1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/*
 * AquaVM Workflow Engine
 *
 * Copyright (C) 2024 Fluence DAO
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

use super::Generation;
use super::Stream;
use super::ValueAggregate;
use crate::execution_step::execution_context::stream_map_key::StreamMapKey;
use crate::execution_step::execution_context::stream_map_key::KEY_FIELD_NAME;
use crate::execution_step::value_types::TracePosOperate;
use crate::execution_step::ExecutionResult;
use crate::JValue;

use air_interpreter_value::JsonString;
use air_trace_handler::TraceHandler;

pub(super) static VALUE_FIELD_NAME: &str = "value";

pub(super) fn from_key_value(key: StreamMapKey, value: &JValue) -> JValue {
    maplit::hashmap! {
        VALUE_FIELD_NAME => value.clone(),
        KEY_FIELD_NAME => key.into(),
    }
    .into()
}

#[derive(Debug, Default, Clone)]
pub struct StreamMap {
    stream: Stream,
}

impl StreamMap {
    pub(crate) fn new() -> Self {
        Self { stream: Stream::new() }
    }

    pub(crate) fn insert(
        &mut self,
        key: StreamMapKey,
        value: &ValueAggregate,
        generation: Generation,
    ) -> ExecutionResult<()> {
        let obj = from_key_value(key, value.get_result());
        let value = ValueAggregate::new(
            obj,
            value.get_tetraplet(),
            value.get_trace_pos(),
            value.get_provenance(),
        );
        self.stream.add_value(value, generation)
    }

    pub(crate) fn compactify(&mut self, trace_ctx: &mut TraceHandler) -> ExecutionResult<()> {
        self.stream.compactify(trace_ctx)
    }

    pub(crate) fn get_mut_stream_ref(&mut self) -> &mut Stream {
        &mut self.stream
    }

    pub(crate) fn iter(&self) -> impl Iterator<Item = &ValueAggregate> {
        self.stream.iter()
    }

    pub(crate) fn iter_unique_key_object(&self) -> impl Iterator<Item = (JsonString, JValue)> + '_ {
        use std::collections::HashSet;
        let mut met_keys = HashSet::new();

        // There are two issues with this implementation:
        // 1. There might be key values overlap, given the key value is casted to String, e.g. 42 vs "42".
        // 2. The original kvpair key field has an unsupported type, e.g. float.
        self.stream.iter().filter_map(move |value_aggregate| {
            let (value, ..) = value_aggregate.as_inner_parts();

            let object = value.as_object()?;

            // This monadic chain casts numeric and string keys to string so that string "42" and
            // number 42 are considered equal.
            let key = object
                .get(KEY_FIELD_NAME)
                .and_then(StreamMapKey::from_value_ref)
                .and_then(|key| if met_keys.insert(key.to_key()) { Some(key) } else { None })?;

            let value = object.get(VALUE_FIELD_NAME)?.clone();

            Some((key.to_key(), value))
        })
    }
}

use std::fmt;

impl fmt::Display for StreamMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.stream.fmt(f)
    }
}

#[cfg(test)]
mod test {
    use super::Generation;
    use super::StreamMap;
    use crate::execution_step::execution_context::stream_map_key::StreamMapKey;
    use crate::execution_step::value_types::stream_map::from_key_value;
    use crate::execution_step::ValueAggregate;
    use crate::ExecutionError;
    use crate::JValue;
    use crate::UncatchableError;

    use air_interpreter_cid::CID;
    use air_interpreter_data::ExecutionTrace;
    use air_trace_handler::GenerationCompactificationError;
    use air_trace_handler::TraceHandler;

    fn create_value_aggregate(value: impl Into<JValue>) -> ValueAggregate {
        ValueAggregate::new(
            value.into(),
            <_>::default(),
            0.into(),
            air_interpreter_data::Provenance::literal(),
        )
    }

    fn compare_stream_iter<'value>(
        mut iter: impl Iterator<Item = &'value ValueAggregate>,
        key: StreamMapKey,
        value: impl Into<JValue>,
    ) -> bool {
        let value = value.into();
        let actual_value = iter.next().map(|e| e.get_result()).unwrap();
        let expected_value = from_key_value(key, &value);

        actual_value == &expected_value
    }

    #[test]
    fn test_from_value_key_str() {
        let key = StreamMapKey::Str("some_key".into());
        let value = "1";
        let value_aggregate = create_value_aggregate(value);

        let mut stream_map = StreamMap::new();
        stream_map
            .insert(key.clone(), &value_aggregate, Generation::New)
            .unwrap();
        let mut iter = stream_map.stream.iter();

        assert!(compare_stream_iter(&mut iter, key, value));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_from_value_key_int() {
        let key = StreamMapKey::I64(42.into());
        let value = "1";
        let value_aggregate = create_value_aggregate(value);

        let mut stream_map = StreamMap::new();
        stream_map
            .insert(key.clone(), &value_aggregate, Generation::New)
            .unwrap();
        let mut iter = stream_map.stream.iter();

        assert!(compare_stream_iter(&mut iter, key, value));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_insert() {
        let key_1_2 = StreamMapKey::Str("some_key".into());
        let value_1 = "1";
        let value_aggregate_1 = create_value_aggregate(value_1);

        let value_2 = "2";
        let value_aggregate_2 = create_value_aggregate(value_2);

        let mut stream_map = StreamMap::new();
        stream_map
            .insert(key_1_2.clone(), &value_aggregate_1, Generation::new())
            .unwrap();
        stream_map
            .insert(key_1_2.clone(), &value_aggregate_2, Generation::current(0))
            .unwrap();

        let key_3 = StreamMapKey::Str("other_key".into());
        let value_3 = "3";
        let value_aggregate_3 = create_value_aggregate(value_3);
        stream_map
            .insert(key_3.clone(), &value_aggregate_3, Generation::current(0))
            .unwrap();

        let key_4 = StreamMapKey::I64(42.into());
        let value_4 = "4";
        let value_aggregate_4 = create_value_aggregate(value_4);
        stream_map
            .insert(key_4.clone(), &value_aggregate_4, Generation::current(0))
            .unwrap();

        let mut iter = stream_map.stream.iter();

        assert!(compare_stream_iter(&mut iter, key_1_2.clone(), value_2));
        assert!(compare_stream_iter(&mut iter, key_3, value_3));
        assert!(compare_stream_iter(&mut iter, key_4, value_4));
        assert!(compare_stream_iter(&mut iter, key_1_2, value_1));
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn compactification_invalid_state_error() {
        use air_interpreter_data::CanonResult;

        let key = StreamMapKey::Str("some_key".into());
        let value = "1";
        let value_aggregate = create_value_aggregate(value);
        let mut stream_map = StreamMap::new();

        stream_map
            .insert(key, &value_aggregate, Generation::current(0))
            .unwrap();

        let trace = ExecutionTrace::from(vec![]);
        let mut trace_ctx = TraceHandler::from_trace(trace.clone(), trace);
        let canon_result = CanonResult::executed(CID::new("fake canon CID"));
        trace_ctx.meet_canon_end(canon_result.clone());
        trace_ctx.meet_canon_end(canon_result.clone());
        trace_ctx.meet_canon_end(canon_result);

        let compactification_result = stream_map.compactify(&mut trace_ctx);
        assert!(matches!(
            compactification_result,
            Err(ExecutionError::Uncatchable(
                UncatchableError::GenerationCompactificationError(
                    GenerationCompactificationError::TracePosPointsToInvalidState { .. }
                )
            ))
        ));
    }

    #[test]
    fn compactification_points_to_nowhere_error() {
        let key = StreamMapKey::Str("some_key".into());
        let value = "1";
        let value_aggregate = create_value_aggregate(value);
        let mut stream_map = StreamMap::new();

        stream_map
            .insert(key, &value_aggregate, Generation::current(0))
            .unwrap();

        let trace = ExecutionTrace::from(vec![]);
        let mut trace_ctx = TraceHandler::from_trace(trace.clone(), trace);

        let compactification_result = stream_map.compactify(&mut trace_ctx);
        assert!(matches!(
            compactification_result,
            Err(ExecutionError::Uncatchable(
                UncatchableError::GenerationCompactificationError(
                    GenerationCompactificationError::TracePosPointsToNowhere { .. }
                )
            ))
        ));
    }

    fn generate_key_values(count: usize) -> Vec<(String, ValueAggregate)> {
        (0..count)
            .map(|id| {
                let key = id.to_string();
                let value = id.into();
                let value = ValueAggregate::new(
                    value,
                    <_>::default(),
                    0.into(),
                    air_interpreter_data::Provenance::literal(),
                );

                (key, value)
            })
            .collect()
    }

    fn insert_into_map(stream_map: &mut StreamMap, key_value: &(String, ValueAggregate), generation: Generation) {
        stream_map
            .insert(key_value.0.as_str().into(), &key_value.1, generation)
            .unwrap();
    }

    fn bulk_insert_into_map(
        stream_map: &mut StreamMap,
        kvpairs: &Vec<(String, ValueAggregate)>,
        kvpairs_ids: Vec<usize>,
        generations_ids: Vec<u32>,
    ) {
        kvpairs_ids
            .into_iter()
            .zip(generations_ids.into_iter())
            .for_each(|(kvpair_id, generation_id)| {
                insert_into_map(stream_map, &kvpairs[kvpair_id], Generation::current(generation_id))
            });
    }

    #[test]
    fn test_iter_unique_key_object() {
        const TEST_DATA_SIZE: usize = 5;
        let key_values = generate_key_values(TEST_DATA_SIZE);

        let key: u32 = 2;
        let value = 2;
        let value = ValueAggregate::new(
            value.into(),
            <_>::default(),
            0.into(),
            air_interpreter_data::Provenance::literal(),
        );

        let mut stream_map_json_kvpairs = StreamMap::new();
        let _ = stream_map_json_kvpairs.insert(key.into(), &value, Generation::current(0));

        bulk_insert_into_map(
            &mut stream_map_json_kvpairs,
            &key_values,
            vec![0, 0, 2, 2, 2, 1, 3],
            vec![0, 1, 1, 3, 4, 4, 2],
        );
        let mut iter = stream_map_json_kvpairs.iter_unique_key_object();

        assert_eq!(("2".into(), 2.into()), iter.next().unwrap());
        assert_eq!(("0".into(), 0.into()), iter.next().unwrap());
        assert_eq!(("3".into(), 3.into()), iter.next().unwrap());
        assert_eq!(("1".into(), 1.into()), iter.next().unwrap());
        assert_eq!(iter.next(), None);
    }
}