// see: https://en.wikipedia.org/wiki/Mandelbrot_set /** Computes the number of iterations in the rectangle `width` x `height`, limited to `max`. */ export function compute(width: u32, height: u32, limit: u32): void { var translateX = width / 1.6; var translateY = height / 2.0; var scale = 10.0 / min(3 * width, 4 * height); for (let y: u32 = 0; y < height; ++y) { let imaginary = (y - translateY) * scale; for (let x: u32 = 0; x < width; ++x) { let real = (x - translateX) * scale; // Iterate until either the escape radius or iteration limit is exceeded let ix = 0.0, iy = 0.0, ixsq: f64, iysq: f64; let iteration: u32 = 0; while ((ixsq = ix * ix) + (iysq = iy * iy) <= 4.0) { let t = ixsq - iysq + real; iy = 2.0 * ix * iy + imaginary; ix = t; if (iteration >= limit) break; ++iteration; } // Do a few extra iterations to reduce error margin for (let i = 0; i < 4; ++i) { let t = (ixsq = ix * ix) - (iysq = iy * iy) + real; iy = 2.0 * ix * iy + imaginary; ix = t; } // Renormalize, see: http://linas.org/art-gallery/escape/escape.html let frac: f64 = JSMath.log(JSMath.log(sqrt(ix * ix + iy * iy))) / JSMath.LN2; if (frac > 0) { let norm: f64 = max(min(((iteration + 1) - frac) / limit, 1.0), 0.0); store((y * width + x) << 1, (2047 * norm)); } else { store((y * width + x) << 1, iteration * 2047 / limit); } } } }