mirror of
https://github.com/fluencelabs/assemblyscript
synced 2025-04-27 07:52:14 +00:00
quick pure gc prototype
This commit is contained in:
parent
952ac8627d
commit
f44dbf2646
@ -1,3 +1,8 @@
|
||||
// Two-Level Segregate Fit Memory Allocator.
|
||||
//
|
||||
// A general purpose dynamic memory allocator specifically designed to meet real-time requirements.
|
||||
// Always aligns to 8 bytes.
|
||||
|
||||
// ╒══════════════ Block size interpretation (32-bit) ═════════════╕
|
||||
// 3 2 1
|
||||
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 bits
|
||||
|
261
std/assembly/collector/pure.ts
Normal file
261
std/assembly/collector/pure.ts
Normal file
@ -0,0 +1,261 @@
|
||||
// A Pure Reference Counting Garbage Collector
|
||||
//
|
||||
// After the paper by DAVID F. BACON, CLEMENT R. ATTANASIO, V.T. RAJAN, STEPHEN E.SMITH
|
||||
// D.Bacon, IBM T.J. Watson Research Center
|
||||
// 2001 ACM 0164-0925/99/0100-0111 $00.75
|
||||
|
||||
import { HEADER, HEADER_SIZE } from "../runtime";
|
||||
|
||||
ERROR("not implemented");
|
||||
|
||||
/* tslint:disable */
|
||||
|
||||
// TODO: new builtin
|
||||
declare function ITERATECHILDREN(s: Header, fn: (t: Header) => void): void;
|
||||
|
||||
/** Object Colorings for Cycle Collection */
|
||||
const enum Color {
|
||||
/** In use or free. */
|
||||
BLACK = 0,
|
||||
/** Possible member of cycle. */
|
||||
GRAY = 1,
|
||||
/** Member of garbage cycle. */
|
||||
WHITE = 2,
|
||||
/** Possible root of cycle. */
|
||||
PURPLE = 3,
|
||||
/** Acyclic. */
|
||||
GREEN = 4
|
||||
}
|
||||
|
||||
// TODO: this is a placeholder -> map this to HEADER
|
||||
class Header {
|
||||
rc: u32;
|
||||
color: Color;
|
||||
buffered: bool;
|
||||
}
|
||||
|
||||
// When reference counts are decremented, we place potential roots of cyclic garbage into a buffer
|
||||
// called Roots. Periodically, we process this buffer and look for cycles by subtracting internal
|
||||
// reference counts.
|
||||
|
||||
var rootsBuffer: usize = 0;
|
||||
var rootsOffset: usize = 0; // insertion offset
|
||||
var rootsLength: usize = 0; // insertion limit
|
||||
|
||||
function appendRoot(header: Header): void {
|
||||
if (rootsOffset >= rootsLength) {
|
||||
// grow for now
|
||||
let newLength = rootsLength ? 2 * rootsLength : 256 * sizeof<usize>();
|
||||
let newBuffer = memory.allocate(newLength);
|
||||
memory.copy(newBuffer, rootsBuffer, rootsLength);
|
||||
rootsBuffer = newBuffer;
|
||||
rootsLength = newLength;
|
||||
}
|
||||
store<usize>(rootsBuffer + rootsOffset, header);
|
||||
rootsOffset += sizeof<usize>();
|
||||
}
|
||||
|
||||
function systemFree(s: Header): void {
|
||||
memory.free(changetype<usize>(s));
|
||||
}
|
||||
|
||||
// When a reference to a node S is created, the reference count of T is incremented and it is
|
||||
// colored black, since any object whose reference count was just incremented can not be garbage.
|
||||
|
||||
function increment(s: Header): void {
|
||||
s.rc += 1;
|
||||
s.color = Color.BLACK;
|
||||
}
|
||||
|
||||
// When a reference to a node S is deleted, the reference count is decremented. If the reference
|
||||
// count reaches zero, the procedure Release is invoked to free the garbage node. If the reference
|
||||
// count does not reach zero, the node is considered as a possible root of a cycle.
|
||||
|
||||
function decrement(s: Header): void {
|
||||
s.rc -= 1;
|
||||
if (!s.rc) release(s);
|
||||
else possibleRoot(s);
|
||||
}
|
||||
|
||||
// When the reference count of a node reaches zero, the contained pointers are deleted, the object
|
||||
// is colored black, and unless it has been buffered, it is freed. If it has been buffered, it is
|
||||
// in the Roots buffer and will be freed later (in the procedure MarkRoots).
|
||||
|
||||
function release(s: Header): void {
|
||||
ITERATECHILDREN(s, t => decrement(t));
|
||||
s.color = Color.BLACK;
|
||||
if (!s.buffered) systemFree(s);
|
||||
}
|
||||
|
||||
// When the reference count of S is decremented but does not reach zero, it is considered as a
|
||||
// possible root of a garbage cycle. If its color is already purple, then it is already a candidate
|
||||
// root; if not, its color is set to purple. Then the buffered flag is checked to see if it has
|
||||
// been purple since we last performed a cycle collection. If it is not buffered, it is added to
|
||||
// the buffer of possible roots.
|
||||
|
||||
function possibleRoot(s: Header): void {
|
||||
if (s.color != Color.PURPLE) {
|
||||
s.color = Color.PURPLE;
|
||||
if (!s.buffered) {
|
||||
s.buffered = true;
|
||||
appendRoot(s);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// When the root buffer is full, or when some other condition, such as low memory occurs, the
|
||||
// actual cycle collection operation is invoked. This operation has three phases: MarkRoots, which
|
||||
// removes internal reference counts; ScanRoots, which restores reference counts when they are
|
||||
// non-zero; and finally CollectRoots, which actually collects the cyclic garbage.
|
||||
|
||||
function collectCycles(): void {
|
||||
markRoots();
|
||||
scanRoots();
|
||||
collectRoots();
|
||||
}
|
||||
|
||||
// The marking phase looks at all the nodes S whose pointers have been stored in the Roots buffer
|
||||
// since the last cycle collection. If the color of the node is purple (indicating a possible root
|
||||
// of a garbage cycle) and the reference count has not become zero, then MarkGray(S) is invoked to
|
||||
// perform a depth-first search in which the reached nodes are colored gray and internal reference
|
||||
// counts are subtracted. Otherwise, the node is removed from the Roots buffer, the buffered flag
|
||||
// is cleared, and if the reference count is zero the object is freed.
|
||||
|
||||
function markRoots(): void {
|
||||
var readOffset = rootsBuffer;
|
||||
var writeOffset = readOffset;
|
||||
var readLimit = readOffset + rootsOffset;
|
||||
while (readOffset < readLimit) {
|
||||
let s = load<Header>(readOffset);
|
||||
if (s.color == Color.PURPLE && s.rc > 0) {
|
||||
markGray(s);
|
||||
store<Header>(writeOffset, s);
|
||||
writeOffset += sizeof<usize>();
|
||||
} else {
|
||||
s.buffered = false;
|
||||
// remove from roots
|
||||
if (s.color == Color.BLACK && !s.rc) systemFree(s);
|
||||
}
|
||||
readOffset += sizeof<usize>();
|
||||
}
|
||||
rootsOffset = writeOffset - rootsBuffer;
|
||||
}
|
||||
|
||||
// For each node S that was considered by MarkGray(S), this procedure invokes Scan(S) to either
|
||||
// color the garbage subgraph white or re-color the live subgraph black.
|
||||
|
||||
function scanRoots(): void {
|
||||
var readOffset = rootsBuffer;
|
||||
var readLimit = readOffset + rootsOffset;
|
||||
while (readOffset < readLimit) {
|
||||
scan(load<Header>(readOffset));
|
||||
readOffset += sizeof<usize>();
|
||||
}
|
||||
}
|
||||
|
||||
// After the ScanRoots phase of the CollectCycles procedure, any remaining white nodes will be
|
||||
// cyclic garbage and will be reachable from the Roots buffer. This prodecure invokes CollectWhite
|
||||
// for each node in the Roots buffer to collect the garbage; all nodes in the root buffer are
|
||||
// removed and their buffered flag is cleared.
|
||||
|
||||
function collectRoots(): void {
|
||||
var readOffset = rootsBuffer;
|
||||
var readLimit = readOffset + rootsOffset;
|
||||
while (readOffset < readLimit) {
|
||||
let s = load<Header>(readOffset);
|
||||
// remove from roots
|
||||
s.buffered = false;
|
||||
collectWhite(s);
|
||||
}
|
||||
rootsOffset = 0;
|
||||
}
|
||||
|
||||
// This procedure performs a simple depth-first traversal of the graph beginning at S, marking
|
||||
// visited nodes gray and removing internal reference counts as it goes.
|
||||
|
||||
function markGray(s: Header): void {
|
||||
if (s.color != Color.GRAY) {
|
||||
s.color = Color.GRAY;
|
||||
ITERATECHILDREN(s, t => {
|
||||
t.rc -= 1;
|
||||
markGray(t);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// If this procedure finds a gray object whose reference count is greater than one, then that
|
||||
// object and everything reachable from it are live data; it will therefore call ScanBlack(S) in
|
||||
// order to re-color the reachable subgraph and restore the reference counts subtracted by
|
||||
// MarkGray. However, if the color of an object is gray and its reference count is zero, then it is
|
||||
// colored white, and Scan is invoked upon its chldren. Note that an object may be colored white
|
||||
// and then re-colored black if it is reachable from some subsequently discovered live node.
|
||||
|
||||
function scan(s: Header): void {
|
||||
if (s.color == Color.GRAY) {
|
||||
if (s.rc > 0) scanBlack(s);
|
||||
else {
|
||||
s.color = Color.WHITE;
|
||||
ITERATECHILDREN(s, t => scan(t));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// This procedure performs the inverse operation of MarkGray, visiting the nodes, changing the
|
||||
// color of objects back to black, and restoring their reference counts.
|
||||
|
||||
function scanBlack(s: Header): void {
|
||||
s.color = Color.BLACK;
|
||||
ITERATECHILDREN(s, t => {
|
||||
t.rc += 1;
|
||||
if (t.color == Color.BLACK) scanBlack(t);
|
||||
});
|
||||
}
|
||||
|
||||
// This procedure recursively frees all white objects, re-coloring them black as it goes. If a
|
||||
// white object is buffered, it is not freed; it will be freed later when it is found in the Roots
|
||||
// buffer.
|
||||
|
||||
function collectWhite(s: Header): void {
|
||||
if (s.color == Color.WHITE && !s.buffered) {
|
||||
s.color = Color.BLACK;
|
||||
ITERATECHILDREN(s, t => collectWhite(t));
|
||||
systemFree(s);
|
||||
}
|
||||
}
|
||||
|
||||
// Garbage collector interface
|
||||
|
||||
// @ts-ignore: decorator
|
||||
@global
|
||||
function __gc_link(ref: usize, parentRef: usize): void {
|
||||
increment(changetype<Header>(ref - HEADER_SIZE));
|
||||
}
|
||||
|
||||
// @ts-ignore: decorator
|
||||
@global
|
||||
function __gc_unlink(ref: usize, parentRef: usize): void {
|
||||
decrement(changetype<Header>(ref - HEADER_SIZE))
|
||||
}
|
||||
|
||||
// @ts-ignore: decorator
|
||||
@global
|
||||
function __gc_collect(): void {
|
||||
collectCycles();
|
||||
}
|
||||
|
||||
// TODO:
|
||||
|
||||
// A significant constant-factor improvement can be obtained for cycle collection by observice that
|
||||
// some objects are inherently acyclic. We speculate that they will comprise the majorits of
|
||||
// objects in many applications. Therefore, if we can avoid cycle collection for inherently acyclic
|
||||
// object, we will significantly reduce the overhead of cycle collection as a whole. [...]
|
||||
//
|
||||
// Acyclic classes may contain:
|
||||
// - scalars;
|
||||
// - references to classes that are both acyclic and final; and
|
||||
// - arrays of either of the above.
|
||||
//
|
||||
// Our implementation marks objects whose class is acyclic with the special color green. Green
|
||||
// objects are ignored by the cycle collection algorithm, except that when a dead cycle refers to
|
||||
// green objects, they are collected along with the dead cycle.
|
Loading…
x
Reference in New Issue
Block a user