiagnosticCode.Cannot_assign_to_0_because_it_is_a_constant_or_a_read_only_property, expression.range, (<Property>element).internalName);
return this.module.createUnreachable();
case ElementKind.FUNCTION_PROTOTYPE:
if (expression.kind == NodeKind.ELEMENTACCESS) { // @operator("[]")
assert(resolved.target && resolved.target.kind == ElementKind.CLASS);
var resolvedIndexedGet = (<FunctionPrototype>element).resolve();
if (!resolvedIndexedGet)
return this.module.createUnreachable();
var indexedSetName = (<Class>resolved.target).prototype.fnIndexedSet;
var indexedSet: Element | null;
if (indexedSetName != null && (<Class>resolved.target).members && (indexedSet = (<Map<string,Element>>(<Class>resolved.target).members).get(indexedSetName)) && indexedSet.kind == ElementKind.FUNCTION_PROTOTYPE) { // @operator("[]=")
var resolvedIndexedSet = (<FunctionPrototype>indexedSet).resolve();
if (!resolvedIndexedSet)
return this.module.createUnreachable();
targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32, ConversionKind.NONE);
assert(this.currentType.classType);
var elementExpr = this.compileExpression((<ElementAccessExpression>expression).elementExpression, Type.i32);
if (!tee) {
this.currentType = resolvedIndexedSet.returnType;
return this.makeCall(resolvedIndexedSet, [ targetExpr, elementExpr, valueWithCorrectType ]);
}
this.currentType = resolvedIndexedGet.returnType;
tempLocal = this.currentFunction.getAndFreeTempLocal(this.currentType);
return this.module.createBlock(null, [
this.makeCall(resolvedIndexedSet, [ targetExpr, elementExpr, this.module.createTeeLocal(tempLocal.index, valueWithCorrectType) ]),
this.module.createGetLocal(tempLocal.index, tempLocal.type.toNativeType()) // TODO: could be different from an actual __get (needs 2 temp locals)
], this.currentType.toNativeType());
} else {
this.error(DiagnosticCode.Index_signature_in_type_0_only_permits_reading, expression.range, (<Class>resolved.target).internalName);
return this.module.createUnreachable();
}
}
// fall-through
}
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
compileCallExpression(expression: CallExpression, contextualType: Type): ExpressionRef {
var resolved = this.program.resolveExpression(expression.expression, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
var element = resolved.element;
if (element.kind == ElementKind.FUNCTION_PROTOTYPE) {
var functionPrototype = <FunctionPrototype>element;
var functionInstance: Function | null = null;
if (functionPrototype.is(ElementFlags.BUILTIN)) {
var resolvedTypeArguments: Type[] | null = null;
if (expression.typeArguments) {
var k = expression.typeArguments.length;
resolvedTypeArguments = new Array<Type>(k);
var sb = new Array<string>(k);
for (var i = 0; i < k; ++i) {
var resolvedType = this.program.resolveType(expression.typeArguments[i], this.currentFunction.contextualTypeArguments, true); // reports
if (!resolvedType)
return this.module.createUnreachable();
resolvedTypeArguments[i] = resolvedType;
sb[i] = resolvedType.toString();
}
functionInstance = functionPrototype.instances.get(sb.join(","));
} else
functionInstance = functionPrototype.instances.get("");
if (!functionInstance) {
var expr = compileBuiltinCall(this, functionPrototype, resolvedTypeArguments, expression.arguments, contextualType, expression);
if (!expr) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
return expr;
}
} else {
// TODO: infer type arguments from parameter types if omitted
functionInstance = (<FunctionPrototype>element).resolveInclTypeArguments(expression.typeArguments, this.currentFunction.contextualTypeArguments, expression); // reports
}
if (!functionInstance)
return this.module.createUnreachable();
var numArguments = expression.arguments.length;
var numArgumentsInclThis = functionInstance.instanceMethodOf != null ? numArguments + 1 : numArguments;
var argumentIndex = 0;
var args = new Array<Expression>(numArgumentsInclThis);
if (functionInstance.instanceMethodOf) {
assert(resolved.targetExpression != null);
args[argumentIndex++] = <Expression>resolved.targetExpression;
}
for (i = 0; i < numArguments; ++i)
args[argumentIndex++] = expression.arguments[i];
return this.compileCall(functionInstance, args, expression);
}
this.error(DiagnosticCode.Cannot_invoke_an_expression_whose_type_lacks_a_call_signature_Type_0_has_no_compatible_call_signatures, expression.range, element.internalName);
return this.module.createUnreachable();
}
/** Compiles a call to a function. If an instance method, `this` is the first element in `argumentExpressions`. */
compileCall(functionInstance: Function, argumentExpressions: Expression[], reportNode: Node): ExpressionRef {
// validate and compile arguments
var parameters = functionInstance.parameters;
var numParameters = parameters.length;
var numParametersInclThis = functionInstance.instanceMethodOf != null ? numParameters + 1 : numParameters;
var numArgumentsInclThis = argumentExpressions.length;
var numArguments = functionInstance.instanceMethodOf != null ? numArgumentsInclThis - 1 : numArgumentsInclThis;
if (numArgumentsInclThis > numParametersInclThis) { // too many arguments
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, reportNode.range,
numParameters.toString(10),
numArguments.toString(10)
);
return this.module.createUnreachable();
}
var operands = new Array<ExpressionRef>(numParametersInclThis);
var operandIndex = 0;
if (functionInstance.instanceMethodOf)
operands[operandIndex++] = this.compileExpression(argumentExpressions[0], functionInstance.instanceMethodOf.type);
for (; operandIndex < numParametersInclThis; ++operandIndex) {
// argument has been provided
if (numArgumentsInclThis > operandIndex) {
operands[operandIndex] = this.compileExpression(argumentExpressions[operandIndex], parameters[operandIndex + numParameters - numParametersInclThis].type);
// argument has been omitted
} else {
var initializer = parameters[operandIndex + numParameters - numParametersInclThis].initializer;
if (initializer) { // fall back to provided initializer
operands[operandIndex] = this.compileExpression(initializer, parameters[operandIndex + numParameters - numParametersInclThis].type);
// FIXME: here, the initializer is compiled in the caller's scope.
// a solution could be to use a stub for each possible overload, calling the
// full function with optional arguments being part of the stub's body.
} else { // too few arguments
this.error(DiagnosticCode.Expected_at_least_0_arguments_but_got_1, reportNode.range,
(operandIndex + numParameters - numParametersInclThis).toString(10),
numArguments.toString(10)
);
return this.module.createUnreachable();
}
}
}
this.currentType = functionInstance.returnType;
return this.makeCall(functionInstance, operands);
}
/** Makes a call operation as is. */
makeCall(functionInstance: Function, operands: ExpressionRef[] | null = null): ExpressionRef {
if (!(functionInstance.is(ElementFlags.COMPILED) || this.compileFunction(functionInstance)))
return this.module.createUnreachable();
// imported function
if (functionInstance.is(ElementFlags.DECLARED))
return this.module.createCallImport(functionInstance.internalName, operands, functionInstance.returnType.toNativeType());
// internal function
return this.module.createCall(functionInstance.internalName, operands, functionInstance.returnType.toNativeType());
}
compileCommaExpression(expression: CommaExpression, contextualType: Type): ExpressionRef {
var expressions = expression.expressions;
var k = expressions.length;
var exprs = new Array<ExpressionRef>(k--);
for (var i = 0; i < k; ++i)
exprs[i] = this.compileExpression(expressions[i], Type.void); // drop all
exprs[i] = this.compileExpression(expressions[i], contextualType); // except last
return this.module.createBlock(null, exprs, this.currentType.toNativeType());
}
compileElementAccessExpression(expression: ElementAccessExpression, contextualType: Type): ExpressionRef {
var resolved = this.program.resolveElementAccess(expression, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
assert(resolved.element.kind == ElementKind.FUNCTION_PROTOTYPE && resolved.target && resolved.target.kind == ElementKind.CLASS);
var instance = (<FunctionPrototype>resolved.element).resolve(null, (<Class>resolved.target).contextualTypeArguments);
if (!instance)
return this.module.createUnreachable();
return this.compileCall(instance, [ expression.expression, expression.elementExpression ], expression);
}
compileIdentifierExpression(expression: IdentifierExpression, contextualType: Type): ExpressionRef {
// check special keywords first
switch (expression.kind) {
case NodeKind.NULL:
if (this.options.target == Target.WASM64) {
if (!contextualType.classType) {
assert(contextualType.kind == TypeKind.USIZE);
this.currentType = Type.usize64;
}
return this.module.createI64(0);
}
if (!contextualType.classType) {
assert(contextualType.kind == TypeKind.USIZE);
this.currentType = Type.usize32;
}
return this.module.createI32(0);
case NodeKind.TRUE:
this.currentType = Type.bool;
return this.module.createI32(1);
case NodeKind.FALSE:
this.currentType = Type.bool;
return this.module.createI32(0);
case NodeKind.THIS:
if (this.currentFunction.instanceMethodOf) {
this.currentType = this.currentFunction.instanceMethodOf.type;
return this.module.createGetLocal(0, this.currentType.toNativeType());
}
this.error(DiagnosticCode._this_cannot_be_referenced_in_current_location, expression.range);
this.currentType = this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32;
return this.module.createUnreachable();
case NodeKind.SUPER:
if (this.currentFunction.instanceMethodOf && this.currentFunction.instanceMethodOf.base) {
this.currentType = this.currentFunction.instanceMethodOf.base.type;
return this.module.createGetLocal(0, this.currentType.toNativeType());
}
this.error(DiagnosticCode._super_can_only_be_referenced_in_a_derived_class, expression.range);
this.currentType = this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32;
return this.module.createUnreachable();
}
// otherwise resolve
var resolved = this.program.resolveIdentifier(expression, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
var element = resolved.element;
switch (element.kind) {
case ElementKind.LOCAL:
if ((<Local>element).is(ElementFlags.INLINED))
return this.compileInlineConstant(<Local>element, contextualType);
assert((<Local>element).index >= 0);
this.currentType = (<Local>element).type;
return this.module.createGetLocal((<Local>element).index, this.currentType.toNativeType());
case ElementKind.GLOBAL:
if (element.is(ElementFlags.BUILTIN))
return compileBuiltinGetConstant(this, <Global>element, expression);
if (!this.compileGlobal(<Global>element)) // reports; not yet compiled if a static field compiled as a global
return this.module.createUnreachable();
assert((<Global>element).type != Type.void);
if ((<Global>element).is(ElementFlags.INLINED))
return this.compileInlineConstant(<Global>element, contextualType);
this.currentType = (<Global>element).type;
return this.module.createGetGlobal((<Global>element).internalName, this.currentType.toNativeType());
}
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
compileLiteralExpression(expression: LiteralExpression, contextualType: Type): ExpressionRef {
switch (expression.literalKind) {
// case LiteralKind.ARRAY:
case LiteralKind.FLOAT: {
var floatValue = (<FloatLiteralExpression>expression).value;
if (contextualType == Type.f32)
return this.module.createF32(<f32>floatValue);
this.currentType = Type.f64;
return this.module.createF64(floatValue);
}
case LiteralKind.INTEGER:
var intValue = (<IntegerLiteralExpression>expression).value;
if (contextualType == Type.bool && (intValue.isZero || intValue.isOne))
return this.module.createI32(intValue.isZero ? 0 : 1);
if (contextualType == Type.f64)
return this.module.createF64(intValue.toF64());
if (contextualType == Type.f32)
return this.module.createF32(<f32>intValue.toF64());
if (contextualType.is(TypeFlags.LONG | TypeFlags.INTEGER))
return this.module.createI64(intValue.lo, intValue.hi);
if (!intValue.fitsInI32) {
this.currentType = contextualType.is(TypeFlags.SIGNED) ? Type.i64 : Type.u64;
return this.module.createI64(intValue.lo, intValue.hi);
}
if (contextualType.is(TypeFlags.SMALL | TypeFlags.INTEGER)) {
var shift = contextualType.computeSmallIntegerShift(Type.i32);
var mask = contextualType.computeSmallIntegerMask(Type.i32);
return this.module.createI32(contextualType.is(TypeFlags.SIGNED) ? intValue.lo << shift >> shift : intValue.lo & mask);
}
if (contextualType == Type.void && !intValue.fitsInI32) {
this.currentType = Type.i64;
return this.module.createI64(intValue.lo, intValue.hi);
}
this.currentType = contextualType.is(TypeFlags.SIGNED) ? Type.i32 : Type.u32;
return this.module.createI32(intValue.toI32());
// case LiteralKind.OBJECT:
// case LiteralKind.REGEXP:
// case LiteralKind.STRING:
}
throw new Error("not implemented");
}
compileNewExpression(expression: NewExpression, contextualType: Type): ExpressionRef {
var resolved = this.program.resolveExpression(expression.expression, this.currentFunction); // reports
if (resolved) {
if (resolved.element.kind == ElementKind.CLASS_PROTOTYPE) {
var prototype = <ClassPrototype>resolved.element;
var instance = prototype.resolveInclTypeArguments(expression.typeArguments, null, expression); // reports
if (instance) {
// TODO: call constructor
this.currentType = instance.type;
return compileBuiltinAllocate(this, instance, expression);
}
} else
this.error(DiagnosticCode.Cannot_use_new_with_an_expression_whose_type_lacks_a_construct_signature, expression.expression.range);
}
return this.module.createUnreachable();
}
compileParenthesizedExpression(expression: ParenthesizedExpression, contextualType: Type): ExpressionRef {
// does not change types, just order
return this.compileExpression(expression.expression, contextualType, ConversionKind.NONE);
}
compilePropertyAccessExpression(propertyAccess: PropertyAccessExpression, contextualType: Type): ExpressionRef {
var resolved = this.program.resolvePropertyAccess(propertyAccess, this.currentFunction); // reports
if (!resolved)
return this.module.createUnreachable();
var element = resolved.element;
var targetExpr: ExpressionRef;
switch (element.kind) {
case ElementKind.GLOBAL: // static property
if (element.is(ElementFlags.BUILTIN))
return compileBuiltinGetConstant(this, <Global>element, propertyAccess);
if (!this.compileGlobal(<Global>element)) // reports; not yet compiled if a static field compiled as a global
return this.module.createUnreachable();
assert((<Global>element).type != Type.void);
if ((<Global>element).is(ElementFlags.INLINED))
return this.compileInlineConstant(<Global>element, contextualType);
this.currentType = (<Global>element).type;
return this.module.createGetGlobal((<Global>element).internalName, this.currentType.toNativeType());
case ElementKind.ENUMVALUE: // enum value
if (!this.compileEnum((<EnumValue>element).enum))
return this.module.createUnreachable();
this.currentType = Type.i32;
if ((<EnumValue>element).is(ElementFlags.INLINED))
return this.module.createI32((<EnumValue>element).constantValue);
return this.module.createGetGlobal((<EnumValue>element).internalName, NativeType.I32);
case ElementKind.FIELD: // instance field
assert(resolved.target != null);
assert(resolved.targetExpression != null);
assert((<Field>element).memoryOffset >= 0);
targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32);
this.currentType = (<Field>element).type;
return this.module.createLoad((<Field>element).type.size >> 3, (<Field>element).type.is(TypeFlags.SIGNED | TypeFlags.INTEGER),
targetExpr,
(<Field>element).type.toNativeType(),
(<Field>element).memoryOffset
);
case ElementKind.PROPERTY: // instance property (here: getter)
var getter = (<Property>element).getterPrototype;
assert(getter != null);
var getterInstance = (<FunctionPrototype>getter).resolve(null); // reports
if (!getterInstance)
return this.module.createUnreachable();
assert(getterInstance.parameters.length == 0);
this.currentType = getterInstance.returnType;
if (getterInstance.is(ElementFlags.INSTANCE)) {
var targetExpr = this.compileExpression(<Expression>resolved.targetExpression, this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32)
this.currentType = getterInstance.returnType;
return this.makeCall(getterInstance, [ targetExpr ]);
} else
return this.makeCall(getterInstance);
}
this.error(DiagnosticCode.Operation_not_supported, propertyAccess.range);
return this.module.createUnreachable();
}
compileTernaryExpression(expression: TernaryExpression, contextualType: Type): ExpressionRef {
var condition = this.compileExpression(expression.condition, Type.i32);
var ifThen = this.compileExpression(expression.ifThen, contextualType);
var ifElse = this.compileExpression(expression.ifElse, contextualType);
return this.module.createIf(condition, ifThen, ifElse);
}
compileUnaryPostfixExpression(expression: UnaryPostfixExpression, contextualType: Type): ExpressionRef {
var operator = expression.operator;
// make a getter for the expression (also obtains the type)
var getValue = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
var op: BinaryOp;
var nativeType: NativeType;
var nativeOne: ExpressionRef;
var possiblyOverflows = false;
switch (expression.operator) {
case Token.PLUS_PLUS:
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
default:
op = BinaryOp.AddI32;
nativeType = NativeType.I32;
nativeOne = this.module.createI32(1);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
op = this.options.target == Target.WASM64 ? BinaryOp.AddI64 : BinaryOp.AddI32;
nativeType = this.options.target == Target.WASM64 ? NativeType.I64 : NativeType.I32;
nativeOne = this.currentType.toNativeOne(this.module);
break;
case TypeKind.I64:
case TypeKind.U64:
op = BinaryOp.AddI64;
nativeType = NativeType.I64;
nativeOne = this.module.createI64(1);
break;
case TypeKind.F32:
op = BinaryOp.AddF32;
nativeType = NativeType.F32;
nativeOne = this.module.createF32(1);
break;
case TypeKind.F64:
op = BinaryOp.AddF64;
nativeType = NativeType.F64;
nativeOne = this.module.createF64(1);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
case Token.MINUS_MINUS:
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true;
default:
op = BinaryOp.SubI32;
nativeType = NativeType.I32;
nativeOne = this.module.createI32(1);
break;
case TypeKind.USIZE:
// TODO: check operator overload
case TypeKind.ISIZE:
op = this.options.target == Target.WASM64 ? BinaryOp.SubI64 : BinaryOp.SubI32;
nativeType = this.options.target == Target.WASM64 ? NativeType.I64 : NativeType.I32;
nativeOne = this.currentType.toNativeOne(this.module);
break;
case TypeKind.I64:
case TypeKind.U64:
op = BinaryOp.SubI64;
nativeType = NativeType.I64;
nativeOne = this.module.createI64(1);
break;
case TypeKind.F32:
op = BinaryOp.SubF32;
nativeType = NativeType.F32;
nativeOne = this.module.createF32(1);
break;
case TypeKind.F64:
op = BinaryOp.SubF64;
nativeType = NativeType.F64;
nativeOne = this.module.createF64(1);
break;
case TypeKind.VOID:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("concrete type expected");
}
break;
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("unary postfix operator expected");
}
// simplify if dropped anyway
if (contextualType == Type.void)
return this.compileAssignmentWithValue(expression.operand,
this.module.createBinary(op,
getValue,
nativeOne
), false
);
// use a temp local for the intermediate value and prepare a setter
var tempLocal = this.currentFunction.getTempLocal(this.currentType);
var setValue = this.module.createBinary(op,
this.module.createGetLocal(tempLocal.index, nativeType),
nativeOne
);
if (possiblyOverflows) {
assert(this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER));
setValue = makeSmallIntegerWrap(setValue, this.currentType, this.module);
}
setValue = this.compileAssignmentWithValue(expression.operand, setValue, false); // sets currentType = void
this.currentType = tempLocal.type;
this.currentFunction.freeTempLocal(tempLocal);
return this.module.createBlock(null, [
this.module.createSetLocal(tempLocal.index, getValue),
setValue,
this.module.createGetLocal(tempLocal.index, nativeType)
], nativeType);
}
compileUnaryPrefixExpression(expression: UnaryPrefixExpression, contextualType: Type, wrapSmallIntegers: bool = true): ExpressionRef {
var possiblyOverflows = false;
var compound = false;
var expr: ExpressionRef;
switch (expression.operator) {
case Token.PLUS:
if (this.currentType.isReference) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
possiblyOverflows = this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER); // if operand already did
break;
case Token.MINUS:
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // or if operand already did
default:
expr = this.module.createBinary(BinaryOp.SubI32, this.module.createI32(0), expr);
break;
case TypeKind.USIZE:
if (this.currentType.isReference) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.SubI64 : BinaryOp.SubI32, this.currentType.toNativeZero(this.module), expr);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.SubI64, this.module.createI64(0), expr);
break;
case TypeKind.F32:
expr = this.module.createUnary(UnaryOp.NegF32, expr);
break;
case TypeKind.F64:
expr = this.module.createUnary(UnaryOp.NegF64, expr);
break;
}
break;
case Token.PLUS_PLUS:
compound = true;
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // or if operand already did
default:
expr = this.module.createBinary(BinaryOp.AddI32, expr, this.module.createI32(1));
break;
case TypeKind.USIZE:
if (this.currentType.isReference) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
// fall-through
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.AddI64 : BinaryOp.AddI32, expr, this.currentType.toNativeOne(this.module));
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.AddI64, expr, this.module.createI64(1));
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.AddF32, expr, this.module.createF32(1));
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.AddF64, expr, this.module.createF64(1));
break;
}
break;
case Token.MINUS_MINUS:
compound = true;
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // or if operand already did
// fall-through
default:
expr = this.module.createBinary(BinaryOp.SubI32, expr, this.module.createI32(1));
break;
case TypeKind.USIZE:
if (this.currentType.isReference) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
// fall-through
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.SubI64 : BinaryOp.SubI32, expr, this.currentType.toNativeOne(this.module));
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.SubI64, expr, this.module.createI64(1));
break;
case TypeKind.F32:
expr = this.module.createBinary(BinaryOp.SubF32, expr, this.module.createF32(1));
break;
case TypeKind.F64:
expr = this.module.createBinary(BinaryOp.SubF64, expr, this.module.createF64(1));
break;
}
break;
case Token.EXCLAMATION: // must wrap small integers
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType, ConversionKind.NONE);
expr = makeIsFalseish(expr, this.currentType, this.module);
this.currentType = Type.bool;
break;
case Token.TILDE: // retains low bits of small integers
expr = this.compileExpression(expression.operand, contextualType == Type.void ? Type.i32 : contextualType.is(TypeFlags.FLOAT) ? Type.i64 : contextualType, contextualType == Type.void ? ConversionKind.NONE : ConversionKind.IMPLICIT, false);
switch (this.currentType.kind) {
case TypeKind.I8:
case TypeKind.I16:
case TypeKind.U8:
case TypeKind.U16:
case TypeKind.BOOL:
possiblyOverflows = true; // or if operand already did
default:
expr = this.module.createBinary(BinaryOp.XorI32, expr, this.module.createI32(-1));
break;
case TypeKind.USIZE:
if (this.currentType.isReference) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
// fall-through
case TypeKind.ISIZE:
expr = this.module.createBinary(this.options.target == Target.WASM64 ? BinaryOp.XorI64 : BinaryOp.XorI32, expr, this.currentType.toNativeNegOne(this.module));
break;
case TypeKind.I64:
case TypeKind.U64:
expr = this.module.createBinary(BinaryOp.XorI64, expr, this.module.createI64(-1, -1));
break;
}
break;
case Token.TYPEOF:
// it might make sense to implement typeof in a way that a generic function can detect whether
// its type argument is a class type or string. that could then be used, for example, to
// generate hash codes for sets and maps, depending on the kind of type parameter we have.
// ideally the comparison would not involve actual string comparison and limit available
// operations to hard-coded string literals.
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("not implemented");
default:
this.error(DiagnosticCode.Operation_not_supported, expression.range);
throw new Error("unary operator expected");
}
if (possiblyOverflows && wrapSmallIntegers) {
assert(this.currentType.is(TypeFlags.SMALL | TypeFlags.INTEGER));
expr = makeSmallIntegerWrap(expr, this.currentType, this.module);
}
return compound
? this.compileAssignmentWithValue(expression.operand, expr, contextualType != Type.void)
: expr;
}
}
// helpers
/** Wraps a 32-bit integer expression so it evaluates to a valid value in the range of the specified small integer type. */
export function makeSmallIntegerWrap(expr: ExpressionRef, type: Type, module: Module) {
switch (type.kind) {
case TypeKind.I8:
expr = module.createBinary(BinaryOp.ShrI32,
module.createBinary(BinaryOp.ShlI32,
expr,
module.createI32(24)
),
module.createI32(24)
);
break;
case TypeKind.I16:
expr = module.createBinary(BinaryOp.ShrI32,
module.createBinary(BinaryOp.ShlI32,
expr,
module.createI32(16)
),
module.createI32(16)
);
break;
case TypeKind.U8:
expr = module.createBinary(BinaryOp.AndI32,
expr,
module.createI32(0xff)
);
break;
case TypeKind.U16:
expr = module.createBinary(BinaryOp.AndI32,
expr,
module.createI32(0xffff)
);
break;
case TypeKind.BOOL:
expr = module.createBinary(BinaryOp.AndI32,
expr,
module.createI32(0x1)
);
break;
case TypeKind.VOID:
throw new Error("concrete type expected");
}
return expr;
}
/** Creates a comparison whether an expression is not 'true' in a broader sense. */
export function makeIsFalseish(expr: ExpressionRef, type: Type, module: Module): ExpressionRef {
switch (type.kind) {
default: // any integer up to 32 bits
expr = module.createUnary(UnaryOp.EqzI32, expr);
break;
case TypeKind.I64:
case TypeKind.U64:
expr = module.createUnary(UnaryOp.EqzI64, expr);
break;
case TypeKind.USIZE:
// TODO: strings
case TypeKind.ISIZE:
expr = module.createUnary(type.size == 64 ? UnaryOp.EqzI64 : UnaryOp.EqzI32, expr);
break;
case TypeKind.F32:
expr = module.createBinary(BinaryOp.EqF32, expr, module.createF32(0));
break;
case TypeKind.F64:
expr = module.createBinary(BinaryOp.EqF64, expr, module.createF64(0));
break;
case TypeKind.VOID:
throw new Error("concrete type expected");
}
return expr;
}
/** Creates a comparison whether an expression is 'true' in a broader sense. */
export function makeIsTrueish(expr: ExpressionRef, type: Type, module: Module): ExpressionRef {
switch (type.kind) {
default: // any integer up to 32 bits
expr = module.createBinary(BinaryOp.NeI32, expr, module.createI32(0));
break;
case TypeKind.I64:
case TypeKind.U64:
expr = module.createBinary(BinaryOp.NeI64, expr, module.createI64(0));
break;
case TypeKind.USIZE:
// TODO: strings
case TypeKind.ISIZE:
expr = type.size == 64
? module.createBinary(BinaryOp.NeI64, expr, module.createI64(0))
: module.createBinary(BinaryOp.NeI32, expr, module.createI32(0));
break;
case TypeKind.F32:
expr = module.createBinary(BinaryOp.NeF32, expr, module.createF32(0));
break;
case TypeKind.F64:
expr = module.createBinary(BinaryOp.NeF64, expr, module.createF64(0));
break;
case TypeKind.VOID:
throw new Error("concrete type expected");
}
return expr;
}