/* * Copyright 2021 Fluence Labs Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ use crate::execution_step::boxed_value::ScalarRef; use crate::execution_step::errors_prelude::*; use crate::execution_step::ExecutionResult; use crate::execution_step::FoldState; use crate::execution_step::ValueAggregate; use non_empty_vec::NonEmpty; use std::collections::HashMap; use std::collections::HashSet; use std::rc::Rc; // TODO: move this code snippet to documentation when it's ready /// There are two scopes for variable scalars in AIR: global and local. A local scope /// is a scope inside every fold block, other scope is a global. It means that scalar /// in an upper fold block could be shadowed by a scalar with the same name in a lower /// fold block, it works "as expected". Let's consider the following example: /// (seq /// (seq /// (call ... local) ;; (1) /// (fold iterable_1 iterator_1 /// (seq /// (seq /// (seq /// (call ... local) ;; (2) /// (fold iterable_2 iterator_2 /// (seq /// (seq /// (call ... local) ;; (3) /// (call ... [local]) ;; local set by (3) will be used /// ) /// (next iterator_2) /// ) /// ) /// ) /// (call ... [local]) ;; local set by (2) will be used /// ) /// (next iterator_1) /// ) /// ) /// ) /// (seq /// (call ... [local]) ;; local set by (1) will be used /// (call ... local) ;; error will be occurred because, it's impossible to set variable twice /// ;; in a global scope /// ) /// ) /// /// Although there could be only one iterable value for a fold block, because of CRDT rules. /// This struct is intended to provide abilities to work with scalars as it was described. #[derive(Default)] pub(crate) struct Scalars<'i> { // TODO: use Rc to avoid copying /// Terminology used here (mainly to resolve concerns re difference between scalars and values): /// - scalar is an AIR scalar, iterable and non iterable. A scalar is addressed by a name. /// - value is concrete value assigned to scalar on certain depth /// - scope is a variable scope where variable is visible. If we consider fold as a tree where /// each next produces a new level, then scope is a level in this tree. Please note that it /// includes variable defined after next instruction. /// - depth is a count of seen scopes (or a depth in a tree met in the previous definition) /// /// Non iterable variables hash map could be recognized as a sparse matrix, where a row /// corresponds to a variable name and contains all its values were set with respect to a depth. /// A column corresponds to a depth and contains all values were set at current depth. /// /// This matrix follows these invariants: /// - all rows are non empty /// - global variables have 0 depth /// - cells in a row are sorted by depth /// - all depths in cell in one row are unique pub(crate) non_iterable_variables: HashMap>, /// This set contains depths were invalidated at the certain moment of script execution. /// They are needed for careful isolation of scopes produced by iterations in fold blocks, /// precisely to limit access of non iterable variables defined on one depths to ones /// defined on another. pub(crate) invalidated_depths: HashSet, pub(crate) iterable_variables: HashMap>, /// Count of met scopes at the particular moment of execution. pub(crate) current_depth: usize, } #[derive(Debug)] pub(crate) struct SparseCell { /// Scope depth where the value was set. pub(crate) depth: usize, pub(crate) value: ValueAggregate, } impl SparseCell { pub(crate) fn new(depth: usize, value: ValueAggregate) -> Self { Self { depth, value } } } impl<'i> Scalars<'i> { /// Returns true if there was a previous value for the provided key on the same /// fold block. pub(crate) fn set_value(&mut self, name: impl Into, value: ValueAggregate) -> ExecutionResult { use std::collections::hash_map::Entry::{Occupied, Vacant}; let shadowing_allowed = self.shadowing_allowed(); match self.non_iterable_variables.entry(name.into()) { Vacant(entry) => { let cell = SparseCell::new(self.current_depth, value); let cells = NonEmpty::new(cell); entry.insert(cells); Ok(false) } Occupied(entry) => { if !shadowing_allowed { return Err(UncatchableError::MultipleVariablesFound(entry.key().clone()).into()); } let values = entry.into_mut(); let last_cell = values.last_mut(); if last_cell.depth == self.current_depth { // just rewrite a value if fold level is the same last_cell.value = value; Ok(true) } else { let new_cell = SparseCell::new(self.current_depth, value); values.push(new_cell); Ok(false) } } } } pub(crate) fn set_iterable_value( &mut self, name: impl Into, fold_state: FoldState<'i>, ) -> ExecutionResult<()> { use std::collections::hash_map::Entry::{Occupied, Vacant}; match self.iterable_variables.entry(name.into()) { Vacant(entry) => { entry.insert(fold_state); Ok(()) } Occupied(entry) => Err(UncatchableError::MultipleIterableValues(entry.key().clone()).into()), } } pub(crate) fn remove_iterable_value(&mut self, name: &str) { self.iterable_variables.remove(name); } pub(crate) fn get_value(&'i self, name: &str) -> ExecutionResult<&'i ValueAggregate> { self.non_iterable_variables .get(name) .and_then(|values| { let last_cell = values.last(); let value_not_invalidated = !self.invalidated_depths.contains(&last_cell.depth); if value_not_invalidated { Some(&last_cell.value) } else { None } }) .ok_or_else(|| Rc::new(CatchableError::VariableNotFound(name.to_string())).into()) } pub(crate) fn get_iterable_mut(&mut self, name: &str) -> ExecutionResult<&mut FoldState<'i>> { self.iterable_variables .get_mut(name) .ok_or_else(|| UncatchableError::FoldStateNotFound(name.to_string()).into()) } pub(crate) fn get(&'i self, name: &str) -> ExecutionResult> { let value = self.get_value(name); let iterable_value = self.iterable_variables.get(name); match (value, iterable_value) { (Err(_), None) => Err(CatchableError::VariableNotFound(name.to_string()).into()), (Ok(value), None) => Ok(ScalarRef::Value(value)), (Err(_), Some(iterable_value)) => Ok(ScalarRef::IterableValue(iterable_value)), (Ok(_), Some(_)) => unreachable!("this is checked on the parsing stage"), } } pub(crate) fn meet_fold_start(&mut self) { self.current_depth += 1; } // meet next before recursion pub(crate) fn meet_next_before(&mut self) { self.invalidated_depths.insert(self.current_depth); self.current_depth += 1; } // meet next after recursion pub(crate) fn meet_next_after(&mut self) { self.current_depth -= 1; self.invalidated_depths.remove(&self.current_depth); self.cleanup_obsolete_values(); } pub(crate) fn meet_fold_end(&mut self) { self.current_depth -= 1; self.cleanup_obsolete_values(); } pub(crate) fn shadowing_allowed(&self) -> bool { // shadowing is allowed only inside a fold block, 0 here means that execution flow // is in a global scope self.current_depth != 0 } fn cleanup_obsolete_values(&mut self) { // TODO: it takes O(N) where N is a count of all scalars, but it could be optimized // by maintaining array of value indices that should be removed on each depth level let mut values_to_delete = Vec::new(); for (name, values) in self.non_iterable_variables.iter_mut() { let value_depth = values.last().depth; if !is_global_value(value_depth) && is_value_obsolete(value_depth, self.current_depth) { // it can't be empty, so it returns None if it contains 1 element if values.pop().is_none() { // TODO: optimize this cloning in next PR values_to_delete.push(name.to_string()); } } } for value_name in values_to_delete { self.non_iterable_variables.remove(&value_name); } } } fn is_global_value(current_scope_depth: usize) -> bool { current_scope_depth == 0 } fn is_value_obsolete(value_depth: usize, current_scope_depth: usize) -> bool { value_depth > current_scope_depth } use std::fmt; impl<'i> fmt::Display for Scalars<'i> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { writeln!(f, "fold_block_id: {}", self.current_depth)?; for (name, _) in self.non_iterable_variables.iter() { let value = self.get_value(name); if let Ok(last_value) = value { writeln!(f, "{} => {}", name, last_value.result)?; } } for (name, _) in self.iterable_variables.iter() { // it's impossible to print an iterable value for now writeln!(f, "{} => iterable", name)?; } Ok(()) } } #[cfg(test)] mod test { use super::*; use polyplets::SecurityTetraplet; use serde_json::json; use std::num::NonZeroUsize; use std::rc::Rc; #[test] fn test_local_cleanup() { let mut scalars = Scalars::default(); let tetraplet = SecurityTetraplet::default(); let rc_tetraplet = Rc::new(tetraplet); let value = json!(1u64); let rc_value = Rc::new(value); let value_aggregate = ValueAggregate::new(rc_value, rc_tetraplet, 1); let value_1_name = "name_1"; scalars.set_value(value_1_name, value_aggregate.clone()).unwrap(); let value_2_name = "name_2"; scalars.meet_fold_start(); scalars.set_value(value_2_name, value_aggregate.clone()).unwrap(); scalars.meet_fold_start(); scalars.set_value(value_2_name, value_aggregate.clone()).unwrap(); let expected_values_count = scalars.non_iterable_variables.get(value_2_name).unwrap().len(); assert_eq!(expected_values_count, NonZeroUsize::new(2).unwrap()); scalars.meet_fold_end(); let expected_values_count = scalars.non_iterable_variables.get(value_2_name).unwrap().len(); assert_eq!(expected_values_count, NonZeroUsize::new(1).unwrap()); scalars.meet_fold_end(); assert!(scalars.non_iterable_variables.get(value_2_name).is_none()); let expected_values_count = scalars.non_iterable_variables.get(value_1_name).unwrap().len(); assert_eq!(expected_values_count, NonZeroUsize::new(1).unwrap()); } }