aquavm/avm/server/src/avm.rs
Ivan Boldyrev c3cea695c8
air-trace util for measuring AquaVM performance with tracing crate.
`air-trace run` subcommand allows to run AquaVM on any data, it allows to define most AquaVM inputs, providing defaults for most of them, and sets up either human-readable or JSON tracing output, the latter can be later processed by `air-trace stats`.

Anomaly data input is also supported, that is useful for slow data investigation.

Native execution mode can be used for native profiling.  Please note, however, that current version cannot be built natively on Apple Sillicon processor yet, as invariably depends on the `avm-server` because of leaking types that should be refactored or hidden.  The `--repeat` option can repeat the execution several times for the execution to dominate on input data reading and output.

High-level or rare calls have "info" trace level, instructions are "debug", and sub-instruction calls are "tracing".  Over-detailed tracing can induce overhead that spoils timing data.
2022-07-07 18:44:58 +07:00

169 lines
5.0 KiB
Rust

/*
* Copyright 2020 Fluence Labs Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use super::avm_runner::AVMRunner;
use super::AVMDataStore;
use super::AVMError;
use super::AVMMemoryStats;
use super::AVMOutcome;
use super::CallResults;
use crate::config::AVMConfig;
use crate::interface::raw_outcome::RawAVMOutcome;
use crate::interface::ParticleParameters;
use crate::AVMResult;
use avm_data_store::AnomalyData;
use std::ops::Deref;
use std::ops::DerefMut;
use std::time::Duration;
use std::time::Instant;
/// A newtype needed to mark it as `unsafe impl Send`
struct SendSafeRunner(AVMRunner);
/// Mark runtime as Send, so libp2p on the node (use-site) is happy
unsafe impl Send for SendSafeRunner {}
impl Deref for SendSafeRunner {
type Target = AVMRunner;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for SendSafeRunner {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
pub struct AVM<E> {
runner: SendSafeRunner,
data_store: AVMDataStore<E>,
}
impl<E> AVM<E> {
/// Create AVM with provided config.
pub fn new(config: AVMConfig<E>) -> AVMResult<Self, E> {
let AVMConfig {
air_wasm_path,
current_peer_id,
max_heap_size,
logging_mask,
mut data_store,
} = config;
data_store.initialize()?;
let runner = AVMRunner::new(air_wasm_path, current_peer_id, max_heap_size, logging_mask)
.map_err(AVMError::RunnerError)?;
let runner = SendSafeRunner(runner);
let avm = Self { runner, data_store };
Ok(avm)
}
pub fn call(
&mut self,
air: impl Into<String>,
data: impl Into<Vec<u8>>,
particle_parameters: ParticleParameters<'_, '_>,
call_results: CallResults,
) -> AVMResult<AVMOutcome, E> {
let air = air.into();
let particle_id = particle_parameters.particle_id.as_ref();
let prev_data = self.data_store.read_data(particle_id)?;
let current_data = data.into();
let execution_start_time = Instant::now();
let memory_size_before = self.memory_stats().memory_size;
let outcome = self
.runner
.call(
air.clone(),
prev_data,
current_data.clone(),
particle_parameters.init_peer_id.clone().into_owned(),
particle_parameters.timestamp,
particle_parameters.ttl,
call_results,
)
.map_err(AVMError::RunnerError)?;
let execution_time = execution_start_time.elapsed();
let memory_delta = self.memory_stats().memory_size - memory_size_before;
if self.data_store.detect_anomaly(execution_time, memory_delta) {
self.save_anomaly_data(
&air,
&current_data,
&particle_parameters,
&outcome,
execution_time,
memory_delta,
)?;
}
// persist resulted data
self.data_store.store_data(&outcome.data, particle_id)?;
let outcome = AVMOutcome::from_raw_outcome(outcome, memory_delta, execution_time)?;
Ok(outcome)
}
/// Cleanup data that become obsolete.
pub fn cleanup_data(&mut self, particle_id: &str) -> AVMResult<(), E> {
self.data_store.cleanup_data(particle_id)?;
Ok(())
}
/// Return memory stat of an interpreter heap.
pub fn memory_stats(&self) -> AVMMemoryStats {
self.runner.memory_stats()
}
fn save_anomaly_data(
&mut self,
air_script: &str,
current_data: &[u8],
particle_parameters: &ParticleParameters<'_, '_>,
avm_outcome: &RawAVMOutcome,
execution_time: Duration,
memory_delta: usize,
) -> AVMResult<(), E> {
let prev_data = self
.data_store
.read_data(&particle_parameters.particle_id)?;
let ser_particle =
serde_json::to_vec(particle_parameters).map_err(AVMError::AnomalyDataSeError)?;
let ser_avm_outcome =
serde_json::to_vec(avm_outcome).map_err(AVMError::AnomalyDataSeError)?;
let anomaly_data = AnomalyData::new(
air_script,
&ser_particle,
&prev_data,
current_data,
&ser_avm_outcome,
execution_time,
memory_delta,
);
self.data_store
.collect_anomaly_data(&particle_parameters.particle_id, anomaly_data)
.map_err(Into::into)
}
}