1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
 * AquaVM Workflow Engine
 *
 * Copyright (C) 2024 Fluence DAO
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use super::*;
use crate::data_keeper::MergeCtx;

use air_interpreter_data::FoldSubTraceLore;
use air_interpreter_data::SubTraceDesc;
use air_interpreter_data::TracePos;

use std::collections::HashMap;

pub type FoldStatesCount = u32;

#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct ResolvedFold {
    pub lore: HashMap<TracePos, ResolvedSubTraceDescs>,
    pub fold_states_count: FoldStatesCount,
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ResolvedSubTraceDescs {
    pub before_subtrace: SubTraceDesc,
    pub after_subtrace: SubTraceDesc,
}

pub(super) fn resolve_fold_lore(fold: &FoldResult, merge_ctx: &MergeCtx) -> MergeResult<ResolvedFold> {
    let (fold_states_count, lens) = compute_lens_convolution(fold, merge_ctx)?;

    let lore = fold.lore.iter().zip(lens).try_fold::<_, _, MergeResult<_>>(
        HashMap::with_capacity(fold.lore.len()),
        |mut resolved_lore, (lore, lens)| {
            let before_subtrace = SubTraceDesc::new(lore.subtraces_desc[0].begin_pos, lens.before_len as _);
            let after_subtrace = SubTraceDesc::new(lore.subtraces_desc[1].begin_pos, lens.after_len as _);
            let resolved_descs = ResolvedSubTraceDescs::new(before_subtrace, after_subtrace);

            match resolved_lore.insert(lore.value_pos, resolved_descs) {
                Some(_) => {
                    Err(FoldResultError::SeveralRecordsWithSamePos(fold.clone(), lore.value_pos)).map_err(Into::into)
                }
                None => Ok(resolved_lore),
            }
        },
    )?;

    let resolved_fold_lore = ResolvedFold::new(lore, fold_states_count);
    Ok(resolved_fold_lore)
}

/// This function does conversion subtrace_lens of a fold result, it's better to explain it on
/// examples.
///
/// Imagine a fold on stream with 3 elements that have the same generation, in this case the
/// conversion will look like this:
/// [1, 1] [2, 2] [3, 3] => [12, 1] [11, 3] [9, 6]
///   g0     g0     g0
/// here a number before comma represents count of elements before next, and after the comma - after
///
/// For fold with 5 elements of two generations:
/// [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [1, 1] => [12, 1] [11, 3] [9, 6] [18, 4] [14, 9] [2, 1]
///   g0     g0     g0     g1     g1     g2
///
/// It could be seen that this function does a convolution of lens with respect to generations.
/// This is needed to handle (fold (par (next ... cases, because of subtrace_len of a Fold state
/// describes only states inside this iteration without states that next brings, however a Par
/// lens describe the whole subgraph, where "next" states are included.

// TODO: in future it's possible to change a format of a Fold state to one behaves like Par,
// because this function adds some overhead
fn compute_lens_convolution(fold: &FoldResult, merge_ctx: &MergeCtx) -> MergeResult<(FoldStatesCount, Vec<LoresLen>)> {
    let subtraces_count = fold.lore.len();
    let mut lens = Vec::with_capacity(subtraces_count);
    let mut fold_states_count: FoldStatesCount = 0;
    let mut last_seen_generation = GenerationIdx::from(0);
    let mut last_seen_generation_pos = 0;
    let mut cum_after_len = 0;

    for subtrace_id in 0..subtraces_count {
        let subtrace_lore = &fold.lore[subtrace_id];
        check_subtrace_lore(subtrace_lore)?;

        let current_generation = merge_ctx.try_get_generation(subtrace_lore.value_pos)?;
        // TODO: check sequence for monotone
        if last_seen_generation != current_generation {
            if subtrace_id > 0 {
                // do a back traversal for before lens
                compute_before_lens(&mut lens, last_seen_generation_pos, subtrace_id - 1);
            }
            last_seen_generation = current_generation;
            last_seen_generation_pos = subtrace_id;
            cum_after_len = 0;
        }

        let before_len = subtrace_lore.subtraces_desc[0].subtrace_len;
        let after_len = subtrace_lore.subtraces_desc[1].subtrace_len;
        // this checks for overflow both cum_before_len and cum_after_len
        fold_states_count = fold_states_count
            .checked_add(before_len)
            .and_then(|v| v.checked_add(after_len))
            .ok_or_else(|| FoldResultError::SubtraceLenOverflow {
                fold_result: fold.clone(),
                count: subtrace_id,
            })?;

        cum_after_len += after_len;

        // temporary set not cumulative before len
        let new_lens = LoresLen::new(before_len, cum_after_len);
        lens.push(new_lens);
    }

    if subtraces_count > 0 {
        compute_before_lens(&mut lens, last_seen_generation_pos, subtraces_count - 1);
    }

    Ok((fold_states_count, lens))
}

fn compute_before_lens(lore_lens: &mut [LoresLen], begin_pos: usize, end_pos: usize) {
    let mut cum_before_len = 0;
    let after_len = lore_lens[end_pos].after_len;

    for subtrace_id in (begin_pos..=end_pos).rev() {
        let before_len = &mut lore_lens[subtrace_id].before_len;

        cum_before_len += *before_len;
        *before_len = cum_before_len + after_len;
    }
}

fn check_subtrace_lore(subtrace_lore: &FoldSubTraceLore) -> MergeResult<()> {
    // this limitation is due to current constraint on count of next inside one fold,
    // for more info please see comments in the interpreter-data crate
    const SUBTRACE_DESC_COUNT: usize = 2;

    if subtrace_lore.subtraces_desc.len() != SUBTRACE_DESC_COUNT {
        return Err(FoldResultError::FoldIncorrectSubtracesCount(
            subtrace_lore.subtraces_desc.len(),
        ))
        .map_err(Into::into);
    }

    Ok(())
}

impl ResolvedFold {
    pub fn new(lore: HashMap<TracePos, ResolvedSubTraceDescs>, fold_states_count: FoldStatesCount) -> Self {
        Self {
            lore,
            fold_states_count,
        }
    }
}

impl ResolvedSubTraceDescs {
    pub fn new(before_subtrace: SubTraceDesc, after_subtrace: SubTraceDesc) -> Self {
        Self {
            before_subtrace,
            after_subtrace,
        }
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct LoresLen {
    before_len: u32,
    after_len: u32,
}

impl LoresLen {
    fn new(before_len: u32, after_len: u32) -> Self {
        Self { before_len, after_len }
    }
}

#[cfg(test)]
mod tests {
    use super::compute_lens_convolution;
    use crate::data_keeper::TraceSlider;
    use crate::merger::fold_merger::fold_lore_resolver::LoresLen;
    use crate::MergeCtx;
    use air_interpreter_data::ApResult;
    use air_interpreter_data::ExecutedState;
    use air_interpreter_data::FoldResult;
    use air_interpreter_data::FoldSubTraceLore;
    use air_interpreter_data::SubTraceDesc;
    use air_interpreter_data::TracePos;

    fn subtrace_desc(begin_pos: impl Into<TracePos>, subtrace_len: u32) -> SubTraceDesc {
        SubTraceDesc {
            begin_pos: begin_pos.into(),
            subtrace_len,
        }
    }

    #[test]
    fn empty_fold_result() {
        let lore = vec![];

        let fold_result = FoldResult { lore };

        let slider = TraceSlider::new(vec![]);
        let ctx = MergeCtx { slider };

        let (all_states, convoluted_lens) =
            compute_lens_convolution(&fold_result, &ctx).expect("convolution should be successful");
        assert_eq!(all_states, 0);
        assert_eq!(convoluted_lens, vec![]);
    }

    #[test]
    fn convolution_test_1() {
        // [1, 1] [2, 2] [3, 3] => [12, 1] [11, 3] [9, 6]
        //   g0     g0     g0
        let lore = vec![
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 1), subtrace_desc(0, 1)],
            },
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 2), subtrace_desc(0, 2)],
            },
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 3), subtrace_desc(0, 3)],
            },
        ];

        let fold_result = FoldResult { lore };

        let slider = TraceSlider::new(vec![ExecutedState::Ap(ApResult::new(0.into()))]);
        let ctx = MergeCtx { slider };

        let (all_states, convoluted_lens) =
            compute_lens_convolution(&fold_result, &ctx).expect("convolution should be successful");
        assert_eq!(all_states, 12);

        let expected_lens = vec![LoresLen::new(12, 1), LoresLen::new(11, 3), LoresLen::new(9, 6)];
        assert_eq!(convoluted_lens, expected_lens);
    }

    #[test]
    fn convolution_test_2() {
        // [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [1, 1] => [12, 1] [11, 3] [9, 6] [18, 4] [14, 9] [2, 1]
        //   g0     g0     g0     g1     g1     g2
        let lore = vec![
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 1), subtrace_desc(0, 1)],
            },
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 2), subtrace_desc(0, 2)],
            },
            FoldSubTraceLore {
                value_pos: 0.into(),
                subtraces_desc: vec![subtrace_desc(0, 3), subtrace_desc(0, 3)],
            },
            FoldSubTraceLore {
                value_pos: 1.into(),
                subtraces_desc: vec![subtrace_desc(0, 4), subtrace_desc(0, 4)],
            },
            FoldSubTraceLore {
                value_pos: 1.into(),
                subtraces_desc: vec![subtrace_desc(0, 5), subtrace_desc(0, 5)],
            },
            FoldSubTraceLore {
                value_pos: 2.into(),
                subtraces_desc: vec![subtrace_desc(0, 1), subtrace_desc(0, 1)],
            },
        ];

        let fold_result = FoldResult { lore };

        let slider = TraceSlider::new(vec![
            ExecutedState::Ap(ApResult::new(0.into())),
            ExecutedState::Ap(ApResult::new(1.into())),
            ExecutedState::Ap(ApResult::new(2.into())),
        ]);
        let ctx = MergeCtx { slider };

        let (all_states, convoluted_lens) =
            compute_lens_convolution(&fold_result, &ctx).expect("convolution should be successful");
        assert_eq!(all_states, 32);

        let expected_lens = vec![
            LoresLen::new(12, 1),
            LoresLen::new(11, 3),
            LoresLen::new(9, 6),
            LoresLen::new(18, 4),
            LoresLen::new(14, 9),
            LoresLen::new(2, 1),
        ];
        assert_eq!(convoluted_lens, expected_lens);
    }
}