export declare namespace JSMath { export const E: f64; export const LN2: f64; export const LN10: f64; export const LOG2E: f64; export const LOG10E: f64; export const PI: f64; export const SQRT1_2: f64; export const SQRT2: f64; export function abs(x: f64): f64; export function acos(x: f64): f64; export function acosh(x: f64): f64; export function asin(x: f64): f64; export function asinh(x: f64): f64; export function atan(x: f64): f64; export function atan2(y: f64, x: f64): f64; export function atanh(x: f64): f64; export function cbrt(x: f64): f64; export function ceil(x: f64): f64; export function clz32(x: f64): i32; export function cos(x: f64): f64; export function cosh(x: f64): f64; export function exp(x: f64): f64; export function expm1(x: f64): f64; export function floor(x: f64): f64; export function fround(x: f64): f32; export function hypot(value1: f64, value2: f64): f64; // hypot(...values: f64[]): f64; export function imul(a: f64, b: f64): i32; export function log(x: f64): f64; export function log10(x: f64): f64; export function log1p(x: f64): f64; export function log2(x: f64): f64; export function max(value1: f64, value2: f64): f64; // max(...values: f64[]): f64; export function min(value1: f64, value2: f64): f64; // min(...values: f64[]): f64; export function pow(base: f64, exponent: f64): f64; export function random(): f64; export function round(x: f64): f64; export function sign(x: f64): f64; export function sin(x: f64): f64; export function sinh(x: f64): f64; export function sqrt(x: f64): f64; export function tan(x: f64): f64; export function tanh(x: f64): f64; export function trunc(x: f64): f64; } import { abs as builtin_abs, ceil as builtin_ceil, clz as builtin_clz, floor as builtin_floor, max as builtin_max, min as builtin_min, nearest as builtin_nearest, sqrt as builtin_sqrt, trunc as builtin_trunc } from "./builtins"; // NativeMath/NativeMathf.log/exp/pow // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // Developed at SunPro, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. export namespace NativeMath { export const E = 2.7182818284590452354; export const LN2 = 0.69314718055994530942; export const LN10 = 2.30258509299404568402; export const LOG2E = 1.4426950408889634074; export const LOG10E = 0.43429448190325182765; export const PI = 3.14159265358979323846; export const SQRT1_2 = 0.70710678118654752440; export const SQRT2 = 1.41421356237309504880; export function abs(x: f64): f64 { return builtin_abs(x); } export function ceil(x: f64): f64 { return builtin_ceil(x); } export function clz32(x: f64): i32 { return builtin_clz(x); } export function exp(x: f64): f64 { // based on musl's implementation of exp const ln2hi = 6.93147180369123816490e-01, // 0x3fe62e42, 0xfee00000 ln2lo = 1.90821492927058770002e-10, // 0x3dea39ef, 0x35793c76 invln2 = 1.44269504088896338700e+00, // 0x3ff71547, 0x652b82fe P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93 P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1 P5 = 4.13813679705723846039e-08, // 0x3E663769, 0x72BEA4D0 Ox1p1023 = 8.98846567431157954e+307; var hx = (reinterpret(x) >> 32); hx &= 0x7fffffff; // high word of |x| // special cases if (hx >= 0x4086232b) { // if |x| >= 708.39... if (isNaN(x)) return x; if (x > 709.782712893383973096) { // overflow if x!=inf x *= Ox1p1023; return x; } if (x < -708.39641853226410622) { // underflow if x!=-inf if (x < -745.13321910194110842) return 0; } } // argument reduction var hi: f64, lo: f64; var k: i32; if (hx > 0x3fd62e42) { // if |x| > 0.5 ln2 if (hx >= 0x3ff0a2b2) { // if |x| >= 1.5 ln2 k = (invln2 * x + copysign(0.5, x)); // was: [0.5, -0.5][sign_]) } else { let sign_ = hx >> 31; k = 1 - sign_ - sign_; } hi = x - k * ln2hi; // k * ln2hi is exact here lo = k * ln2lo; x = hi - lo; } else if (hx > 0x3e300000) { // if |x| > 2**-28 k = 0; hi = x; lo = 0; } else { // inexact if x != 0 return 1 + x; } // x is now in primary range var xx = x * x; var c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); var y: f64 = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) return y; return scalbn(y, k); } export function floor(x: f64): f64 { return builtin_floor(x); } export function fround(x: f64): f32 { return x; } export function imul(x: f64, y: f64): i32 { return x * y; } export function log(x: f64): f64 { // based on musl's implementation of log const ln2_hi = 6.93147180369123816490e-01, // 3fe62e42 fee00000 ln2_lo = 1.90821492927058770002e-10, // 3dea39ef 35793c76 Lg1 = 6.666666666666735130e-01, // 3FE55555 55555593 Lg2 = 3.999999999940941908e-01, // 3FD99999 9997FA04 Lg3 = 2.857142874366239149e-01, // 3FD24924 94229359 Lg4 = 2.222219843214978396e-01, // 3FCC71C5 1D8E78AF Lg5 = 1.818357216161805012e-01, // 3FC74664 96CB03DE Lg6 = 1.531383769920937332e-01, // 3FC39A09 D078C69F Lg7 = 1.479819860511658591e-01, // 3FC2F112 DF3E5244 Ox1p54 = 18014398509481984.0; var Ux = reinterpret(x); var hx = (Ux >> 32); var k = 0; if (hx < 0x00100000 || (hx >> 31)) { if (Ux << 1 == 0) return -1 / (x * x); // log(+-0)=-inf if (hx >> 31) return (x - x) / 0.0; // log(-#) = NaN // subnormal number, scale x up k -= 54; x *= Ox1p54; Ux = reinterpret(x); hx = (Ux >> 32); } else if (hx >= 0x7ff00000) return x; else if (hx == 0x3ff00000 && Ux << 32 == 0) return 0; // reduce x into [sqrt(2)/2, sqrt(2)] hx += 0x3ff00000 - 0x3fe6a09e; k += (hx >> 20) - 0x3ff; hx = (hx & 0x000fffff) + 0x3fe6a09e; Ux = hx << 32 | (Ux & 0xffffffff); x = reinterpret(Ux); var f = x - 1.0; var hfsq = 0.5 * f * f; var s = f / (2.0 + f); var z = s * s; var w = z * z; var t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); var t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); var R = t2 + t1; var dk = k; return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } // export function log2(x: f64): f64 { // return log(x) / LN2; // } // export function log10(x: f64): f64 { // return log(x) / LN10; // } export function max(value1: f64, value2: f64): f64 { return builtin_max(value1, value2); } export function min(value1: f64, value2: f64): f64 { return builtin_min(value1, value2); } export function pow(x: f64, y: f64): f64 { // pased on musl's implementation of pow const two53 = 9007199254740992.0, // 0x43400000, 0x00000000 huge = 1.0e+300, tiny = 1.0e-300, // poly coefs for (3/2)*(log(x)-2s-2/3*s**3 L1 = 5.99999999999994648725e-01, // 0x3FE33333, 0x33333303 L2 = 4.28571428578550184252e-01, // 0x3FDB6DB6, 0xDB6FABFF L3 = 3.33333329818377432918e-01, // 0x3FD55555, 0x518F264D L4 = 2.72728123808534006489e-01, // 0x3FD17460, 0xA91D4101 L5 = 2.30660745775561754067e-01, // 0x3FCD864A, 0x93C9DB65 L6 = 2.06975017800338417784e-01, // 0x3FCA7E28, 0x4A454EEF P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93 P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1 P5 = 4.13813679705723846039e-08, // 0x3E663769, 0x72BEA4D0 lg2 = 6.93147180559945286227e-01, // 0x3FE62E42, 0xFEFA39EF lg2_h = 6.93147182464599609375e-01, // 0x3FE62E43, 0x00000000 lg2_l = -1.90465429995776804525e-09, // 0xBE205C61, 0x0CA86C39 ovt = 8.0085662595372944372e-017, // -(1024-log2(ovfl+.5ulp)) cp = 9.61796693925975554329e-01, // 0x3FEEC709, 0xDC3A03FD =2/(3ln2) cp_h = 9.61796700954437255859e-01, // 0x3FEEC709, 0xE0000000 =(float)cp cp_l = -7.02846165095275826516e-09, // 0xBE3E2FE0, 0x145B01F5 =tail of cp_h ivln2 = 1.44269504088896338700e+00, // 0x3FF71547, 0x652B82FE =1/ln2 ivln2_h = 1.44269502162933349609e+00, // 0x3FF71547, 0x60000000 =24b 1/ln2 ivln2_l = 1.92596299112661746887e-0; // 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail var __u = reinterpret(x); // EXTRACT_WORDS(hx, lx, x) var hx = (__u >> 32); var lx = __u; __u = reinterpret(y); // EXTRACT_WORDS(hy, ly, y) var hy = (__u >> 32); var ly = __u; var ix = hx & 0x7fffffff; var iy = hy & 0x7fffffff; // x**0 = 1, even if x is NaN if ((iy | ly) == 0) return 1.0; // 1**y = 1, even if y is NaN if (hx == 0x3ff00000 && lx == 0) return 1.0; // NaN if either arg is NaN if ( ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) || iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0) ) return x + y; // determine if y is an odd int when x < 0 // yisint = 0 ... y is not an integer // yisint = 1 ... y is an odd int // yisint = 2 ... y is an even int var yisint = 0, k: i32; if (hx < 0) { if (iy >= 0x43400000) yisint = 2; // even integer y else if (iy >= 0x3ff00000) { k = (iy >> 20) - 0x3ff; // exponent if (k > 20) { let jj = ly >> (52 - k); if ((jj << (52 - k)) == ly) yisint = 2 - (jj & 1); } else if (ly == 0) { let jj = iy >> (20 - k); if ((jj << (20 - k)) == iy) yisint = 2 - (jj & 1); } } } // special value of y if (ly == 0) { if (iy == 0x7ff00000) { // y is +-inf if (((ix - 0x3ff00000) | lx) == 0) return 1.0; // (-1)**+-inf is 1 else if (ix >= 0x3ff00000) return hy >= 0 ? y : 0.0; // (|x|>1)**+-inf = inf,0 else return hy >= 0 ? 0.0 : -y; // (|x|<1)**+-inf = 0,inf } if (iy == 0x3ff00000) { // y is +-1 if (hy >= 0) return x; return 1 / x; } if (hy == 0x40000000) return x * x; // y is 2 if (hy == 0x3fe00000) { // y is 0.5 if (hx >= 0) return sqrt(x); // x >= +0 } } var ax = builtin_abs(x), z: f64; // special value of x if (lx == 0) { if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { // x is +-0,+-inf,+-1 z = ax; if (hy < 0) z = 1.0 / z; // z = (1/|x|) if (hx < 0) { if (((ix - 0x3ff00000) | yisint) == 0) z = (z - z) / (z - z); // (-1)**non-int is NaN else if (yisint == 1) z = -z; // (x<0)**odd = -(|x|**odd) } return z; } } var s = 1.0; // sign of result if (hx < 0) { if (yisint == 0) return (x - x) / (x - x); // (x<0)**(non-int) is NaN if (yisint == 1) s = -1.0; // (x<0)**(odd int) } // |y| is huge var t1: f64, t2: f64, p_h: f64, p_l: f64, r: f64, t: f64, u: f64, v: f64, w: f64; var j: i32, n: i32; if (iy > 0x41e00000) { // if |y| > 2**31 if (iy > 0x43f00000) { // if |y| > 2**64, must o/uflow if (ix <= 0x3fefffff) return hy < 0 ? huge * huge : tiny * tiny; if (ix >= 0x3ff00000) return hy > 0 ? huge * huge : tiny * tiny; } // over/underflow if x is not close to one if (ix < 0x3fefffff) return hy < 0 ? s * huge * huge : s * tiny * tiny; if (ix > 0x3ff00000) return hy > 0 ? s * huge * huge : s * tiny * tiny; // now |1-x| is tiny <= 2**-20, suffice to compute // log(x) by x-x^2/2+x^3/3-x^4/4 t = ax - 1.0; // t has 20 trailing zeros w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = ivln2_h * t; // ivln2_h has 21 sig. bits v = t * ivln2_l - w * ivln2; t1 = u + v; t1 = reinterpret(reinterpret(t1) & 0xffffffff00000000); // SET_LOW_WORD(t1, 0) t2 = v - (t1 - u); } else { let ss: f64, s2: f64, s_h: f64, s_l: f64, t_h: f64, t_l: f64; n = 0; // take care subnormal number if (ix < 0x00100000) { ax *= two53; n -= 53; ix = (reinterpret(ax) >> 32); } n += (ix >> 20) - 0x3ff; j = ix & 0x000fffff; // determine interval ix = j | 0x3ff00000; // normalize ix if (j <= 0x3988E) k = 0; // |x|(reinterpret(ax) & 0xffffffff | (ix << 32)); // SET_HIGH_WORD(ax, ix) // compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) let bp = select(1.5, 1.0, k); // bp[k], bp[0]=1.0, bp[1]=1.5 u = ax - bp; v = 1.0 / (ax + bp); ss = u * v; s_h = ss; s_h = reinterpret(reinterpret(s_h) & 0xffffffff00000000); // SET_LOW_WORD(s_h, 0) // t_h=ax+bp[k] High t_h = reinterpret((((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)) << 32); // SET_HIGH_WORD t_l = ax - (t_h - bp); s_l = v * ((u - s_h * t_h) - s_h * t_l); // compute log(ax) s2 = ss * ss; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); s2 = s_h * s_h; t_h = 3.0 + s2 + r; t_h = reinterpret(reinterpret(t_h) & 0xffffffff00000000); // SET_LOW_WORD(t_h, 0) t_l = r - ((t_h - 3.0) - s2); // u+v = ss*(1+...) u = s_h * t_h; v = s_l * t_h + t_l * ss; // 2/(3log2)*(ss+...) p_h = u + v; p_h = reinterpret(reinterpret(p_h) & 0xffffffff00000000); // SET_LOW_WORD(p_h, 0) p_l = v - (p_h - u); let z_h = cp_h * p_h; // cp_h+cp_l = 2/(3*log2) let dp_l = select(1.35003920212974897128e-08, 0.0, k); // dp_l[k] let z_l = cp_l * p_h + p_l * cp + dp_l; // log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l t = n; let dp_h = select(5.84962487220764160156e-01, 0.0, k); // dp_h[k] t1 = ((z_h + z_l) + dp_h) + t; t1 = reinterpret(reinterpret(t1) & 0xffffffff00000000); // SET_LOW_WORD(t1, 0); t2 = z_l - (((t1 - t) - dp_h) - z_h); } // split up y into y1+y2 and compute (y1+y2)*(t1+t2) var y1 = y; y1 = reinterpret(reinterpret(y1) & 0xffffffff00000000); // SET_LOW_WORD(y1, 0) p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; __u = reinterpret(z); // EXTRACT_WORDS(j, i, z) ... j = (__u >> 32); var i = __u; if (j >= 0x40900000) { // z >= 1024 if (((j - 0x40900000) | i) != 0) return s * huge * huge; // if z > 1024, overflow if (p_l + ovt > z - p_h) return s * huge * huge; // overflow } else if ((j & 0x7fffffff) >= 0x4090cc00) { // z <= -1075, FIXME: instead of abs(j) use unsigned j if (((j - 0xc090cc00) | i) != 0) return s * tiny * tiny; // z < -1075, underflow if (p_l <= z - p_h) return s * tiny * tiny; // underflow } // compute 2**(p_h+p_l) i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z+0.5] n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n t = 0.0; t = reinterpret((n & ~(0x000fffff >> k)) << 32); // SET_HIGH_WORD(t, n & ~(0x000fffff>>k)) n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; t = reinterpret(reinterpret(t) & 0xffffffff00000000); // SET_LOW_WORD(t, 0) u = t * lg2_h; v = (p_l - (t - p_h)) * lg2 + t * lg2_l; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = (reinterpret(z) >> 32); // GET_HIGH_WORD(j, z) j += n << 20; if ((j >> 20) <= 0) z = scalbn(z, n); // subnormal output else z = reinterpret(reinterpret(z) & 0xffffffff | (j << 32)); // SET_HIGH_WORD(z, j) return s * z; } export function round(x: f64): f64 { return builtin_nearest(x); } export function sign(x: f64): f64 { return x > 0 ? 1 : x < 0 ? -1 : x; } export function sqrt(x: f64): f64 { return builtin_sqrt(x); } export function trunc(x: f64): f64 { return builtin_trunc(x); } } export namespace NativeMathf { export const E = NativeMath.E; export const LN2 = NativeMath.LN2; export const LN10 = NativeMath.LN10; export const LOG2E = NativeMath.LOG2E; export const LOG10E = NativeMath.LOG10E; export const PI = NativeMath.PI; export const SQRT1_2 = NativeMath.SQRT1_2; export const SQRT2 = NativeMath.SQRT2; export function abs(x: f32): f32 { return builtin_abs(x); } export function ceil(x: f32): f32 { return builtin_ceil(x); } export function clz32(x: f32): i32 { return builtin_clz(x); } export function floor(x: f32): f32 { return builtin_floor(x); } export function exp(x: f32): f32 { // based on musl's implementation of expf const ln2hi = 6.9314575195e-1, // 0x3f317200 ln2lo = 1.4286067653e-6, // 0x35bfbe8e invln2 = 1.4426950216e+0, // 0x3fb8aa3b // Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]: // |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74 P1 = 1.6666625440e-1, // 0xaaaa8f.0p-26 P2 = -2.7667332906e-3, // -0xb55215.0p-32 Ox1p127f = 1.701411835e+38; var hx = reinterpret(x); var sign_ = (hx >> 31); // sign bit of x hx &= 0x7fffffff; // high word of |x| // special cases if (hx >= 0x42aeac50) { // if |x| >= -87.33655f or NaN if (hx >= 0x42b17218 && !sign_) { // x >= 88.722839f // overflow x *= Ox1p127f; return x; } if (sign_) { // underflow if (hx >= 0x42cff1b5) { // x <= -103.972084f return 0; } } } // argument reduction var hi: f32, lo: f32; var k: i32; if (hx > 0x3eb17218) { // if |x| > 0.5 ln2 if (hx > 0x3f851592) { // if |x| > 1.5 ln2 k = (invln2 * x + copysign(0.5, x)); // was: [0.5, -0.5][sign_]) } else { k = 1 - sign_ - sign_; } hi = x - k * ln2hi; // k * ln2hi is exact here lo = k * ln2lo; x = hi - lo; } else if (hx > 0x39000000) { // |x| > 2**-14 k = 0; hi = x; lo = 0; } else { // raise inexact return 1 + x; } // x is now in primary range var xx = x * x; var c = x - xx * (P1 + xx * P2); var y: f32 = 1 + (x * c / (2 - c) - lo + hi); if (k == 0) return y; return scalbnf(y, k); } export function imul(x: f32, y: f32): i32 { return x * y; } export function log(x: f32): f32 { // based on musl's implementaion of logf const ln2_hi = 6.9313812256e-01, // 0x3f317180 ln2_lo = 9.0580006145e-06, // 0x3717f7d1 Lg1 = 0.66666662693, // 0xaaaaaa.0p-24 Lg2 = 0.40000972152, // 0xccce13.0p-25 Lg3 = 0.28498786688, // 0x91e9ee.0p-25 Lg4 = 0.24279078841, // 0xf89e26.0p-26 Ox1p25f = 33554432.0; var ux = reinterpret(x); var k = 0; if (ux < 0x00800000 || (ux >> 31)) { // x < 2**-126 if (ux << 1 == 0) return -1 / (x * x); // log(+-0)=-inf if (ux >> 31) return (x - x) / 0; // log(-#) = NaN // subnormal number, scale up x k -= 25; x *= Ox1p25f; ux = reinterpret(x); } else if (ux >= 0x7f800000) return x; else if (ux == 0x3f800000) return 0; // reduce x into [sqrt(2)/2, sqrt(2)] ux += 0x3f800000 - 0x3f3504f3; k += (ux >> 23) - 0x7f; ux = (ux & 0x007fffff) + 0x3f3504f3; x = reinterpret(ux); var f = x - 1.0; var s = f / (2.0 + f); var z = s * s; var w = z * z; var t1 = w * (Lg2 + w * Lg4); var t2 = z * (Lg1 + w * Lg3); var R = t2 + t1; var hfsq = 0.5 * f * f; var dk = k; return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi; } // export function log2(x: f32): f32 { // return log(x) / LN2; // } // export function log10(x: f32): f32 { // return log(x) / LN10; // } export function max(value1: f32, value2: f32): f32 { return builtin_max(value1, value2); } export function min(value1: f32, value2: f32): f32 { return builtin_min(value1, value2); } export function pow(x: f32, y: f32): f32 { // based on musl's implementation of powf const two24 = 16777216.0, // 0x4b800000 huge = 1.0e30, tiny = 1.0e-30, // poly coefs for (3/2)*(log(x)-2s-2/3*s**3 L1 = 6.0000002384e-01, // 0x3f19999a L2 = 4.2857143283e-01, // 0x3edb6db7 L3 = 3.3333334327e-01, // 0x3eaaaaab L4 = 2.7272811532e-01, // 0x3e8ba305 L5 = 2.3066075146e-01, // 0x3e6c3255 L6 = 2.0697501302e-01, // 0x3e53f142 P1 = 1.6666667163e-01, // 0x3e2aaaab P2 = -2.7777778450e-03, // 0xbb360b61 P3 = 6.6137559770e-05, // 0x388ab355 P4 = -1.6533901999e-06, // 0xb5ddea0e P5 = 4.1381369442e-08, // 0x3331bb4c lg2 = 6.9314718246e-01, // 0x3f317218 lg2_h = 6.93145752e-01, // 0x3f317200 lg2_l = 1.42860654e-06, // 0x35bfbe8c ovt = 4.2995665694e-08, // -(128-log2(ovfl+.5ulp)) cp = 9.6179670095e-01, // 0x3f76384f =2/(3ln2) cp_h = 9.6191406250e-01, // 0x3f764000 =12b cp cp_l = -1.1736857402e-04, // 0xb8f623c6 =tail of cp_h ivln2 = 1.4426950216e+00, // 0x3fb8aa3b =1/ln2 ivln2_h = 1.4426879883e+00, // 0x3fb8aa00 =16b 1/ln2 ivln2_l = 7.0526075433e-06; // 0x36eca570 =1/ln2 tail var hx = reinterpret(x); // GET_FLOAT_WORD(hx, x) var hy = reinterpret(y); // GET_FLOAT_WORD(hy, y) var ix = hx & 0x7fffffff; var iy = hy & 0x7fffffff; // x**0 = 1, even if x is NaN if (iy == 0) return 1.0; // 1**y = 1, even if y is NaN if (hx == 0x3f800000) return 1.0; // NaN if either arg is NaN if (ix > 0x7f800000 || iy > 0x7f800000) return x + y; // determine if y is an odd int when x < 0 // yisint = 0 ... y is not an integer // yisint = 1 ... y is an odd int // yisint = 2 ... y is an even int var yisint = 0, j: i32, k: i32; if (hx < 0) { if (iy >= 0x4b800000) yisint = 2; // even integer y else if (iy >= 0x3f800000) { k = (iy >> 23) - 0x7f; // exponent j = iy >> (23 - k); if ((j << (23 - k)) == iy) yisint = 2 - (j & 1); } } // special value of y if (iy == 0x7f800000) { // y is +-inf if (ix == 0x3f800000) return 1.0; // (-1)**+-inf is 1 else if (ix > 0x3f800000) return hy >= 0 ? y : 0.0; // (|x|>1)**+-inf = inf,0 else return hy >= 0 ? 0.0 : -y; // (|x|<1)**+-inf = 0,inf } if (iy == 0x3f800000) return hy >= 0 ? x : 1.0 / x; // y is +-1 if (hy == 0x40000000) return x * x; // y is 2 if (hy == 0x3f000000) { // y is 0.5 if (hx >= 0) return builtin_sqrt(x); // x >= +0 } var ax = builtin_abs(x); // special value of x var z: f32; if (ix == 0x7f800000 || ix == 0 || ix == 0x3f800000) { // x is +-0,+-inf,+-1 z = ax; if (hy < 0) z = 1.0 / z; // z = (1/|x|) if (hx < 0) { if (((ix - 0x3f800000) | yisint) == 0) z = (z - z) / (z - z); // (-1)**non-int is NaN else if (yisint == 1) z = -z; // (x<0)**odd = -(|x|**odd) } return z; } var sn = 1.0; // sign of result if (hx < 0) { if (yisint == 0) return (x - x) / (x - x); // (x<0)**(non-int) is NaN if (yisint == 1) sn = -1.0; // (x<0)**(odd int) } // |y| is huge var t1: f32, t2: f32, r: f32, s: f32, t: f32, u: f32, v: f32, w: f32, p_h: f32, p_l: f32; var n: i32, is: i32; if (iy > 0x4d000000) { // if |y| > 2**27 // over/underflow if x is not close to one if (ix < 0x3f7ffff8) return hy < 0 ? sn * huge * huge : sn * tiny * tiny; if (ix > 0x3f800007) return hy > 0 ? sn * huge * huge : sn * tiny * tiny; // now |1-x| is tiny <= 2**-20, suffice to compute // log(x) by x-x^2/2+x^3/3-x^4/4 t = ax - 1; // t has 20 trailing zeros w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25)); u = ivln2_h * t; // ivln2_h has 16 sig. bits v = t * ivln2_l - w * ivln2; t1 = u + v; is = reinterpret(t1); // GET_FLOAT_WORD(is, t1) t1 = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(t1, is & 0xfffff000) t2 = v - (t1 - u); } else { let s2: f32, s_h: f32, s_l: f32, t_h: f32, t_l: f32; n = 0; // take care subnormal number if (ix < 0x00800000) { ax *= two24; n -= 24; ix = reinterpret(ax); // GET_FLOAT_WORD(ix, ax) } n += (ix >> 23) - 0x7f; j = ix & 0x007fffff; // determine interval ix = j | 0x3f800000; // normalize ix if (j <= 0x1cc471) k = 0; // |x|(ix); // SET_FLOAT_WORD(ax, ix) // compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) let bp = select(1.5, 1.0, k); // bp[k], [1.0, 1.5] u = ax - bp; v = 1.0 / (ax + bp); s = u * v; s_h = s; is = reinterpret(s_h); // GET_FLOAT_WORD(is, s_h) s_h = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(s_h, is & 0xfffff000) // t_h=ax+bp[k] High is = ((ix >> 1) & 0xfffff000) | 0x20000000; t_h = reinterpret(is + 0x00400000 + (k << 21)); // SET_FLOAT_WORD(t_h, is + 0x00400000 + (k<<21)) t_l = ax - (t_h - bp); s_l = v * ((u - s_h * t_h) - s_h * t_l); // compute log(ax) s2 = s * s; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + s); s2 = s_h * s_h; t_h = 3.0 + s2 + r; is = reinterpret(t_h); // GET_FLOAT_WORD(is, t_h) t_h = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(t_h, is & 0xfffff000) t_l = r - ((t_h - 3.0) - s2); // u+v = s*(1+...) u = s_h * t_h; v = s_l * t_h + t_l * s; // 2/(3log2)*(s+...) p_h = u + v; is = reinterpret(p_h); // GET_FLOAT_WORD(is, p_h) p_h = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(p_h, is & 0xfffff000) p_l = v - (p_h - u); let z_h = cp_h * p_h; // cp_h+cp_l = 2/(3*log2) let dp_l = select(1.56322085e-06, 0.0, k); // dp_l[k], [0.0, 1.56322085e-06] let z_l = cp_l * p_h + p_l * cp + dp_l; // log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l t = n; let dp_h = select(5.84960938e-01, 0.0, k); // dp_h[k], [0.0, 5.84960938e-01] t1 = (((z_h + z_l) + dp_h) + t); is = reinterpret(t1); // GET_FLOAT_WORD(is, t1) t1 = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(t1, is & 0xfffff000) t2 = z_l - (((t1 - t) - dp_h) - z_h); } // split up y into y1+y2 and compute (y1+y2)*(t1+t2) is = reinterpret(y); // GET_FLOAT_WORD(is, y) var y1 = reinterpret(is & 0xfffff000); // SET_FLOAT_WORD(y1, is & 0xfffff000) p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; j = reinterpret(z); // GET_FLOAT_WORD(j, z) if (j > 0x43000000) { // if z > 128, overflow return sn * huge * huge; } else if (j == 0x43000000) { // if z == 128 if (p_l + ovt > z - p_h) return sn * huge * huge; // overflow } else if ((j & 0x7fffffff) > 0x43160000) { // z < -150, FIXME: check should be (uint32_t)j > 0xc3160000 return sn * tiny * tiny; // underflow } else if (j == 0xc3160000) { // z == -150 if (p_l <= z - p_h) return sn * tiny * tiny; // underflow } // compute 2**(p_h+p_l) var i = j & 0x7fffffff; k = (i >> 23) - 0x7f; n = 0; if (i > 0x3f000000) { // if |z| > 0.5, set n = [z+0.5] n = j + (0x00800000 >> (k + 1)); k = ((n & 0x7fffffff) >> 23) - 0x7f; // new k for n t = reinterpret(n & ~(0x007fffff >> k)); // SET_FLOAT_WORD(t, n & ~(0x007fffff>>k)) n = ((n & 0x007fffff) | 0x00800000) >> (23 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; is = reinterpret(t); // GET_FLOAT_WORD(is, t) t = reinterpret(is & 0xffff8000); // SET_FLOAT_WORD(t, is & 0xffff8000); u = t * lg2_h; v = (p_l - (t - p_h)) * lg2 + t * lg2_l; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = reinterpret(z); // GET_FLOAT_WORD(j, z) j += n << 23; if ((j >> 23) <= 0) z = scalbnf(z, n); // subnormal output else z = reinterpret(j); // SET_FLOAT_WORD(z, j) return sn * z; } export function round(x: f32): f32 { return builtin_nearest(x); } export function sign(x: f32): f32 { return x > 0 ? 1 : x < 0 ? -1 : x; } export function sqrt(x: f32): f32 { return builtin_sqrt(x); } export function trunc(x: f32): f32 { return builtin_trunc(x); } } function scalbn(x: f64, n: i32): f64 { // based on musl's implementation of scalbn const Ox1p1023 = 8.98846567431157954e+307, Ox1p_1022 = 2.22507385850720138e-308; var y = x; if (n > 1023) { y *= Ox1p1023; n -= 1023; if (n > 1023) { y *= Ox1p1023; n -= 1023; if (n > 1023) n = 1023; } } else if (n < -1022) { y *= Ox1p_1022; n += 1022; if (n < -1022) { y *= Ox1p_1022; n += 1022; if (n < -1022) n = -1022; } } return y * reinterpret((0x3ff + n) << 52); } function scalbnf(x: f32, n: i32): f32 { // based on musl's implementation of scalbnf const Ox1p127f = 1.701411835e+38, Ox1p_126f = 1.175494351e-38; var y = x; if (n > 127) { y *= Ox1p127f; n -= 127; if (n > 127) { y *= Ox1p127f; n -= 127; if (n > 127) n = 127; } } else if (n < -126) { y *= Ox1p_126f; n += 126; if (n < -126) { y *= Ox1p_126f; n += 126; if (n < -126) n = -126; } } return y * reinterpret((0x7f + n) << 23); }