const ALIGN_LOG2: usize = 3; const ALIGN_SIZE: usize = 1 << ALIGN_LOG2; const ALIGN_MASK: usize = ALIGN_SIZE - 1; var HEAP_OFFSET: usize = HEAP_BASE; // HEAP_BASE is a constant generated by the compiler // TODO: maybe tlsf @global export class Heap { static get used(): usize { return HEAP_OFFSET - HEAP_BASE; } static get free(): usize { return (current_memory() << 16) - HEAP_OFFSET; } static get size(): usize { return (current_memory() << 16) - HEAP_BASE; } static allocate(size: usize): usize { if (!size) return 0; var len: i32 = current_memory(); if (HEAP_OFFSET + size > len << 16) if(grow_memory(max(ceil(size / 65536), len * 2 - len)) < 0) unreachable(); var ptr: usize = HEAP_OFFSET; if ((HEAP_OFFSET += size) & ALIGN_MASK) // align next offset HEAP_OFFSET = (HEAP_OFFSET | ALIGN_MASK) + 1; return ptr; } static dispose(ptr: usize): void { // just a big chunk of non-disposable memory for now } static copy(dest: usize, src: usize, n: usize): usize { // TODO: use move_memory op once available assert(dest >= HEAP_BASE); // the following is based on musl's implementation of memcpy var dst: usize = dest; var w: u32, x: u32; // copy 1 byte each until src is aligned to 4 bytes while (n && src % 4) { store(dst++, load(src++)); n--; } // if dst is aligned to 4 bytes as well, copy 4 bytes each if (dst % 4 == 0) { while (n >= 16) { store(dst , load(src )); store(dst + 4, load(src + 4)); store(dst + 8, load(src + 8)); store(dst + 12, load(src + 12)); src += 16; dst += 16; n -= 16; } if (n & 8) { store(dst , load(src )); store(dst + 4, load(src + 4)); dst += 8; src += 8; } if (n & 4) { store(dst, load(src)); dst += 4; src += 4; } if (n & 2) { // drop to 2 bytes each store(dst, load(src)); dst += 2; src += 2; } if (n & 1) { // drop to 1 byte store(dst++, load(src++)); } return dest; } // if dst is not aligned to 4 bytes, use alternating shifts to copy 4 bytes each // doing shifts if faster when copying enough bytes (here: 32 or more) if (n >= 32) { switch (dst % 4) { // known to be != 0 case 1: w = load(src); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); n -= 3; while (n >= 17) { x = load(src + 1); store(dst, w >> 24 | x << 8); w = load(src + 5); store(dst + 4, x >> 24 | w << 8); x = load(src + 9); store(dst + 8, w >> 24 | x << 8); w = load(src + 13); store(dst + 12, x >> 24 | w << 8); src += 16; dst += 16; n -= 16; } break; case 2: w = load(src); store(dst++, load(src++)); store(dst++, load(src++)); n -= 2; while (n >= 18) { x = load(src + 2); store(dst, w >> 16 | x << 16); w = load(src + 6); store(dst + 4, x >> 16 | w << 16); x = load(src + 10); store(dst + 8, w >> 16 | x << 16); w = load(src + 14); store(dst + 12, x >> 16 | w << 16); src += 16; dst += 16; n -= 16; } break; case 3: w = load(src); store(dst++, load(src++)); n -= 1; while (n >= 19) { x = load(src + 3); store(dst, w >> 8 | x << 24); w = load(src + 7); store(dst + 4, x >> 8 | w << 24); x = load(src + 11); store(dst + 8, w >> 8 | x << 24); w = load(src + 15); store(dst + 12, x >> 8 | w << 24); src += 16; dst += 16; n -= 16; } break; } } // copy remaining bytes one by one if (n & 16) { store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); } if (n & 8) { store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); } if (n & 4) { store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); store(dst++, load(src++)); } if (n & 2) { store(dst++, load(src++)); store(dst++, load(src++)); } if (n & 1) { store(dst++, load(src++)); } return dest; } static fill(dest: usize, c: u8, n: usize): usize { // TODO: use set_memory op once available assert(dest >= HEAP_BASE); // the following is based on musl's implementation of memset if (!n) return dest; var s: usize = dest; // Fill head and tail with minimal branching store(s, c); store(s + n - 1, c); if (n <= 2) return dest; store(s + 1, c); store(s + n - 2, c); store(s + 2, c); store(s + n - 3, c); if (n <= 6) return dest; store(s + 3, c); store(s + n - 4, c); if (n <= 8) return dest; // Align to 4 bytes var k: usize = -s & 3; s += k; n -= k; n &= -4; var c32: u32 = -1 / 255 * c; // Fill head and tail in preparation of setting 32 bytes at a time store(s, c32); store(s + n - 4, c32); if (n <= 8) return dest; store(s + 4, c32); store(s + 8, c32); store(s + n - 12, c32); store(s + n - 8, c32); if (n <= 24) return dest; store(s + 12, c32); store(s + 16, c32); store(s + 20, c32); store(s + 24, c32); store(s + n - 28, c32); store(s + n - 24, c32); store(s + n - 20, c32); store(s + n - 16, c32); // Align to 8 bytes k = 24 + (s & 4); s += k; n -= k; // Set 32 bytes at a time var c64: u64 = c32 | (c32 << 32); while (n >= 32) { store(s, c64); store(s + 8, c64); store(s + 16, c64); store(s + 24, c64); n -= 32; s += 32; } return dest; } static compare(vl: usize, vr: usize, n: usize): i32 { if (vl == vr) return 0; // the following is based on musl's implementation of memcmp while (n && load(vl) == load(vr)) { n--; vl++; vr++; } return n ? load(vl) - load(vr) : 0; } private constructor() {} }