mirror of
https://github.com/fluencelabs/assemblyscript
synced 2025-04-25 23:12:19 +00:00
308 lines
8.4 KiB
TypeScript
308 lines
8.4 KiB
TypeScript
|
export declare namespace JSMath {
|
||
|
|
||
|
export const E: f64;
|
||
|
export const LN2: f64;
|
||
|
export const LN10: f64;
|
||
|
export const LOG2E: f64;
|
||
|
export const LOG10E: f64;
|
||
|
export const PI: f64;
|
||
|
export const SQRT1_2: f64;
|
||
|
export const SQRT2: f64;
|
||
|
|
||
|
export function abs(x: f64): f64;
|
||
|
export function acos(x: f64): f64;
|
||
|
export function acosh(x: f64): f64;
|
||
|
export function asin(x: f64): f64;
|
||
|
export function asinh(x: f64): f64;
|
||
|
export function atan(x: f64): f64;
|
||
|
export function atan2(y: f64, x: f64): f64;
|
||
|
export function atanh(x: f64): f64;
|
||
|
export function cbrt(x: f64): f64;
|
||
|
export function ceil(x: f64): f64;
|
||
|
export function clz32(x: f64): i32;
|
||
|
export function cos(x: f64): f64;
|
||
|
export function cosh(x: f64): f64;
|
||
|
export function exp(x: f64): f64;
|
||
|
export function expm1(x: f64): f64;
|
||
|
export function floor(x: f64): f64;
|
||
|
export function fround(x: f64): f32;
|
||
|
export function hypot(value1: f64, value2: f64): f64; // hypot(...values: f64[]): f64;
|
||
|
export function imul(a: f64, b: f64): i32;
|
||
|
export function log(x: f64): f64;
|
||
|
export function log10(x: f64): f64;
|
||
|
export function log1p(x: f64): f64;
|
||
|
export function log2(x: f64): f64;
|
||
|
export function max(value1: f64, value2: f64): f64; // max(...values: f64[]): f64;
|
||
|
export function min(value1: f64, value2: f64): f64; // min(...values: f64[]): f64;
|
||
|
export function pow(base: f64, exponent: f64): f64;
|
||
|
export function random(): f64;
|
||
|
export function round(x: f64): f64;
|
||
|
export function sign(x: f64): f64;
|
||
|
export function sin(x: f64): f64;
|
||
|
export function sinh(x: f64): f64;
|
||
|
export function sqrt(x: f64): f64;
|
||
|
export function tan(x: f64): f64;
|
||
|
export function tanh(x: f64): f64;
|
||
|
export function trunc(x: f64): f64;
|
||
|
}
|
||
|
|
||
|
import {
|
||
|
abs as builtin_abs,
|
||
|
ceil as builtin_ceil,
|
||
|
clz as builtin_clz,
|
||
|
floor as builtin_floor,
|
||
|
max as builtin_max,
|
||
|
min as builtin_min,
|
||
|
nearest as builtin_nearest,
|
||
|
sqrt as builtin_sqrt,
|
||
|
trunc as builtin_trunc
|
||
|
} from "./builtins";
|
||
|
|
||
|
export namespace Math {
|
||
|
|
||
|
export const E = 2.7182818284590452354;
|
||
|
export const LN2 = 0.69314718055994530942;
|
||
|
export const LN10 = 2.30258509299404568402;
|
||
|
export const LOG2E = 1.4426950408889634074;
|
||
|
export const LOG10E = 0.43429448190325182765;
|
||
|
export const PI = 3.14159265358979323846;
|
||
|
export const SQRT1_2 = 0.70710678118654752440;
|
||
|
export const SQRT2 = 1.41421356237309504880;
|
||
|
|
||
|
export function abs(x: f64): f64 {
|
||
|
return builtin_abs(x);
|
||
|
}
|
||
|
|
||
|
export function ceil(x: f64): f64 {
|
||
|
return builtin_ceil(x);
|
||
|
}
|
||
|
|
||
|
export function clz32(x: f64): i32 {
|
||
|
return builtin_clz(<i32>x);
|
||
|
}
|
||
|
|
||
|
export function floor(x: f64): f64 {
|
||
|
return builtin_floor(x);
|
||
|
}
|
||
|
|
||
|
export function fround(x: f64): f32 {
|
||
|
return <f32>x;
|
||
|
}
|
||
|
|
||
|
export function imul(x: f64, y: f64): i32 {
|
||
|
return <i32>x * <i32>y;
|
||
|
}
|
||
|
|
||
|
export function log(x: f64): f64 {
|
||
|
// based on musl's implementation of log:
|
||
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
// Permission to use, copy, modify, and distribute this
|
||
|
// software is freely granted, provided that this notice
|
||
|
// is preserved.
|
||
|
const
|
||
|
ln2_hi = 6.93147180369123816490e-01, // 3fe62e42 fee00000
|
||
|
ln2_lo = 1.90821492927058770002e-10, // 3dea39ef 35793c76
|
||
|
Lg1 = 6.666666666666735130e-01, // 3FE55555 55555593
|
||
|
Lg2 = 3.999999999940941908e-01, // 3FD99999 9997FA04
|
||
|
Lg3 = 2.857142874366239149e-01, // 3FD24924 94229359
|
||
|
Lg4 = 2.222219843214978396e-01, // 3FCC71C5 1D8E78AF
|
||
|
Lg5 = 1.818357216161805012e-01, // 3FC74664 96CB03DE
|
||
|
Lg6 = 1.531383769920937332e-01, // 3FC39A09 D078C69F
|
||
|
Lg7 = 1.479819860511658591e-01; // 3FC2F112 DF3E5244
|
||
|
|
||
|
var u = reinterpret<u64>(x);
|
||
|
var hfsq: f64, f: f64, s: f64, z: f64, R: f64, w: f64, t1: f64, t2: f64, dk: f64;
|
||
|
|
||
|
var hx = <u32>(u >> 32);
|
||
|
var k = 0;
|
||
|
if (hx < 0x00100000 || <bool>(hx>>31)) {
|
||
|
if (u<<1 == 0) {
|
||
|
return -1/(x*x); // log(+-0)=-inf
|
||
|
}
|
||
|
if (hx>>31) {
|
||
|
return (x-x)/0.0; // log(-#) = NaN
|
||
|
}
|
||
|
// subnormal number, scale x up
|
||
|
k -= 54;
|
||
|
x *= 1.8014398509481984e16; // 0x1p54
|
||
|
u = reinterpret<u64>(x);
|
||
|
hx = <u32>(u>>32);
|
||
|
} else if (hx >= 0x7ff00000) {
|
||
|
return x;
|
||
|
} else if (hx == 0x3ff00000 && u<<32 == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// reduce x into [sqrt(2)/2, sqrt(2)]
|
||
|
hx += 0x3ff00000 - 0x3fe6a09e;
|
||
|
k += (<i32>hx>>20) - 0x3ff;
|
||
|
hx = (hx&0x000fffff) + 0x3fe6a09e;
|
||
|
u = <u64>hx<<32 | (u&0xffffffff);
|
||
|
x = reinterpret<f64>(u);
|
||
|
|
||
|
f = x - 1.0;
|
||
|
hfsq = 0.5*f*f;
|
||
|
s = f/(2.0+f);
|
||
|
z = s*s;
|
||
|
w = z*z;
|
||
|
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||
|
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||
|
R = t2 + t1;
|
||
|
dk = k;
|
||
|
return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
|
||
|
}
|
||
|
|
||
|
// export function log2(x: f64): f64 {
|
||
|
// return log(x) / LN2;
|
||
|
// }
|
||
|
|
||
|
// export function log10(x: f64): f64 {
|
||
|
// return log(x) / LN10;
|
||
|
// }
|
||
|
|
||
|
export function max(value1: f64, value2: f64): f64 {
|
||
|
return builtin_max(value1, value2);
|
||
|
}
|
||
|
|
||
|
export function min(value1: f64, value2: f64): f64 {
|
||
|
return builtin_min(value1, value2);
|
||
|
}
|
||
|
|
||
|
export function round(x: f64): f64 {
|
||
|
return builtin_nearest(x);
|
||
|
}
|
||
|
|
||
|
export function sign(x: f64): f64 {
|
||
|
return x > 0 ? 1 : x < 0 ? -1 : x;
|
||
|
}
|
||
|
|
||
|
export function sqrt(x: f64): f64 {
|
||
|
return builtin_sqrt(x);
|
||
|
}
|
||
|
|
||
|
export function trunc(x: f64): f64 {
|
||
|
return builtin_trunc(x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
export namespace Mathf {
|
||
|
|
||
|
export const E = <f32>Math.E;
|
||
|
export const LN2 = <f32>Math.LN2;
|
||
|
export const LN10 = <f32>Math.LN10;
|
||
|
export const LOG2E = <f32>Math.LOG2E;
|
||
|
export const LOG10E = <f32>Math.LOG10E;
|
||
|
export const PI = <f32>Math.PI;
|
||
|
export const SQRT1_2 = <f32>Math.SQRT1_2;
|
||
|
export const SQRT2 = <f32>Math.SQRT2;
|
||
|
|
||
|
export function abs(x: f32): f32 {
|
||
|
return builtin_abs(x);
|
||
|
}
|
||
|
|
||
|
export function ceil(x: f32): f32 {
|
||
|
return builtin_ceil(x);
|
||
|
}
|
||
|
|
||
|
export function clz32(x: f32): i32 {
|
||
|
return builtin_clz(<i32>x);
|
||
|
}
|
||
|
|
||
|
export function floor(x: f32): f32 {
|
||
|
return builtin_floor(x);
|
||
|
}
|
||
|
|
||
|
export function imul(x: f32, y: f32): i32 {
|
||
|
return <i32>x * <i32>y;
|
||
|
}
|
||
|
|
||
|
export function log(x: f32): f32 {
|
||
|
// based on musl's implementaion of logf:
|
||
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
// Permission to use, copy, modify, and distribute this
|
||
|
// software is freely granted, provided that this notice
|
||
|
// is preserved.
|
||
|
const
|
||
|
ln2_hi: f32 = 6.9313812256e-01, // 0x3f317180
|
||
|
ln2_lo: f32 = 9.0580006145e-06, // 0x3717f7d1
|
||
|
Lg1: f32 = 0.66666662693, // 0xaaaaaa.0p-24
|
||
|
Lg2: f32 = 0.40000972152, // 0xccce13.0p-25
|
||
|
Lg3: f32 = 0.28498786688, // 0x91e9ee.0p-25
|
||
|
Lg4: f32 = 0.24279078841; // 0xf89e26.0p-26
|
||
|
|
||
|
var u = reinterpret<u32>(x);
|
||
|
var hfsq: f32, f: f32, s: f32, z: f32, R: f32, w: f32, t1: f32, t2: f32, dk: f32;
|
||
|
|
||
|
var ix = u;
|
||
|
var k = 0;
|
||
|
if (ix < 0x00800000 || <bool>(ix>>31)) { // x < 2**-126
|
||
|
if (ix<<1 == 0) {
|
||
|
return -1/(x*x); // log(+-0)=-inf
|
||
|
}
|
||
|
if (ix>>31) {
|
||
|
return (x-x)/<f32>0; // log(-#) = NaN
|
||
|
}
|
||
|
// subnormal number, scale up x
|
||
|
k -= 25;
|
||
|
x *= 3.3554432; // 0x1p25f;
|
||
|
u = reinterpret<u32>(x);
|
||
|
ix = u;
|
||
|
} else if (ix >= 0x7f800000) {
|
||
|
return x;
|
||
|
} else if (ix == 0x3f800000) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// reduce x into [sqrt(2)/2, sqrt(2)]
|
||
|
ix += 0x3f800000 - 0x3f3504f3;
|
||
|
k += <u32>(<i32>ix>>23) - 0x7f;
|
||
|
ix = (ix&0x007fffff) + 0x3f3504f3;
|
||
|
x = reinterpret<f32>(ix);
|
||
|
|
||
|
f = x - 1.0;
|
||
|
s = f/(2.0 + f);
|
||
|
z = s*s;
|
||
|
w = z*z;
|
||
|
t1= w*(Lg2+w*Lg4);
|
||
|
t2= z*(Lg1+w*Lg3);
|
||
|
R = t2 + t1;
|
||
|
hfsq = 0.5*f*f;
|
||
|
dk = <f32>k;
|
||
|
return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
|
||
|
}
|
||
|
|
||
|
// export function log2(x: f32): f32 {
|
||
|
// return log(x) / LN2;
|
||
|
// }
|
||
|
|
||
|
// export function log10(x: f32): f32 {
|
||
|
// return log(x) / LN10;
|
||
|
// }
|
||
|
|
||
|
export function max(value1: f32, value2: f32): f32 {
|
||
|
return builtin_max(value1, value2);
|
||
|
}
|
||
|
|
||
|
export function min(value1: f32, value2: f32): f32 {
|
||
|
return builtin_min(value1, value2);
|
||
|
}
|
||
|
|
||
|
export function round(x: f32): f32 {
|
||
|
return builtin_nearest(x);
|
||
|
}
|
||
|
|
||
|
export function sign(x: f32): f32 {
|
||
|
return x > 0 ? 1 : x < 0 ? -1 : x;
|
||
|
}
|
||
|
|
||
|
export function sqrt(x: f32): f32 {
|
||
|
return builtin_sqrt(x);
|
||
|
}
|
||
|
|
||
|
export function trunc(x: f32): f32 {
|
||
|
return builtin_trunc(x);
|
||
|
}
|
||
|
}
|