Refactored builtins

This commit is contained in:
dcodeIO 2017-12-05 01:45:15 +01:00
parent b7030d4dea
commit 40b814ac73
7 changed files with 488 additions and 417 deletions

12
assembly.d.ts vendored
View File

@ -39,18 +39,18 @@ declare function popcnt<T = i32 | i64>(value: T): T;
declare function rotl<T = i32 | i64>(value: T, shift: T): T;
/** Performs the sign-agnostic rotate right operation on a 32-bit or 64-bit integer. */
declare function rotr<T = i32 | i64>(value: T, shift: T): T;
/** Computes the absolute value of a 32-bit or 64-bit float. */
declare function abs<T = f32 | f64>(value: T): T;
/** Computes the absolute value of an integer or float. */
declare function abs<T = i32 | i64 | f32 | f64>(value: T): T;
/** Determines the maximum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function max<T = i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Determines the minimum of two integers or floats. If either operand is `NaN`, returns `NaN`. */
declare function min<T = i32 | i64 | f32 | f64>(left: T, right: T): T;
/** Performs the ceiling operation on a 32-bit or 64-bit float. */
declare function ceil<T = f32 | f64>(value: T): T;
/** Composes a 32-bit or 64-bit float from the magnitude of `x` and the sign of `y`. */
declare function copysign<T = f32 | f64>(x: T, y: T): T;
/** Performs the floor operation on a 32-bit or 64-bit float. */
declare function floor<T = f32 | f64>(value: T): T;
/** Determines the maximum of two 32-bit or 64-bit floats. If either operand is `NaN`, returns `NaN`. */
declare function max<T = f32 | f64>(left: T, right: T): T;
/** Determines the minimum of two 32-bit or 64-bit floats. If either operand is `NaN`, returns `NaN`. */
declare function min<T = f32 | f64>(left: T, right: T): T;
/** Rounds to the nearest integer tied to even of a 32-bit or 64-bit float. */
declare function nearest<T = f32 | f64>(value: T): T;
/** Reinterprets the bits of a value of type `T1` as type `T2`. Valid reinterpretations are i32 to/from f32 and i64 to/from f64. */

431
src/builtins.ts Normal file
View File

@ -0,0 +1,431 @@
import { Compiler, Target, typeToNativeType, typeToNativeOne } from "./compiler";
import { DiagnosticCode } from "./diagnostics";
import { Node, Expression } from "./ast";
import { Type } from "./types";
import { ExpressionRef, UnaryOp, BinaryOp, HostOp, NativeType } from "./module";
import { Program, FunctionPrototype, Local } from "./program";
/** Initializes the specified program with builtin functions. */
export function initialize(program: Program): void {
addFunction(program, "clz", true);
addFunction(program, "ctz", true);
addFunction(program, "popcnt", true);
addFunction(program, "rotl", true);
addFunction(program, "rotr", true);
addFunction(program, "abs", true);
addFunction(program, "ceil", true);
addFunction(program, "copysign", true);
addFunction(program, "floor", true);
addFunction(program, "max", true);
addFunction(program, "min", true);
addFunction(program, "nearest", true);
addFunction(program, "sqrt", true);
addFunction(program, "trunc", true);
addFunction(program, "current_memory");
addFunction(program, "grow_memory");
addFunction(program, "unreachable");
addFunction(program, "load", true);
addFunction(program, "store", true);
addFunction(program, "reinterpret", true);
addFunction(program, "select", true);
addFunction(program, "sizeof", true);
addFunction(program, "isNaN", true);
addFunction(program, "isFinite", true);
addFunction(program, "assert");
}
/** Adds a builtin function to the specified program. */
function addFunction(program: Program, name: string, isGeneric: bool = false): void {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = isGeneric;
prototype.isBuiltin = true;
program.elements.set(name, prototype);
}
/** Compiles a call to a builtin function. */
export function compileCall(compiler: Compiler, internalName: string, typeArguments: Type[], operands: Expression[], reportNode: Node): ExpressionRef {
const usizeType: Type = select<Type>(Type.usize64, Type.usize32, compiler.options.target == Target.WASM64);
let arg0: ExpressionRef,
arg1: ExpressionRef,
arg2: ExpressionRef;
let tempLocal: Local;
switch (internalName) {
case "clz": // clz<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyInteger) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]).isLongInteger // sic
? compiler.module.createUnary(UnaryOp.ClzI64, arg0)
: typeArguments[0].isSmallInteger
? compiler.module.createBinary(BinaryOp.AndI32,
compiler.module.createUnary(UnaryOp.ClzI32, arg0),
compiler.module.createI32(typeArguments[0].smallIntegerMask)
)
: compiler.module.createUnary(UnaryOp.ClzI32, arg0);
}
break;
case "ctz": // ctz<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyInteger) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]).isLongInteger // sic
? compiler.module.createUnary(UnaryOp.CtzI64, arg0)
: typeArguments[0].isSmallInteger
? compiler.module.createBinary(BinaryOp.AndI32,
compiler.module.createUnary(UnaryOp.CtzI32, arg0),
compiler.module.createI32(typeArguments[0].smallIntegerMask)
)
: compiler.module.createUnary(UnaryOp.CtzI32, arg0);
}
break;
case "popcnt": // popcnt<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyInteger) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]).isLongInteger // sic
? compiler.module.createUnary(UnaryOp.PopcntI64, arg0)
: typeArguments[0].isSmallInteger
? compiler.module.createBinary(BinaryOp.AndI32,
compiler.module.createUnary(UnaryOp.PopcntI32, arg0),
compiler.module.createI32(typeArguments[0].smallIntegerMask)
)
: compiler.module.createUnary(UnaryOp.PopcntI32, arg0);
}
break;
case "rotl": // rotl<T>(value: T, shift: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyInteger) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
arg1 = compiler.compileExpression(operands[1], typeArguments[0]);
return (compiler.currentType = typeArguments[0]).isLongInteger // sic
? compiler.module.createBinary(BinaryOp.RotlI64, arg0, arg1)
: typeArguments[0].isSmallInteger
? compiler.module.createBinary(BinaryOp.AndI32,
compiler.module.createBinary(BinaryOp.RotlI32, arg0, arg1),
compiler.module.createI32(typeArguments[0].smallIntegerMask)
)
: compiler.module.createBinary(BinaryOp.RotlI32, arg0, arg1);
}
break;
case "rotr": // rotr<T>(value: T, shift: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyInteger) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
arg1 = compiler.compileExpression(operands[1], typeArguments[0]);
return (compiler.currentType = typeArguments[0]).isLongInteger // sic
? compiler.module.createBinary(BinaryOp.RotrI64, arg0, arg1)
: typeArguments[0].isSmallInteger
? compiler.module.createBinary(BinaryOp.AndI32,
compiler.module.createBinary(BinaryOp.RotrI32, arg0, arg1),
compiler.module.createI32(typeArguments[0].smallIntegerMask)
)
: compiler.module.createBinary(BinaryOp.RotrI32, arg0, arg1);
}
break;
case "abs": // abs<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]) != Type.void) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
if ((compiler.currentType = typeArguments[0]).isAnyFloat) // sic
return typeArguments[0] == Type.f32
? compiler.module.createUnary(UnaryOp.AbsF32, arg0)
: compiler.module.createUnary(UnaryOp.AbsF64, arg0);
if (typeArguments[0].isAnyInteger) {
// TODO: ternaries for integers
}
}
break;
case "max": // max<T>(left: T, right: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]) != Type.void) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
arg1 = compiler.compileExpression(operands[1], typeArguments[0]);
if ((compiler.currentType = typeArguments[0]).isAnyFloat) // sic
return typeArguments[0] == Type.f32
? compiler.module.createBinary(BinaryOp.MaxF32, arg0, arg1)
: compiler.module.createBinary(BinaryOp.MaxF64, arg0, arg1);
if (typeArguments[0].isAnyInteger) {
// TODO: ternaries for integers
}
}
break;
case "min": // min<T>(left: T, right: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]) != Type.void) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
arg1 = compiler.compileExpression(operands[1], typeArguments[0]);
if ((compiler.currentType = typeArguments[0]).isAnyFloat) // sic
return typeArguments[0] == Type.f32
? compiler.module.createBinary(BinaryOp.MinF32, arg0, arg1)
: compiler.module.createBinary(BinaryOp.MinF64, arg0, arg1);
if (typeArguments[0].isAnyInteger) {
// TODO: ternaries for integers
}
}
break;
case "ceil": // ceil<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createUnary(UnaryOp.CeilF32, arg0)
: compiler.module.createUnary(UnaryOp.CeilF64, arg0);
}
break;
case "floor": // floor<T>(value: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createUnary(UnaryOp.FloorF32, arg0)
: compiler.module.createUnary(UnaryOp.FloorF64, arg0);
}
break;
case "copysign": // copysign<T>(left: T, right: T) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
arg1 = compiler.compileExpression(operands[1], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createBinary(BinaryOp.CopysignF32, arg0, arg1)
: compiler.module.createBinary(BinaryOp.CopysignF64, arg0, arg1);
}
break;
case "nearest":
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createUnary(UnaryOp.NearestF32, arg0)
: compiler.module.createUnary(UnaryOp.NearestF64, arg0);
}
break;
case "sqrt":
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createUnary(UnaryOp.SqrtF32, arg0)
: compiler.module.createUnary(UnaryOp.SqrtF64, arg0);
}
break;
case "trunc":
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if ((compiler.currentType = typeArguments[0]).isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]);
return (compiler.currentType = typeArguments[0]) == Type.f32 // sic
? compiler.module.createUnary(UnaryOp.TruncF32, arg0)
: compiler.module.createUnary(UnaryOp.TruncF64, arg0);
}
break;
case "sizeof": // sizeof<T>() -> usize
compiler.currentType = usizeType;
if (!validateCall(compiler, typeArguments, 1, operands, 0, reportNode))
return compiler.module.createUnreachable();
return usizeType.isLongInteger
? compiler.module.createI64(typeArguments[0].byteSize, 0)
: compiler.module.createI32(typeArguments[0].byteSize);
case "load": // load<T>(offset: usize) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
arg0 = compiler.compileExpression(operands[0], usizeType); // reports
if ((compiler.currentType = typeArguments[0]) != Type.void)
return compiler.module.createLoad(typeArguments[0].byteSize, typeArguments[0].isSignedInteger, arg0, typeToNativeType(typeArguments[0]));
break;
case "store": // store<T>(offset: usize, value: T) -> void
compiler.currentType = Type.void;
if (!validateCall(compiler, typeArguments, 1, operands, 2, reportNode))
return compiler.module.createUnreachable();
arg0 = compiler.compileExpression(operands[0], usizeType); // reports
arg1 = compiler.compileExpression(operands[1], typeArguments[0]); // reports
compiler.currentType = Type.void;
if (typeArguments[0] != Type.void)
return compiler.module.createStore(typeArguments[0].byteSize, arg0, arg1, typeToNativeType(typeArguments[0]));
break;
case "reinterpret": // reinterpret<T1,T2>(value: T1) -> T2
if (!validateCall(compiler, typeArguments, 2, operands, 1, reportNode))
return compiler.module.createUnreachable();
compiler.currentType = typeArguments[1];
if (typeArguments[0].isLongInteger && typeArguments[1] == Type.f64) {
arg0 = compiler.compileExpression(operands[0], Type.i64); // reports
compiler.currentType = Type.f64;
return compiler.module.createUnary(UnaryOp.ReinterpretI64, arg0);
}
if (typeArguments[0].isAnyInteger && typeArguments[0].byteSize == 4 && typeArguments[1] == Type.f32) {
arg0 = compiler.compileExpression(operands[0], Type.i32); // reports
compiler.currentType = Type.f32;
return compiler.module.createUnary(UnaryOp.ReinterpretI32, arg0);
}
if (typeArguments[0] == Type.f64 && typeArguments[1].isLongInteger) {
arg0 = compiler.compileExpression(operands[0], Type.f64); // reports
compiler.currentType = typeArguments[1];
return compiler.module.createUnary(UnaryOp.ReinterpretF64, arg0);
}
if (typeArguments[0] == Type.f32 && typeArguments[1].isAnyInteger && typeArguments[1].byteSize == 4) {
arg0 = compiler.compileExpression(operands[0], Type.f32); // reports
compiler.currentType = typeArguments[1];
return compiler.module.createUnary(UnaryOp.ReinterpretF32, arg0);
}
break;
case "select": // select<T>(ifTrue: T, ifFalse: T, condition: bool) -> T
if (!validateCall(compiler, typeArguments, 1, operands, 3, reportNode))
return compiler.module.createUnreachable();
if (typeArguments[0] != Type.void) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]); // reports
arg1 = compiler.compileExpression(operands[1], typeArguments[0]); // reports
arg2 = compiler.compileExpression(operands[2], Type.i32); // reports
compiler.currentType = typeArguments[0];
return compiler.module.createSelect(arg0, arg1, arg2);
}
break;
case "current_memory": // current_memory() -> i32
compiler.currentType = Type.i32;
if (!validateCall(compiler, typeArguments, 0, operands, 0, reportNode))
return compiler.module.createUnreachable();
return compiler.module.createHost(HostOp.CurrentMemory);
case "grow_memory": // grow_memory(pages: i32) -> i32
compiler.currentType = Type.i32;
if (!validateCall(compiler, typeArguments, 0, operands, 1, reportNode))
return compiler.module.createUnreachable();
arg0 = compiler.compileExpression(operands[0], Type.i32);
return compiler.module.createHost(HostOp.GrowMemory, null, [ arg0 ]);
case "unreachable": // unreachable() -> *
// does not modify currentType
validateCall(compiler, typeArguments, 0, operands, 0, reportNode);
return compiler.module.createUnreachable();
case "isNaN":
compiler.currentType = Type.bool;
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if (typeArguments[0].isAnyInteger)
return compiler.module.createI32(0);
if (typeArguments[0].isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]); // reports
compiler.currentType = Type.bool;
if (typeArguments[0] == Type.f32) {
tempLocal = compiler.currentFunction.addLocal(Type.f32);
return compiler.module.createBinary(BinaryOp.NeF32,
compiler.module.createTeeLocal(tempLocal.index, arg0),
compiler.module.createGetLocal(tempLocal.index, NativeType.F32)
);
} else {
tempLocal = compiler.currentFunction.addLocal(Type.f64);
return compiler.module.createBinary(BinaryOp.NeF64,
compiler.module.createTeeLocal(tempLocal.index, arg0),
compiler.module.createGetLocal(tempLocal.index, NativeType.F64)
);
}
}
break;
case "isFinite":
compiler.currentType = Type.bool;
if (!validateCall(compiler, typeArguments, 1, operands, 1, reportNode))
return compiler.module.createUnreachable();
if (typeArguments[0].isAnyInteger)
return compiler.module.createI32(1);
if (typeArguments[0].isAnyFloat) {
arg0 = compiler.compileExpression(operands[0], typeArguments[0]); // reports
compiler.currentType = Type.bool;
if (typeArguments[0] == Type.f32) {
tempLocal = compiler.currentFunction.addLocal(Type.f32);
return compiler.module.createSelect(
compiler.module.createBinary(BinaryOp.NeF32,
compiler.module.createUnary(UnaryOp.AbsF32,
compiler.module.createTeeLocal(tempLocal.index, arg0)
),
compiler.module.createF32(Infinity)
),
compiler.module.createI32(0),
compiler.module.createBinary(BinaryOp.EqF32,
compiler.module.createGetLocal(tempLocal.index, NativeType.F32),
compiler.module.createGetLocal(tempLocal.index, NativeType.F32)
)
);
} else {
tempLocal = compiler.currentFunction.addLocal(Type.f64);
return compiler.module.createSelect(
compiler.module.createBinary(BinaryOp.NeF64,
compiler.module.createUnary(UnaryOp.AbsF64,
compiler.module.createTeeLocal(tempLocal.index, arg0)
),
compiler.module.createF64(Infinity)
),
compiler.module.createI32(0),
compiler.module.createBinary(BinaryOp.EqF64,
compiler.module.createGetLocal(tempLocal.index, NativeType.F64),
compiler.module.createGetLocal(tempLocal.index, NativeType.F64)
)
);
}
}
break;
case "assert":
compiler.currentType = Type.void;
if (!validateCall(compiler, typeArguments, 0, operands, 1, reportNode))
return compiler.module.createUnreachable();
arg0 = compiler.compileExpression(operands[0], Type.i32); // reports
compiler.currentType = Type.void;
return compiler.options.noDebug
? compiler.module.createNop()
: compiler.module.createIf(
compiler.module.createUnary(UnaryOp.EqzI32, arg0),
compiler.module.createUnreachable()
);
}
return 0;
}
/** Validates a call to a builtin function. */
function validateCall(compiler: Compiler, typeArguments: Type[], expectedTypeArguments: i32, operands: Expression[], expectedOperands: i32, reportNode: Node): bool {
if (typeArguments.length != expectedTypeArguments) {
compiler.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, reportNode.range, expectedTypeArguments.toString(10), typeArguments.length.toString(10));
return false;
}
if (operands.length != expectedOperands) {
compiler.error(DiagnosticCode.Expected_0_arguments_but_got_1, reportNode.range, expectedOperands.toString(10), operands.length.toString(10));
return false;
}
return true;
}

View File

@ -1,9 +1,10 @@
import { compileCall as compileBuiltinCall } from "./builtins";
import { PATH_DELIMITER } from "./constants";
import { DiagnosticCode, DiagnosticMessage, DiagnosticEmitter } from "./diagnostics";
import { Module, MemorySegment, ExpressionRef, UnaryOp, BinaryOp, HostOp, NativeType, FunctionTypeRef, getExpressionId, ExpressionId } from "./module";
import { DiagnosticCode, DiagnosticEmitter } from "./diagnostics";
import { Module, MemorySegment, ExpressionRef, UnaryOp, BinaryOp, NativeType, FunctionTypeRef, getExpressionId, ExpressionId } from "./module";
import { Program, ClassPrototype, Class, Element, ElementKind, Enum, FunctionPrototype, Function, Global, Local, Namespace, Parameter } from "./program";
import { CharCode, I64, U64, normalizePath, sb } from "./util";
import { Token, Range } from "./tokenizer";
import { I64, U64, sb } from "./util";
import { Token } from "./tokenizer";
import {
Node,
@ -972,6 +973,11 @@ export class Compiler extends DiagnosticEmitter {
if (conversionKind == ConversionKind.NONE)
return expr;
if (!fromType) {
_BinaryenExpressionPrint(expr);
throw new Error("WHAT");
}
// void to any
if (fromType.kind == TypeKind.VOID) {
this.error(DiagnosticCode.Operation_not_supported, reportNode.range);
@ -1449,6 +1455,7 @@ export class Compiler extends DiagnosticEmitter {
const element: Element | null = this.program.resolveElement(expression.expression, this.currentFunction); // reports
if (!element)
return this.module.createUnreachable();
if (element.kind == ElementKind.FUNCTION_PROTOTYPE) {
const functionPrototype: FunctionPrototype = <FunctionPrototype>element;
let functionInstance: Function | null = null;
@ -1466,114 +1473,13 @@ export class Compiler extends DiagnosticEmitter {
functionInstance = <Function | null>functionPrototype.instances.get(sb.join(","));
if (!functionInstance) {
let arg0: ExpressionRef, arg1: ExpressionRef, arg2: ExpressionRef;
if (functionPrototype.internalName == "sizeof") { // no parameters
this.currentType = this.options.target == Target.WASM64 ? Type.usize64 : Type.usize32;
if (k != 1) {
this.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, expression.range, "1", k.toString());
return this.module.createUnreachable();
}
if (expression.arguments.length != 0) {
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, expression.range, "0", expression.arguments.length.toString());
return this.module.createUnreachable();
}
return this.options.target == Target.WASM64
? this.module.createI64(resolvedTypeArguments[0].byteSize, 0)
: this.module.createI32(resolvedTypeArguments[0].byteSize);
} else if (functionPrototype.internalName == "load") {
if (k != 1) {
this.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, expression.range, "1", k.toString());
return this.module.createUnreachable();
}
this.currentType = resolvedTypeArguments[0];
if (expression.arguments.length != 1) {
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, expression.range, "1", expression.arguments.length.toString());
return this.module.createUnreachable();
}
arg0 = this.compileExpression(expression.arguments[0], Type.usize32, ConversionKind.IMPLICIT); // reports
this.currentType = resolvedTypeArguments[0];
if (!arg0)
return this.module.createUnreachable();
return this.module.createLoad(resolvedTypeArguments[0].byteSize, resolvedTypeArguments[0].isSignedInteger, arg0, typeToNativeType(resolvedTypeArguments[0]));
} else if (functionPrototype.internalName == "store") {
this.currentType = Type.void;
if (k != 1) {
this.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, expression.range, "1", k.toString());
return this.module.createUnreachable();
}
if (expression.arguments.length != 2) {
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, expression.range, "2", expression.arguments.length.toString());
return this.module.createUnreachable();
}
arg0 = this.compileExpression(expression.arguments[0], Type.usize32, ConversionKind.IMPLICIT); // reports
this.currentType = Type.void;
if (!arg0)
return this.module.createUnreachable();
arg1 = this.compileExpression(expression.arguments[1], resolvedTypeArguments[0], ConversionKind.IMPLICIT);
this.currentType = Type.void;
if (!arg1)
return this.module.createUnreachable();
return this.module.createStore(resolvedTypeArguments[0].byteSize, arg0, arg1, typeToNativeType(resolvedTypeArguments[0]));
} else if (functionPrototype.internalName == "reinterpret") {
if (k != 2) {
this.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, expression.range, "2", k.toString());
return this.module.createUnreachable();
}
this.currentType = resolvedTypeArguments[1];
if (expression.arguments.length != 1) {
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, expression.range, "1", expression.arguments.length.toString());
return this.module.createUnreachable();
}
if (this.currentType == Type.f64) {
arg0 = this.compileExpression(expression.arguments[0], Type.i64); // reports
this.currentType = Type.f64;
return this.module.createUnary(UnaryOp.ReinterpretI64, arg0);
}
if (this.currentType == Type.f32) {
arg0 = this.compileExpression(expression.arguments[0], Type.i32); // reports
this.currentType = Type.f32;
return this.module.createUnary(UnaryOp.ReinterpretI32, arg0);
}
if (this.currentType.isLongInteger) {
arg0 = this.compileExpression(expression.arguments[0], Type.f64); // reports
this.currentType = Type.i64;
return this.module.createUnary(UnaryOp.ReinterpretF64, arg0);
}
if (this.currentType.isAnyInteger) {
arg0 = this.compileExpression(expression.arguments[0], Type.f32); // reports
this.currentType = Type.i32;
return this.module.createUnary(UnaryOp.ReinterpretF32, arg0);
}
} else if (functionPrototype.internalName == "select") {
if (k != 1) {
this.error(DiagnosticCode.Expected_0_type_arguments_but_got_1, expression.range, "1", k.toString());
return this.module.createUnreachable();
}
this.currentType = resolvedTypeArguments[0];
if (expression.arguments.length != 3) {
this.error(DiagnosticCode.Expected_0_arguments_but_got_1, expression.range, "3", expression.arguments.length.toString());
return this.module.createUnreachable();
}
arg0 = this.compileExpression(expression.arguments[0], this.currentType); // reports
if (!arg0)
return this.module.createUnreachable();
arg1 = this.compileExpression(expression.arguments[1], this.currentType); // reports
if (!arg1)
return this.module.createUnreachable();
arg2 = this.compileExpression(expression.arguments[2], Type.i32); // reports
this.currentType = resolvedTypeArguments[0];
if (!arg2)
return this.module.createUnreachable();
return this.module.createSelect(arg0, arg1, arg2);
this.currentType = contextualType;
let expr: ExpressionRef = compileBuiltinCall(this, functionPrototype.internalName, resolvedTypeArguments, expression.arguments, expression);
if (!expr) {
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
}
this.error(DiagnosticCode.Operation_not_supported, expression.range);
return this.module.createUnreachable();
return expr;
}
} else {
// TODO: infer type arguments from parameter types if omitted
@ -1625,181 +1531,6 @@ export class Compiler extends DiagnosticEmitter {
this.currentType = functionInstance.returnType;
if (functionInstance.isBuiltin) {
let tempLocal: Local;
switch (functionInstance.template.internalName) {
case "clz": // i32/i64.clz
if (this.currentType.isLongInteger)
return this.module.createUnary(UnaryOp.ClzI64, operands[0]);
else if (this.currentType.isAnyInteger)
return this.module.createUnary(UnaryOp.ClzI32, operands[0]);
break;
case "ctz": // i32/i64.ctz
if (this.currentType.isLongInteger)
return this.module.createUnary(UnaryOp.CtzI64, operands[0]);
else if (this.currentType.isAnyInteger)
return this.module.createUnary(UnaryOp.CtzI32, operands[0]);
break;
case "popcnt": // i32/i64.popcnt
if (this.currentType.isLongInteger)
return this.module.createUnary(UnaryOp.PopcntI64, operands[0]);
else if (this.currentType.isAnyInteger)
return this.module.createUnary(UnaryOp.PopcntI32, operands[0]);
break;
case "rotl": // i32/i64.rotl
if (this.currentType.isLongInteger)
return this.module.createBinary(BinaryOp.RotlI64, operands[0], operands[1]);
else if (this.currentType.isAnyInteger)
return this.module.createBinary(BinaryOp.RotlI32, operands[0], operands[1]);
break;
case "rotr": // i32/i64.rotr
if (this.currentType.isLongInteger)
return this.module.createBinary(BinaryOp.RotrI64, operands[0], operands[1]);
else if (this.currentType.isAnyInteger)
return this.module.createBinary(BinaryOp.RotrI32, operands[0], operands[1]);
break;
case "abs": // f32/f64.abs
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.AbsF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.AbsF32, operands[0]);
break;
case "ceil": // f32/f64.ceil
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.CeilF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.CeilF32, operands[0]);
break;
case "copysign": // f32/f64.copysign
if (this.currentType == Type.f64)
return this.module.createBinary(BinaryOp.CopysignF64, operands[0], operands[1]);
else if (this.currentType == Type.f32)
return this.module.createBinary(BinaryOp.CopysignF32, operands[0], operands[1]);
break;
case "floor": // f32/f64.floor
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.FloorF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.FloorF32, operands[0]);
break;
case "max": // f32/f64.max
if (this.currentType == Type.f64)
return this.module.createBinary(BinaryOp.MaxF64, operands[0], operands[1]);
else if (this.currentType == Type.f32)
return this.module.createBinary(BinaryOp.MaxF32, operands[0], operands[1]);
break;
case "min": // f32/f64.min
if (this.currentType == Type.f64)
return this.module.createBinary(BinaryOp.MinF64, operands[0], operands[1]);
else if (this.currentType == Type.f32)
return this.module.createBinary(BinaryOp.MinF32, operands[0], operands[1]);
break;
case "nearest": // f32/f64.nearest
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.NearestF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.NearestF32, operands[0]);
break;
case "sqrt": // f32/f64.sqrt
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.SqrtF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.SqrtF32, operands[0]);
break;
case "trunc": // f32/f64.trunc
if (this.currentType == Type.f64)
return this.module.createUnary(UnaryOp.TruncF64, operands[0]);
else if (this.currentType == Type.f32)
return this.module.createUnary(UnaryOp.TruncF32, operands[0]);
break;
case "current_memory":
return this.module.createHost(HostOp.CurrentMemory);
case "grow_memory":
// this.warning(DiagnosticCode.Operation_is_unsafe, reportNode.range); // unsure
return this.module.createHost(HostOp.GrowMemory, null, operands);
case "unreachable":
this.currentType = previousType;
return this.module.createUnreachable();
case "isNaN": // value != value
if (functionInstance.typeArguments[0] == Type.f64) {
tempLocal = this.currentFunction.addLocal(Type.f64);
return this.module.createBinary(BinaryOp.NeF64,
this.module.createTeeLocal(tempLocal.index, operands[0]),
this.module.createGetLocal(tempLocal.index, NativeType.F64)
);
} else if (functionInstance.typeArguments[0] == Type.f32) {
tempLocal = this.currentFunction.addLocal(Type.f32);
return this.module.createBinary(BinaryOp.NeF32,
this.module.createTeeLocal(tempLocal.index, operands[0]),
this.module.createGetLocal(tempLocal.index, NativeType.F32)
);
}
break;
case "isFinite": // v=[abs(value) != Infinity, false]; return value == value ? v[0] : v[1]
if (functionInstance.typeArguments[0] == Type.f64) {
tempLocal = this.currentFunction.addLocal(Type.f64);
return this.module.createSelect(
this.module.createBinary(BinaryOp.NeF64,
this.module.createUnary(UnaryOp.AbsF64,
this.module.createTeeLocal(tempLocal.index, operands[0])
),
this.module.createF64(Infinity)
),
this.module.createI32(0),
this.module.createBinary(BinaryOp.EqF64,
this.module.createGetLocal(tempLocal.index, NativeType.F64),
this.module.createGetLocal(tempLocal.index, NativeType.F64)
)
);
} else if (functionInstance.typeArguments[0] == Type.f32) {
tempLocal = this.currentFunction.addLocal(Type.f32);
return this.module.createSelect(
this.module.createBinary(BinaryOp.NeF32,
this.module.createUnary(UnaryOp.AbsF32,
this.module.createTeeLocal(tempLocal.index, operands[0])
),
this.module.createF32(Infinity)
),
this.module.createI32(0),
this.module.createBinary(BinaryOp.EqF32,
this.module.createGetLocal(tempLocal.index, NativeType.F32),
this.module.createGetLocal(tempLocal.index, NativeType.F32)
)
);
}
break;
case "assert":
return this.options.noDebug
? this.module.createNop()
: this.module.createIf(
this.module.createUnary(UnaryOp.EqzI32, operands[0]),
this.module.createUnreachable()
);
}
this.error(DiagnosticCode.Operation_not_supported, reportNode.range);
return this.module.createUnreachable();
}
if (!functionInstance.isCompiled)
this.compileFunction(functionInstance);
@ -2087,7 +1818,7 @@ export class Compiler extends DiagnosticEmitter {
// helpers
function typeToNativeType(type: Type): NativeType {
export function typeToNativeType(type: Type): NativeType {
return type.kind == TypeKind.F32
? NativeType.F32
: type.kind == TypeKind.F64
@ -2099,7 +1830,7 @@ function typeToNativeType(type: Type): NativeType {
: NativeType.None;
}
function typesToNativeTypes(types: Type[]): NativeType[] {
export function typesToNativeTypes(types: Type[]): NativeType[] {
const k: i32 = types.length;
const ret: NativeType[] = new Array(k);
for (let i: i32 = 0; i < k; ++i)
@ -2107,7 +1838,7 @@ function typesToNativeTypes(types: Type[]): NativeType[] {
return ret;
}
function typeToNativeZero(module: Module, type: Type): ExpressionRef {
export function typeToNativeZero(module: Module, type: Type): ExpressionRef {
return type.kind == TypeKind.F32
? module.createF32(0)
: type.kind == TypeKind.F64
@ -2117,7 +1848,7 @@ function typeToNativeZero(module: Module, type: Type): ExpressionRef {
: module.createI32(0);
}
function typeToNativeOne(module: Module, type: Type): ExpressionRef {
export function typeToNativeOne(module: Module, type: Type): ExpressionRef {
return type.kind == TypeKind.F32
? module.createF32(1)
: type.kind == TypeKind.F64

3
src/glue/js.d.ts vendored
View File

@ -14,3 +14,6 @@ declare type bool = boolean;
// Raw memory access (here: Binaryen memory)
declare function store<T = u8>(ptr: usize, val: T): void;
declare function load<T = u8>(ptr: usize): T;
// Other things that might or might not be useful
declare function select<T>(ifTrue: T, ifFalse: T, condition: bool): T;

View File

@ -8,6 +8,10 @@ globalScope["load"] = function load_u8(ptr: number) {
return binaryen.HEAPU8[ptr];
};
globalScope["select"] = function select<T>(ifTrue: T, ifFalse: T, condition: bool): T {
return condition ? ifTrue : ifFalse;
};
const binaryen = require("binaryen");
for (const key in binaryen)
if (/^_(?:Binaryen|Relooper|malloc$|free$)/.test(key))

View File

@ -1,6 +1,7 @@
import { initialize as initializeBuiltins } from "./builtins";
import { Target } from "./compiler";
import { GETTER_PREFIX, SETTER_PREFIX, PATH_DELIMITER } from "./constants";
import { DiagnosticCode, DiagnosticMessage, DiagnosticEmitter, DiagnosticCategory } from "./diagnostics";
import { DiagnosticCode, DiagnosticMessage, DiagnosticEmitter } from "./diagnostics";
import { Type, typesToString } from "./types";
import { I64 } from "./util";
import {
@ -57,7 +58,7 @@ class QueuedImport {
declaration: ImportDeclaration;
}
const reusableTypesStub: Map<string,Type> = new Map();
const noTypesYet: Map<string,Type> = new Map();
export class Program extends DiagnosticEmitter {
@ -70,7 +71,7 @@ export class Program extends DiagnosticEmitter {
/** Elements by internal name. */
elements: Map<string,Element> = new Map();
/** Types by internal name. */
types: Map<string,Type> = reusableTypesStub;
types: Map<string,Type> = noTypesYet;
/** Exports of individual files by internal name. Not global exports. */
exports: Map<string,Element> = new Map();
@ -82,6 +83,22 @@ export class Program extends DiagnosticEmitter {
/** Initializes the program and its elements prior to compilation. */
initialize(target: Target = Target.WASM32): void {
this.target = target;
this.types = new Map([
["i8", Type.i8],
["i16", Type.i16],
["i32", Type.i32],
["i64", Type.i64],
["isize", target == Target.WASM64 ? Type.isize64 : Type.isize32],
["u8", Type.u8],
["u16", Type.u16],
["u32", Type.u32],
["u64", Type.u64],
["usize", target == Target.WASM64 ? Type.usize64 : Type.usize32],
["bool", Type.bool],
["f32", Type.f32],
["f64", Type.f64],
["void", Type.void]
]);
initializeBuiltins(this);
@ -1110,120 +1127,3 @@ export class Interface extends Class {
super(template, internalName, typeArguments, base);
}
}
const builtinIntTypes: Type[] = [ Type.i32, Type.i64 ];
const builtinFloatTypes: Type[] = [ Type.f32, Type.f64 ];
function initializeBuiltins(program: Program): void {
// types
program.types = new Map([
["i8", Type.i8],
["i16", Type.i16],
["i32", Type.i32],
["i64", Type.i64],
["isize", program.target == Target.WASM64 ? Type.isize64 : Type.isize32],
["u8", Type.u8],
["u16", Type.u16],
["u32", Type.u32],
["u64", Type.u64],
["usize", program.target == Target.WASM64 ? Type.usize64 : Type.usize32],
["bool", Type.bool],
["f32", Type.f32],
["f64", Type.f64],
["void", Type.void]
]);
// functions
const usize: Type = program.target == Target.WASM64 ? Type.usize64 : Type.usize32;
addGenericUnaryBuiltin(program, "clz", builtinIntTypes);
addGenericUnaryBuiltin(program, "ctz", builtinIntTypes);
addGenericUnaryBuiltin(program, "popcnt", builtinIntTypes);
addGenericBinaryBuiltin(program, "rotl", builtinIntTypes);
addGenericBinaryBuiltin(program, "rotr", builtinIntTypes);
addGenericUnaryBuiltin(program, "abs", builtinFloatTypes);
addGenericUnaryBuiltin(program, "ceil", builtinFloatTypes);
addGenericBinaryBuiltin(program, "copysign", builtinFloatTypes);
addGenericUnaryBuiltin(program, "floor", builtinFloatTypes);
addGenericBinaryBuiltin(program, "max", builtinFloatTypes);
addGenericBinaryBuiltin(program, "min", builtinFloatTypes);
addGenericUnaryBuiltin(program, "nearest", builtinFloatTypes);
addGenericUnaryBuiltin(program, "sqrt", builtinFloatTypes);
addGenericUnaryBuiltin(program, "trunc", builtinFloatTypes);
addSimpleBuiltin(program, "current_memory", [], usize);
addSimpleBuiltin(program, "grow_memory", [ usize ], usize);
addSimpleBuiltin(program, "unreachable", [], Type.void);
addGenericAnyBuiltin(program, "load");
addGenericAnyBuiltin(program, "store");
addGenericAnyBuiltin(program, "reinterpret");
addGenericAnyBuiltin(program, "select");
addGenericAnyBuiltin(program, "sizeof");
addGenericUnaryTestBuiltin(program, "isNaN", builtinFloatTypes);
addGenericUnaryTestBuiltin(program, "isFinite", builtinFloatTypes);
addSimpleBuiltin(program, "assert", [ Type.bool ], Type.void);
}
/** Adds a simple (non-generic) builtin. */
function addSimpleBuiltin(program: Program, name: string, parameterTypes: Type[], returnType: Type) {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = false;
prototype.isBuiltin = true;
const k: i32 = parameterTypes.length;
const parameters: Parameter[] = new Array(k);
for (let i: i32 = 0; i < k; ++i)
parameters[i] = new Parameter("arg" + i, parameterTypes[i], null);
prototype.instances.set("", new Function(prototype, name, [], parameters, returnType, null));
program.elements.set(name, prototype);
}
/** Adds a generic unary builtin that takes and returns a value of its generic type. */
function addGenericUnaryBuiltin(program: Program, name: string, types: Type[]): void {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = true;
prototype.isBuiltin = true;
for (let i: i32 = 0, k = types.length; i < k; ++i) {
const typeName: string = types[i].toString();
prototype.instances.set(typeName, new Function(prototype, name + "<" + typeName + ">", [ types[i] ], [ new Parameter("value", types[i], null) ], types[i], null));
}
program.elements.set(name, prototype);
}
/** Adds a generic binary builtin that takes two and returns a value of its generic type. */
function addGenericBinaryBuiltin(program: Program, name: string, types: Type[]): void {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = true;
prototype.isBuiltin = true;
for (let i: i32 = 0, k = types.length; i < k; ++i) {
const typeName: string = types[i].toString();
prototype.instances.set(typeName, new Function(prototype, name + "<" + typeName + ">", [ types[i], types[i] ], [ new Parameter("left", types[i], null), new Parameter("right", types[i], null) ], types[i], null));
}
program.elements.set(name, prototype);
}
/** Adds a generic unary builtin that alwways returns `bool`. */
function addGenericUnaryTestBuiltin(program: Program, name: string, types: Type[]): void {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = true;
prototype.isBuiltin = true;
for (let i: i32 = 0, k = types.length; i < k; ++i) {
const typeName: string = types[i].toString();
prototype.instances.set(typeName, new Function(prototype, name + "<" + typeName + ">", [ types[i] ], [ new Parameter("value", types[i], null) ], Type.bool, null));
}
program.elements.set(name, prototype);
}
/** Adds a special generic builtin that takes any type argument. */
function addGenericAnyBuiltin(program: Program, name: string): void {
let prototype: FunctionPrototype = new FunctionPrototype(program, name, null, null);
prototype.isGeneric = true;
prototype.isBuiltin = true;
program.elements.set(name, prototype);
// instances are hard coded in compiler.ts
}

View File

@ -50,8 +50,10 @@ glob.sync(filter, { cwd: __dirname + "/compiler" }).forEach(filename => {
}
module.optimize();
actualOptimized = module.toText();
} else
} else {
process.exitCode = 1;
console.log(chalk.default.red("validate ERROR"));
}
if (isCreate) {
fs.writeFileSync(__dirname + "/compiler/" + fixture, actual, { encoding: "utf8" });